
16.35 — October 16/2002 — Prof. I. K. Lundqvist

16.35
Aerospace Software Engineering

Software Architecture

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architectural Design

§Establishing the overall 
structure of a software system



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Software Architecture

§ “The software architecture of a program or computing 
system is the structure or structures of the system, 
which comprise software components, the externally 
visible properties of those components, and the 
relationships among them. By “externally visible” 
properties, we are referring to those assumptions other 
components can make of a component, such as its 
provided services, performance characteristics, fault 
handling, shared resource usage, and so on.”
§ Bass, Clements, and Kazman, Software Architecture in Practice, 1998

http://www.sei.cmu.edu/ata/symposium00/Symposium_archrep_slides11/

http://www.sei.cmu.edu/architecture/definitions.html



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Topics Covered

§ System structuring
§ Control models
§ Modular decomposition
§ Domain-specific architectures



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Software Architecture

§ The design process for identifying the sub-systems 
making up a system and the framework for sub-
system control and communication is 
architectural design
§ The output of this design process is a description 

of the software architecture



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architectural Design

§ An early stage of the system design process
§ Represents the link between specification and 

design processes
§ It involves identifying major system components 

and their communications



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design productsDesign products

Design activities



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architectural Design

§ An early stage of the system design process
§ Represents the link between specification and 

design processes
§ It involves identifying major system components 

and their communications



16.35 — October 16/2002 — Prof. I. K. Lundqvist

ATC System Architecture
Da t a com m s.

s ys tem
Trans po nd er

s ys tem
R adar

s ys tem
Aircraf t
com m s.

Telep ho ne
s ys tem

Fl ig ht pl an
d atabas e

B acku p
p os it io n

p ro ces so r

P o si ti on
p ro ces so r

C o m m s.
p ro ces so r

B acku p com m s.
p ro ces so r

Aircraf t
s imu la t io n

s ys tem

Weat her m ap
s ys tem

Acco un ti ng
s ys tem

C o nt ro ller
i nfo . sy stem

C o nt ro ll er
con so les

Act iv ity l og gi ng
s ys tem



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Advantages of Explicit Architecture

§ Stakeholder communication
§ Architecture may be used as a focus of discussion by 

system stakeholders

§ System analysis
§ Means that analysis of whether the system can meet its 

non-functional requirements is possible

§ Large-scale reuse
§ The architecture may be reusable across a range of 

systems



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architectural Design Process

§ System structuring
§ The system is decomposed into several principal sub-

systems and communications between these sub-
systems are identified

§ Control modelling
§ A model of the control relationships between the 

different parts of the system is established

§ Modular decomposition
§ The identified sub-systems are decomposed into 

modules



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Sub-systems and Modules

§ A sub-system is a system in its own right whose 
operation is independent of the services provided 
by other sub-systems.
§ A module is a system component that provides 

services to other components but would not 
normally be considered as a separate system



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Why Document Software Architectures?

§ Marching orders for development teams
§ Contract between components, component teams
§ Basis for pre-implementation analysis
§ Blueprint for maintainers
§ Familiarization materials for all stakeholders
§ Insurance against personnel turnover



16.35 — October 16/2002 — Prof. I. K. Lundqvist

How do you Document Software Architectures?

§ UML (Unified Modeling Language)
§ Visio and/or Power Point
§ Not very well at all ...

§ What information do you write down?



16.35 — October 16/2002 — Prof. I. K. Lundqvist

High-Quality Architecture Documentation

§ Documentation should be written from the point of view of 
the reader, not the writer
§ Documentation should be organized for ease of reference, not ease 

of reading
§ Mark what you do not know with “TBD” rather than leaving it 

blank
§ Avoid repetition. Everything in one place.
§ Avoid unintentional ambiguity
§ Explain your notation. Beware boxes and lines

§ Use a standard organization
§ Record rationale
§ Keep it current
§ Review it for fitness of purpose



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Documenting Architecture

§ Primarily a matter of:
§ Documenting the relevant structures
§ Documenting trans-structure information

§ Examples of structures:
§ Dataflow
§ Process
§ Module



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Architecture Attributes

§ Performance
§ Localise operations to minimise sub-system communication

§ Security
§ Use a layered architecture with critical assets in inner layers

§ Safety
§ Isolate safety-critical components

§ Availability
§ Include redundant components in the architecture

§ Maintainability
§ Use fine-grain, self-contained components



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Topics Covered

§ System structuring
§ Control models
§ Modular decomposition
§ Domain-specific architectures



16.35 — October 16/2002 — Prof. I. K. Lundqvist

System Structuring

§ Concerned with decomposing the system into 
interacting sub-systems
§ The architectural design is normally expressed as a 

block diagram presenting an overview of the 
system structure
§ More specific models showing how sub-systems 

share data, are distributed and interface with each 
other may also be developed



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Packing Robot Control System

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller



16.35 — October 16/2002 — Prof. I. K. Lundqvist

The Repository Model

§ Sub-systems must exchange data. This may be 
done in two ways:
§ Shared data is held in a central database or repository 

and may be accessed by all sub-systems
§ Each sub-system maintains its own database and passes 

data explicitly to other sub-systems

§ When large amounts of data are to be shared, the 
repository model of sharing is most commonly 
used



16.35 — October 16/2002 — Prof. I. K. Lundqvist

CASE Toolset Architecture

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Repository Model Characteristics

§ Advantages
§ Efficient way to share large amounts of data
§ Sub-systems need not be concerned with how data is 

produced 
§ Centralised management e.g. backup, security, etc.
§ Sharing model is published as the repository schema

§ Disadvantages
§ Sub-systems must agree on a repository data model. 

Inevitably a compromise

§ Data evolution is difficult and expensive

§ No scope for specific management policies

§ Difficult to distribute efficiently



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Client-server Architecture

§ Distributed system model which shows how data 
and processing is distributed across a range of 
components
§ Set of stand-alone servers which provide specific 

services such as printing, data management, etc.
§ Set of clients which call on these services
§ Network which allows clients to access servers



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Film and Picture Library

Catalogue
server

Catalogue

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Client-server Characteristics

§ Advantages
§ Distribution of data is straightforward
§ Makes effective use of networked systems. May require 

cheaper hardware
§ Easy to add new servers or upgrade existing servers

§ Disadvantages
§ No shared data model so sub-systems use different data 

organisation. data interchange may be inefficient
§ Redundant management in each server
§ No central register of names and services - it may be 

hard to find out what servers and services are available



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Abstract Machine Model

§ Used to model the interfacing of sub-systems
§ Organises the system into a set of layers (or 

abstract machines) each of which provide a set of 
services
§ Supports the incremental development of sub-

systems in different layers. When a layer interface 
changes, only the adjacent layer is affected
§ However, often difficult to structure systems in 

this way



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Version Management System

Operating
system

Database system

Object management

Version management



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Topics Covered

§ System structuring
§ Control models
§ Modular decomposition
§ Domain-specific architectures



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Control Models

§ Are concerned with the control flow between sub-
systems. Distinct from the system decomposition 
model
§ Centralised control
§ One sub-system has overall responsibility for control 

and starts and stops other sub-systems
§ Event-based control
§ Each sub-system can respond to externally generated 

events from other sub-systems or the system’s 
environment



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Centralised Control

§ A control sub-system takes responsibility for 
managing the execution of other sub-systems
§ Call-return model
§ Top-down subroutine model where control starts at the 

top of a subroutine hierarchy and moves downwards. 

§ Manager model
§ One system component controls the stopping, starting 

and coordination of other system processes. 



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Call-return Model

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Real-time System Control

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Event-driven Systems

§ Driven by externally generated events 
§ where the timing of the event is outside the control of 

the sub-systems which process the event

§ Two principal event-driven models
§ Broadcast models
§ Interrupt-driven models

§ Other event driven models include spreadsheets 
and production systems



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Broadcast Model

§ Effective in integrating sub-systems on different computers 
in a network

§ Sub-systems register an interest in specific events. When 
these occur, control is transferred to the sub-system which 
can handle the event

§ Control policy is not embedded in the event and message 
handler. Sub-systems decide on events of interest to them

§ However, sub-systems don’t know if or when an event will 
be handled



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Selective Broadcasting

Sub-system
1

Event and messa ge handler

Sub-system
2

Sub-system
3

Sub-system
4



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Interrupt-driven Systems

§ Used in real-time systems where fast response to 
an event is essential
§ There are known interrupt types with a handler 

defined for each type
§ Each type is associated with a memory location 

and a hardware switch causes transfer to its 
handler
§ Allows fast response but complex to program and 

difficult to validate



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Interrupt-driven Control

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Topics Covered

§ System structuring
§ Control models
§ Modular decomposition
§ Domain-specific architectures



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Modular Decomposition

§ Another structural level where sub-systems are 
decomposed into modules
§ Two modular decomposition models covered
§ An object model where the system is decomposed into 

interacting objects
§ A data-flow model where the system is decomposed 

into functional modules which transform inputs to 
outputs. 

§ If possible, decisions about concurrency should be 
delayed until modules are implemented



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Object Models

§ Structure the system into a set of loosely coupled 
objects with well-defined interfaces
§ Object-oriented decomposition is concerned with 

identifying object classes, their attributes and 
operations
§ When implemented, objects are created from these 

classes and some control model used to coordinate 
object operations



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Invoice Processing System

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

invoice#
date
amount
customer

Invoice

invoice#
date
amount
customer#

Receipt

invoice#
date
amount
customer#

Payment

customer#
name
address
credit period

Customer



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Data-flow Models

§ Functional transformations process their inputs to 
produce outputs
§ Variants of this approach are very common. When 

transformations are sequential, this is a batch 
sequential model which is extensively used in data 
processing systems
§ Not really suitable for interactive systems



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Invoice Processing System

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Topics Covered

§ System structuring
§ Control models
§ Modular decomposition
§ Domain-specific architectures



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Domain-specific Architectures

§ Architectural models which are specific to some 
application domain

§ Two types of domain-specific model
§ Generic models which are abstractions from a number of real 

systems and which encapsulate the principal characteristics of 
these systems

§ Reference models which are more abstract, idealised model. 
Provide a means of information about that class of system and of
comparing different architectures

§ Generic models are usually bottom-up models; Reference 
models are top-down models



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Generic Models

§ Compiler model is a well-known example 
although other models exist in more specialised 
application domains
§ Lexical analyser
§ Symbol table
§ Syntax analyser
§ Syntax tree
§ Semantic analyser
§ Code generator



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Compiler Model

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol
table



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Language Processing System

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Reference Architectures

§ Reference models are derived from a study of the 
application domain rather than from existing 
systems
§ May be used as a basis for system implementation 

or to compare different systems. It acts as a 
standard against which systems can be evaluated
§ OSI model is a layered model for communication 

systems



16.35 — October 16/2002 — Prof. I. K. Lundqvist

OSI Reference Model

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communications medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Key Points

§ The software architect is responsible for deriving a 
structural system model, a control model and a sub-system 
decomposition model

§ Large systems rarely conform to a single architectural 
model

§ System decomposition models include repository models, 
client-server models and abstract machine models

§ Control models include centralised control and event-
driven models



16.35 — October 16/2002 — Prof. I. K. Lundqvist

Key Points

§ Modular decomposition models include data-flow 
and object models
§ Domain specific architectural models are 

abstractions over an application domain. They 
may be constructed by abstracting from existing 
systems or may be idealised reference models



16.35 — October 16/2002 — Prof. I. K. Lundqvist

...

§ Friday group meetings in 33-308
§ 12-12:30 The green team
§ 2:30-3 Phifer, Sidelnik, Oulette, Chang (?)
§ 3-3:30 Mandic, Nyenke, da Silva, Riedel
§ 3:30-4 Qu, Stringfellow, Guevara, Kambouchev

§ Turn in problem sets to folder on server:
§ \\aero-astro\16.35

§ Feed back on the Ada Compendium to Malia
§ CD


