
16.35 — October 231/2002 — Prof. I. K. Lundqvist

16.35
Aerospace Software Engineering

Software Architecture
The “4+1” view
Patterns

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Why Care About Software Architecture?

§ An architecture provides a vehicle for communication
among stakeholders
§ It is the manifestation of the earliest design decisions

about a system
§ It is a transferable, reusable abstraction of a system

Every system has an architecture (which may or may not
be known!) - But how we represent it is of crucial
importance

16.35 — October 231/2002 — Prof. I. K. Lundqvist

What Does Software Architecture Do?

§ An architecture defines constraints on its
implementation
§ Dictates organizational structures
§ Inhibits or enables a system’s quality

attributes – which can be predicted
§ A good architecture is necessary, but not

sufficient, to ensure quality
§ Makes it easier to reason about and manage

change

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Is this a Software Architecture?

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Architectural views

§ Are used by different people
§ Used to achieve different functional and non-functional

qualities
§ Used as a description and prescription
§ Should be annotated to support analysis (scenarios aid

in annotating views with design rationale)

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Views

§ Software comprises many structures
§ Partial description of a system

§ Philippe B. Kruchten: Four main views of software
architecture that can be used to advantage in system-
building + a distinguished fifth view that ties the other four
together
§ The “four plus one” approach
§ logical view
§ process view
§ physical view
§ development view
§ + scenario view

§ A view can be used to assess one or more quality
attributes.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

“4+1” View Architecture Model

16.35 — October 231/2002 — Prof. I. K. Lundqvist

4 + 1: Logical View

§ The logical view supports the functional
requirements, i.e., the services the system should
provide to its end users.

§ Typically, it shows the key abstractions (e.g., classes
and interactions amongst them).

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Logical View: Notation

Blueprint for an
Air Traffic Control System

16.35 — October 231/2002 — Prof. I. K. Lundqvist

4 + 1: Process View

§ The process view gives the mapping of functions to
runtime elements

§ It takes into account some nonfunctional requirements,
such as performance, system availability, concurrency
and distribution, system integrity, and fault-tolerance.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Process View: Notation

16.35 — October 231/2002 — Prof. I. K. Lundqvist

4 + 1: Physical View

§ The physical view defines how the various elements
identified in the logical, process, and development
views-networks, processes, tasks, and objects-must be
mapped onto the various nodes.

§ It takes into account the system's nonfunctional
requirements such as system availability, reliability
(fault-tolerance), performance (throughput), and
scalability.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

4 + 1: Development View

§ The development view focuses on the organization of
the actual software modules in the software-
development environment.

§ The software is packaged in small chunks-program
libraries or subsystems-that can be developed by one or
more developers.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Development View: Notation

D
o
m

a
in

in
d

e
p

e
n

d
e
n

t
D

o
m

a
in

 s
p

e
ci

fi
c

C
u

st
o

m
e
r

sp
e
ci

fi
c

C
o
m

m
o
n

 A
T
C

 c
o
d

e

16.35 — October 231/2002 — Prof. I. K. Lundqvist

4 + 1: Scenario View

§ The scenario view consists of a small subset of
important scenarios (e.g., use cases) to show that the
elements of the four views work together seamlessly.

§ This view is redundant with the other ones (hence the
"+1"), but it plays two critical roles:
§ it acts as a driver to help designers discover architectural

elements during the architecture design;
§ it validates and illustrates the architecture design, both on

paper and as the starting point for the tests of an architectural
prototype.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Scenario View

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Relating Structures and Quality Attributes
with Viewpoints

L o g i c a l P r o c e s s P h y s i c a l D e v e l o p m e n t
S t r u c t u r e

M o d u l e P
C o n c e p t u a l (l o g i c a l) P
P r o c e s s P
P h y s i c a l P
U s e s P
C a l l s P P
D a t a f l o w P
C o n t r o l f l o w P P
C l a s s P

Q u a l i t y A t t r i b u t e s
P e r f o r m a n c e P P
S e c u r i t y P
A v a i l a b i l i t y P
F u n c t i o n a l i t y P
U s a b i l i t y P P
M o d i f i a b i l i t y P P
P o r t a b i l i t y P P P P
R e u s a b i l i t y P P P
I n t e g r a b i l i t y P
T e s t a b i l i t y P P P

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Design patterns

§ Vehicle for reasoning about design or architecture at a
higher level of abstraction (design confidence)

§ Patterns == Problem/Solution pairs
in a given context

Note: the words style and pattern are sometimes used
interchangeably…

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Design Patterns

§ “Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice.”
§ Christopher Alexander, A Pattern Language:

Towns/Buildings/Construction, 1977
§ An OO design pattern systematically names,

explains and evaluates an important and recurring
design in OO systems

16.35 — October 231/2002 — Prof. I. K. Lundqvist

A Good Pattern

§ Why patterns?
§ A pattern:
§ solves a problem
§ is a proven concept
§ solution isn’t obvious
§ has a significant human component

§ Patterns aren’t written – they’re discovered!

16.35 — October 231/2002 — Prof. I. K. Lundqvist

A Good Pattern

§ Essential components of a pattern format
§ Name
§ Problem, context
§ Solution, examples
§ Consequences, rationale, related patterns, known uses

§ Properties of patterns:
§ Encapsulation and abstraction
§ Openness and variability

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Classes of patterns

§ Creational patterns:
§ Deal with initializing and configuring classes and objects
§ Abstract factory – factory for building related objects

§ Structural patterns:
§ Deal with decoupling interface and implementation of classes

and objects
§ Adapter – translator adapts a server interface for a client

§ Behavioural patterns:
§ Deal with dynamic interactions between societies of classes and

objects
§ Iterator – aggregated elements are accessed sequentially

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Design Pattern Template

§ Intent: short description of patten and its purpose
§ Also known as: other names for pattern
§ Motivation: motivation scenario showing

pattern’s use
§ Applicability: circumstances in which pattern

applies
§ Structure: graphical representation of the pattern
§ Participants: participating classes and/or objects

and their responsibilities

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Template cont.

§ Collaborations: how participants co-operate to carry
out responsibilities
§ Consequences: the results of application, benefits and

liabilities
§ Implementation: pitfalls, hints or techniques, plus

language dependency
§ Sample code: example implementations in OO

language
§ Know uses: examples drawn from existing systems
§ Related patterns: discussion of other patterns that

relate to this one

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Observer Pattern
§ Intent: Define a one-to-many dependency

between objects so that when one object changes
state, all its dependents are notified and updated
automatically
§ Key forces:
§ There may be many observers
§ Each may react differently to the same notification
§ The subject should be decoupled from the observers

so that the observers can be changed independently
of the subject

16.35 — October 231/2002 — Prof. I. K. Lundqvist

When Not to Use Patterns…

§ When the solution is already obvious…
§ When the use of the pattern might be overkill

(although what be obvious to one person may not be
to another…)
§ If it is not detailed enough… but they can act as a

bridge….

16.35 — October 231/2002 — Prof. I. K. Lundqvist

AntiPatterns

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Introduction to Interrupts

§ Breaks in program flow
§ Exceptions and traps: predictable, synchronous breaks

in program flow

§ Interrupts: asynchronous breaks in program flow that
occurs as a result of events outside the running program

§ An interrupt is a signal that causes the main program that
operates the computer (the operating system) to stop and
figure out what to do next.

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Interrupt HW Model

http://www.embedded.com/story/OEG20010518S0075

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Interrupt Processing

http://www.embedded.com/story/OEG20010518S0075

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Domain-specific Architectures

§ Architectural models which are specific to some
application domain

§ Two types of domain-specific model
§ Generic models which are abstractions from a number of real

systems and which encapsulate the principal characteristics of
these systems

§ Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and of
comparing different architectures

§ Generic models are usually bottom-up models; Reference
models are top-down models

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Reference Architectures

§ Reference models are derived from a study of the
application domain rather than from existing systems

§ May be used as a basis for system implementation or to
compare different systems. It acts as a standard against
which systems can be evaluated

§ ADAGE: project to define and build a domain-specific SW
architecture environment for assisting the development of
avionics SW
§ Avionics Domain Application Generation Environment

16.35 — October 231/2002 — Prof. I. K. Lundqvist

ADAGE

Constraint analysis
real-time scheduling

Reference
architecture

View
support

Factory and library construction
tool integration, decision support

Technology transfer, technology maturity

Integrated environment for exploring, evaluating,
and synthesizing different avionics software
architectures

16.35 — October 231/2002 — Prof. I. K. Lundqvist

Reference Architecture:
An Example for Avionics

Reference architecture is defined by component realms and
domain-specific composition constraints

Even simple
avionics systems
often require over
50 distinct
components
stacked 15 layers
deep

