
16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

16.35
Aerospace Software Engineering

Verification & Validation

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Would You ...

§ ... trust a completely-automated nuclear power
plant?
§ ... trust a completely-automated pilot whose

software was written by yourself? A colleague?
§ … dare to write an expert system to diagnose

cancer? What if you are personally held liable in a
case where a patient dies because of a malfunction
of the software

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Verification and Validation

§Assuring that a software system
meets a user's needs

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Verification: "Are we building the product right"
§ The software should conform to its specification

§ Validation: "Are we building the right product"
§ The software should do what the user really requires

Verification vs. Validation

“Verification is the act of reviewing, inspecting,
testing, checking, auditing, or otherwise
establishing and documenting whether or not
items, processes, services or documents conform
to specified requirements” (ANSI A3-1978).

Validation is, according to its ANSI/IEEE
definition, “the evaluation of software at the end
of the software development process to ensure
compliance with the user requirements”.
Validation is, therefore, “end-to-end verification.”

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Is a whole life-cycle process - V&V must be
applied at each stage in the software process

§ Has two principal objectives
§ The discovery of defects in a system
§ The assessment of whether or not the system is usable

in an operational situation

The V&V Process

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Software inspections Concerned with analysis of
the static system representation to discover problems
(static verification)
§ May be supplement by tool-based document and code

analysis

§ Software testing Concerned with exercising and
observing product behaviour (dynamic verification)
§ The system is executed with test data and its operational

behaviour is observed

Static and Dynamic Verification

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Static and Dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Dynamic
validation

Static
verification

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Can reveal the presence of errors not their
absence
§ A successful test is a test which discovers one

or more errors
§ The only validation technique for non-functional

requirements
§ Should be used in conjunction with static

verification to provide full V&V coverage

Program Testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Defect testing
§ Tests designed to discover system defects.
§ A successful defect test is one which reveals the

presence of defects in a system.

§ Statistical testing
§ Tests designed to reflect the frequency of user inputs.

Used for reliability estimation.

Types of Testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Cost of Testing
SDLC TESTING

Accumulated Accumulated
Errors/ 1000 Test

LOC Cost

Normal SDLC
Accumulated Accumulated

Test Errors/ 1000
Cost LOC REQUIREMENTS

20 ERRORS

PRODUCTION
0 ERRORS

TEST
80% ERROR
REDUCTION

CODE
20 ERRORS

DESIGN
20 ERRORS

Cost Detect = 1

Cost Detect = 1

Cost Detect = 10

Cost Detect = 100

0

0

0

480

1680

20

40

60

12

0

10

15

18

4

0

10

25

42

182

582

Cost Detect = 1

Verification and Validation of Modern Software Intensive Systems - Schulmeyer, G. Gordon

Cost of Testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

V&V Goals

§ Verification and validation should establish
confidence that the software is fit for purpose

§ This does not mean completely free of defects

§ Rather, it must be good enough for its intended
use and the type of use will determine the degree
of confidence that is needed

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

V&V Confidence

§ Depends on system’s purpose, user expectations
and marketing environment
§ Software function
§ The level of confidence depends on how critical the

software is to an organisation
§ User expectations
§ Users may have low expectations of certain kinds of

software
§ Marketing environment
§ Getting a product to market early may be more important

than finding defects in the program

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Defect testing and debugging are distinct
processes
§ Verification and validation is concerned with

establishing the existence of defects in a program
§ Debugging is concerned with locating and

repairing these errors
§ Debugging involves formulating a hypothesis

about program behaviour then testing these
hypotheses to find the system error

Testing and Debugging

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

The Debugging Process

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Careful planning is required to get the most out of
testing and inspection processes
§ Planning should start early in the development

process
§ The plan should identify the balance between

static verification and testing
§ Test planning is about defining standards for the

testing process rather than describing product tests

V & V Planning

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

The V-model of Development

Requir ements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§X-38 Integrated Test Plan
§Software Test Plan

The Structure of a Software Test Plan

§ The testing process
§ Requirements traceability
§ Tested items
§ Testing schedule
§ Test recording procedures
§ Hardware and software requirements
§ Constraints

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Defect Testing

§Testing programs to establish
the presence of system defects

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

The Testing Process

§ Component testing
§ Testing of individual program components
§ Usually the responsibility of the component developer

(except sometimes for critical systems)
§ Tests are derived from the developer’s experience

§ Integration testing
§ Testing of groups of components integrated to create a

system or sub-system
§ The responsibility of an independent testing team
§ Tests are based on a system specification

Component
testing

Integration
testing

Software developer Independent testing team

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Defect Testing

§ The goal of defect testing is to discover defects in
programs
§ A successful defect test is a test which causes a

program to behave in an anomalous way
§ Tests show the presence not the absence of defects

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Only exhaustive testing can show a program is
free from defects.

Exhaustive Testing

for i in 1..100 loop
if a(i)=true then

Ada.Integer_Text_IO.put (1);
else

Ada.Integer_Text_IO.put (0);
end if;

end loop;

Has 2 different outcomes100

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Test data Inputs which have been devised to
test the system
§ Test cases Inputs to test the system and the

predicted outputs from these inputs if the
system operates according to its specification

Test Data and Test Cases

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Testing should be:

§ Repeatable
§ If you find an error, you’ll want to repeat the test to show others
§ If you correct an error, you’ll want to repeat the test to check you

did fix it

§ Systematic
§ Random testing is not enough
§ Select test sets that
§ cover the range of behaviors of the program
§ are representative of real use

§ Documented
§ Keep track of what tests were performed, and what the results were

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Random Testing is not Enough

Structurally …

Test strategy: pick random
value for A and B and test
“equals” on them

Functionally …
--Requires: LIST is a list of integers
--Effects: returns the maximum element
-- in the list

Maximum (LIST)

Try these test cases:

Yes1024332 1024 511 553

Yes1024553 511 1024 332

Yes88 5 5 2 2 5 4 7 1 6

Yes86 1 7 4 5 2 2 5 5 8

Yes881 88 17 59 32 22

Yes8822 32 59 17 88 1

Yes329 32 4 16 3

Yes323 16 4 32 9

Correct?OutputInput

--Effects: returns True if A=B, False
-- otherwise
if A=B then
Ada.Text_IO.Put (Item => “True”);

else
Ada.Text_IO.Put (Item => “False”);

end if;

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Test Techniques

§ Classified according to the criterion used to
measure the adequacy of a set of test cases:
§ Coverage-based testing
§ Testing requirements are specified in terms of the

coverage of the product to be tested
§ Fault-based testing
§ Fault detecting ability of the test set determines the

adequacy
§ Error-based testing
§ Focus on error-prone points, based on knowledge of the

typical errors that people make

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

(Definitions)

§ Error
§ Error is a human action that produces an incorrect result

§ Fault
§ Consequence of an error is software containing a fault.

A fault thus is the manifestion of an error.

§ Failure
§ If encountered, a fault may result in a failure

§ What we observe during testing are failures.

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Test Techniques

§ Or, classify test techniques based on the
source of information used to derive test
cases:
§ White (glass) box testing
§ Also called structural or program-based testing

§ Black box testing
§ Also called functional or specification-based testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Black-box Testing

§ An approach to testing where the program is
considered as a ‘black-box’
§ The program test cases are based on the system

specification
§ Test planning can begin early in the software

process

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Black-box Testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Inputs causing
anomalous
behavior

Outputs which reveal
the presence of defects

I

O

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Equivalence Partitioning

§ Input data and output results often fall into
different classes where all members of a class are
related
§ Each of these classes is an equivalence partition

where the program behaves in an equivalent way
for each class member
§ Test cases should be chosen from each partition

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Equivalence Partitioning

System

Outputs

Invalid inpu ts Valid inpu ts

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Partition system inputs and outputs into
‘equivalence sets’
§ If input is a 5-digit integer between 10,000 and 99,999,

equivalence partitions are <10,000, 10,000-99, 999 and
>99,999

§ Choose test cases at the boundary of these
sets
§ 00000, 09999, 10000, 99999, 100000

Equivalence Partitioning

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Equivalence Partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Search Routine Specification

procedure Search (Key : Elem;
T : Elem_Array;
Found : in out Boolean;
L : in out Elem_Index)

Pre-Condition
-- the array has at least one element
T’First <= T’Last

Post-Condition
-- the element is found and is referenced by L
(Found and T(L) = Key)

or
-- the element is not in the array
(not Found and
not (Exists I, T’First >= I <= T’Last, T (I) = Key))

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Inputs which conform to the pre-conditions
§ Inputs where a pre-condition does not hold
§ Inputs where the key element is a member of

the array
§ Inputs where the key element is not a member

of the array

Search Routine - Input Partitions

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Testing Guidelines (Sequences)

§ Test software with sequences which have only a
single value
§ Use sequences of different sizes in different tests
§ Derive tests so that the first, middle and last

elements of the sequence are accessed
§ Test with sequences of zero length

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Search Routine - Input Partitions

Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Also called white-box testing
§ Derivation of test cases according to program

structure. Knowledge of the program is used to identify
additional test cases
§ Objective is to exercise all program statements

Structural Testing

C o m po ne nt
c od e

T e st
o u t pu ts

Te st d a t a

D e r i ve sTe st s

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

White box testing

§ Exercise all independent paths
within a module at least once

§ Exercise all logical decisions on
their true and false sides

§ Exercise all loops at their
boundaries and within their
operational bounds

§ Exercise all internal data
structures to assure their validity

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Why White Box Testing

§ Why not simply check that
§ Requirements are fulfilled?
§ Interfaces are available and working?

§ Reasons for white-box testing:
§ logic errors and incorrect assumptions are inversely

proportional to a path’s execution probability
§ we often believe that a path is not likely to be executed;

in fact, reality is often counter intuitive
§ typographical errors are random; it’s likely that

untested paths will contain some

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

loop < 20x

Exhaustive Testing

There are 520=1014 possible
paths

If we execute one test per
millisecond, it would take
3,170 years to test this
program

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Selective Testing

§ Basis path testing
§ Condition testing
§ Loop testing
§ Dataflow testing

loop < = 20x

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Basis Set

§ Basis set of execution paths = set of paths that will
execute all statements and all conditions in a
program at least once
§ Cyclomatic complexity defines the number of

independent paths in the basis set
§ Basis set is not unique
§ Goal: Define test cases for basis set

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Flow Graph Notation

Graph Cyclomatic Number V(G) = e – n + p

Cyclomatic Complexity CV(G) = V(G) + 1

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Basis Path Testing

§ Derive a logical complexity
measure
§ Cyclomatic complexity CV(G)
§ Number of simple decisions +p

(compound decisions have to be
split)
§ Number of enclosed areas+1 (uses

flow-graph notation)
§ In this case, CV(G) = 4

§ Use CV(G) to define a basis set of
execution paths
§ CV(G) provides an lower bound of

tests that must be executed to
guarantee coverage of all programs

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

modules

CV(G)
modules in this range are
more error prone

Cyclomatic Complexity

A number of industry studies have indicated that the higher
CV(G), the higher the probability of errors.

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

1

2

4

7

8

3

65

Basis Path Testing

CV(G) = 4

There are four paths

Path 1: 1,2,3,6,7,8

Path 2: 1,2,3,5,7,8

Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2…7,8

We derive test cases to
exercise these paths.

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Selective Testing

§ Basis path testing
§ Condition testing
§ Loop testing
§ Dataflow testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Condition Testing

§ Exercises each logical condition in a program
module
§ Possible conditions:
§ Simple condition:
§ Boolean variable (T or F)
§ Relational expression (a<b)

§ Compound condition:
§ Composed of several simple conditions

((a=b) and (c>d))

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Condition Testing Methods

§ Branch testing:
§ Each branch of each condition needs to be exercised at

least once

§ Domain testing:
§ Relational expression a<b:
§ 3 tests: a<b, a=b, a>b

§ Boolean expression with n variables
§ 2n tests required

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Selective Testing

§ Basis path testing
§ Condition testing
§ Loop testing
§ Dataflow testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Loop Testing

§ Loops are the cornerstone of every program
§ Loops can lead to non-terminating programs
§ Loop testing focuses exclusively on the validity of

loop constructs
while X < 20 loop
do something

end loop;

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

simple
loop

nested
loops

concatenated
loops

unstructured
loops

Loop Testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

n

n

Testing Simple Loops

§ Minimum conditions - simple loops
§ skip the loop entirely
§ only one pass through the loop
§ two passes through the loop
§ m passes through the loop m < n
§ (n-1), n, and (n+1) passes through the loop

n = maximum number of allowable passes

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Testing Nested Loops

§ Just extending simple loop testing: number
of tests grows geometrically
§ Reduce the number of tests:
§ start at the innermost loop; set all other loops

to minimum values
§ conduct simple loop test; add out-of-range or

excluded values
§ work outwards while keeping inner nested

loops to typical values
§ continue until all loops have been tested

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Testing Concatenated Loops

§ Loops are independent of each other:
§ Use simple-loop approach

§ Loops depend on each other:
§ Use nested-loop approach

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Bad Programming!

Testing Unstructured Loops

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Selective Testing

§ Basis path testing
§ Condition testing
§ Loop testing
§ Dataflow testing

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Dataflow Testing

§ Partition the program into pieces of
code with a single entry/exit point.

§ For each piece find which variables are
set/used.

§ Various covering criteria:
§ For all set-use pairs
§ For all set to some use

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Key Points

§ Verification and validation are not the same thing.
Verification shows conformance with
specification; validation shows that the program
meets the customer’s needs
§ Test plans should be drawn up to guide the testing

process
§ Static verification techniques involve examination

and analysis of the program for error detection

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

Key Points

§ Test parts of a system which are commonly used
rather than those which are rarely executed
§ Equivalence partitions are sets of test cases where

the program should behave in an equivalent way
§ Black-box testing is based on the system

specification
§ Structural testing identifies test cases which cause

all paths through the program to be executed
§ Test coverage measures ensure that all statements

have been executed at least once

16.35 — September 25/2002 — Prof. Kristina Lundqvist — kristina@mit.edu

§ Examination schedule
§ Wednesday, Dec 18. 1:30 pm – 4:30 pm.

§ web.mit.edu/www/16.35
§ Questions and Answers section on project page

§ Software development plan and problem set 1.
§ SRS document due on Monday 9/30
§ X-38 Software Requirements Specification
§ Software Requirements Specification Template

