
16.35 — December 9/2002 — Prof. I. K. Lundqvist

16.35
Aerospace Software Engineering

Reliability, Availability, and Maintainability
Software Fault Tolerance

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Definitions

Software reliability
The probability that a system will operate without 
failure under given conditions for a given time interval
Expressed on a scale 0 to 1

Software availability
Probability that a system is functioning completely at a 
given instant in time, assuming that the required 
external resources are also available.
A system completely up and running has availability 1; 
on that is unusable has availability 0.



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Definitions

Software maintainability
Probability that, for a given condition of use, a 
maintenance activity can be carried out within a stated 
time interval and using stated procedures and resources.
Ranges from 0 to 1.



16.35 — December 9/2002 — Prof. I. K. Lundqvist

MIL-STD-1629A

Catastrophic: A failure that may cause death or system loss

Critical: a failure that may cause severe injury or major 
system damage that results in mission loss

Marginal: a failure that may cause minor injury or minor 
system damage that results in delay, loss of availability, or 
mission degradation

Minor: a failure not serious enough to cause injury or 
system damage, but that results in unscheduled 
maintenance or repair.



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Failure Data
Interfailure Times (Read left to right, in rows)

4116186411605485648104533216150107110

…457581766522780436

156001146101804226824255325

1142612067088108247750138

15112912911581113303

Type-1 uncertaintyType-1 uncertainty

Type-2 uncertaintyType-2 uncertainty



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Measuring Reliability, Availability, and Maintainability

MTTF
Average of the interfailure times

MTTR
MTBF

MTBF = MTTF + MTTR

R = MTTF/(1 + MTTF)
A = MTBF/(1 + MTBF)
M = 1/(1 + MTTR)



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Reliability Stability and Growth

Reliability stability
If the interfailure times stay the same

Reliability growth
If they increase

Probability density function
f(t)

0 86400
t (time in seconds)

1/86400

Probability
f(t)

⌠
⌡

t1

t2

f(t) dt

Reliability function R(t) = 1-F(t)



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Predicting next Failure Times from Past History



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Reliability Prediction

The Jelinsky-Moranda Model (1972)
Assumes: no type-2 uncertainty
Assumes: fixing any fault contributes equally to 
improving the reliability



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Software Fault Tolerance



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Fault vs. Failure

How do faults occur?
What is a failure?

Faults represent problems that developers see
Failures are problems that users or customers see



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Handling Design Faults

Prevention
Removal
Fault Tolerance
Input Sequence Work Arounds



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Measures of Software Quality

Reliability is “the probability of failure free 
operation of a computer program in a specified 
environment for a specified period of time”, where 
failure free operation in the context of software is 
interpreted as adherence to its requirements 

-[Pressman 97].
MTBF = MTTF + MTTR

Safety



16.35 — December 9/2002 — Prof. I. K. Lundqvist

DO-178B

“The goal of [software] fault tolerance methods is to 
include safety features in the software design or source 
Code to ensure that the software will respond correctly to 
input data errors and prevent output and control errors. 
The need for error prevention or fault tolerance methods is 
determined by the system requirements and the system 
safety assessment process.”



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Software Fault Tolerance

The function of software fault tolerance is to prevent 
system accidents (or undesirable events, in general), and 
mask out faults if possible.

Fault Tolerance Techniques

Single Version Multi-Version



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Single Version Techniques

Program structure and actions
Error detection
Exception handling
Checkpoint and restart
Process pairs
Data diversity



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Program Structure and Actions

Modular Decomposition – Partitioning
Horizontal Partitioning
Vertical Partitioning

Visibility & Connectivity 
System Closure
Temporal Structuring



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Error Detection

Structured
Replication
Timing
Reversal
Coding
Reasonableness
Structural checks

Ad-Hoc
Fault Trees



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Exception Handling

Interface Exceptions

Local Exceptions

Failure Exceptions



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Checkpoint and Restart

Checkpoint

Restart
Static
Dynamic

Checkpoint 
Memory

Execution

Error 
Detection

Input

Retry

Output
Checkpoint



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Process Pairs

Two identical versions of software 

Separate processors

Primary 
Processor

Selection Switch

Error 
Detection

Input Output

Secondary 
Processor

Checkpoint



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Re-expression -n

Data Diversity I

Input Data Re-Expression

Input Re-Expression with Post-Execution Adjustment

Re-Expression via Decomposition and Recombination

Re-expression -1

Checkpoint Memory

Execution

Error Detection
Retry

Output
CheckpointSelection 

Switch
Input



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Data Diversity II

Input
Re-Expression

Program
Execution

OutputInput

Input
Re-Expression

Program
Execution

Output
Re-Expression

OutputInput

Input
Decomposition

x1,x2,...xn

Input

Execution 1

Execution 2

Execution n

Output
Recombination

Output



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Multi-Version Techniques

Recovery Blocks
N-Version Programming
N Self-Checking Programming
Consensus Recovery Blocks
t/(n-1) Variant Programming



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Recovery Blocks

Primary Version

Alternate V-1

Alternate V- n

Selection
Switch

Input

Acceptance Test

Checkpoint
Memory

Checkpoint

Output



16.35 — December 9/2002 — Prof. I. K. Lundqvist

N-Version Programming

Version 1

Version 2

Version n

Selection
Switch

Input Output



16.35 — December 9/2002 — Prof. I. K. Lundqvist

N Self-Checking Program

Version 1

Version N-1

Selection
Switch

Input
Comparison

Comparison

Output
Version 2

Version N

Input

Version 1

Version N

Selection
Switch

Acceptance Test

Acceptance Test

Output



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Consensus Recovery Blocks

Version 1

Version 2

Version n

Switch

Input

Acceptance Test

Selection
Algorithm

Switch
Output

Failure

t/(n-1) Variant Programming: 
diagnosability measure to isolate the faulty units to a subset
of size at most (n- 1) assuming there are at most t faulty units



16.35 — December 9/2002 — Prof. I. K. Lundqvist

Web-based subject evaluations available, please 
fill them out

Wednesday: practice questions for the final exam


