
1

ISS

Early Flight Control
System Overview

Roger Racine

9 Sept. 2002

2

ISS Topics

• EFCS Task Statement
• Development Approach

• Architecture

• Test Environment
• Relevance to Redesign

3

ISS
EFCS Task Statement

• The SSFPO, in Feb. 1992, asked Draper to develop an Early Flight
Control System (EFCS) as a feasibility demonstration of flight critical
SDP-level functions essential for controlling the Space Station
Freedom for Mission Builds 2-4.

— Develop and demonstrate a system that could be used to
provide schedule relief.

— Implement simplified (as compared to the "mainline") versions
of the essential systems (DMS, GN&C, EPS, C&T, etc.).

— Replace the truss avionics with an MDM-based system.
— Follow mainline truss avionics external interface specifications

(to the SSCC, the Shuttle, and all lower level MDMs and firmware
controllers).

— Use rapid prototyping.

4

ISS EFCS DEVELOPMENT

• Utilized a small multi-disciplined System Engineering Team.
• Designed an integrated system architecture allowing adding and

modifying capabilities as required.

• Includes SSF system requirements for unmanned operations.
• Used the Rapid-prototyping life cycle (Progressive Refinement):

— Risk reduction methodology for system development.

— Early evaluation of system designs.
— Early identification of performance issues.

— Minimal early documentation.

5

ISS EFCS Requirements Development

• Used Mainline Requirements documentation as starting point for
requirements.

• Added GPS, for time, position, velocity and attitude.
• Simplified where appropriate.

— Eliminated functions to support payloads or manned operation.

• Generated requirements for each subsystem.

6

ISS Spiral Development Model

Initial
Analysis

Initial
Design

First

Test 1st
Prototype

Change
Rqmts

Change
Design

2nd

Test 2nd
Prototype

Change
Rqmts

Change
Design

Prototype

Prototype

7

ISS Software Development Phases

• Development process is "progressive refinement".

— Four demonstrations were scheduled:

• First demonstration (Nov. 92) showed basic capability for
each system, integrated into a Station-level simulation.

• Second demonstration (May 93) refined and added further
capability to each system.

• Third demonstration was scheduled to refine the overall
system, add further capability, show that Draper on-board
software meets external interfaces, and show that GCS meets
FSW interfaces.

• Redesign changed priorities; redesigned Data
Management System interface.

• Fourth demonstration was scheduled to show that the
integrated system was essentially complete.

⇒

8

ISS

Monitor
MDM

Exec
Cmds

ACS Gnd
Comm

End-to-End
Gnd Comm

ACS
St’able Ant

ISE
Cont

SYS
Cont

S. Pwr
Cont

Exec &
Control

Top Level Functionality

Complete

GNC ISE C&T RJ EPS

DMS

UIL

Process
Control

Attitude
Control

Attitude
Determ

Nav &
Guidance

Pointing
& Support

FDI

FR

Station
Modes

FDI

NonACS
C/O

Auto
Track

FDI

Monitor
EPS

Ctrl Primary
Pwr

FDI

Stub OnlyPartial

EATCS and OMCS
are not included

SVCS

CP

S

P

P

P

P P

P

P

P

C

C

C

C

C

C

C

C

S S

S

S

S

S

S

9

ISS EFCS Functional Block Diagram

DMS

C&T ISE UIL

C&T
BUSES

1FT STDB
TRUSS BUSES

EXTERNAL
AFDWS

BUS

{{

2FT STBD
TRUSS BUSES

SCRIPT

GNC

DMS

EPS RJ SPC

BC
BCBC

RT
RT

BC BCBC BC
BCBCBC

INTERPROCESSOR
BUS

C&C MDM
GNC MDM

RODB

10

ISS Development Environment

• Development utilizes the following process:

• Integrated system development and testing is performed on a
non-realtime host based configuration.

• This integrated system is then moved to the Realtime Testbed.

• This two-phased process permits:

• System development, system integration and integrated testing
is performed without complication of realtime operations.

• Realtime-specific modifications to integrated system are made
as required when the integrated system is ported to the realtime
testbed.

11

ISS Host-Based Configuration

• Initial integration is performed, non-real-time, on host computer.

• Host and real-time testbed are running identical software except for
machine-dependent routines.

• All systems and all environment modules, are linked together into one
Ada program (real-time environment uses multiple Ada programs).
— Application interfaces remain the same.

• Unique within Space Station Program.
• Benefits

— Instrumenting software for debugging does not affect timing.

— It is possible to stop a simulation, look at data, and then continue.
— Many simulations can run at the same time.

12

ISS EFCS Test Bed Configuration

Multibus II

GN&C
Processor

386

C&C
Processor

386

BIU
Emulation

BIU
Emulation

C&C
Environment

486

1553

iLBX Bus

BC/RTs

IO Server

386

GNC Env Data Telemetry Data
BIU Service Requests BIU Service Requests

Visual
Simulation

SGI

Data
Center

Sun

Labview
Displays

Mac

UDP/IP
Env/Telemetry

Data
Ethernet

Realtime
Flight

System

Realtime
Environment

Displays/
Analysis

GCS
Environment

TCP/IP
UDP/IP

Laptop

X-Windows
Displays

GN&C
Environment

486

486

13

ISS Real-Time Testbed

• Currently running flight software on the SDP emulation.
— 80386DX (about twice as fast as MDM 80386SX).

— Multibus II backplane bus.

— No EEPROM; all RAM.
• Real-time environment models, along with a model of a Bus

Interface Unit, run on 80486.

• Ethernet card is used by the Environment processors to send
simulation data to “outside world”.

• Data Center collects and logs data, sends data to displays or
analysis programs.

14

ISS Demo Data Flow

1

2 3
4 5

6 7

8

9
10

11
1214

15
16

Sun

CC FSW Processor

GNC Env Processor

UIL Timeliner Script
…

set XXXX of YYYY to …
…

Command
Packet

Processing

NOS
Command
Processing

ISE
Command
Processing

ISE Object

UIL Object
UIL TL

Command
Processing

GNC Data

SIM TimelinerScript
…

call Uplink_ Cmd
…

GNC
Command
Processing

"IO" Data

GNC
Environment
Processing

NOS
Telemetry
Processing

Display
Communication

Processing

Status
Display

Processing

GNC
Processing

*

*

*

*

*

Vehicle
Display

Processing

RODB/DMS

1553 Data GNC FSW Processor

MAC

CC Env Processor

15

ISS Roles Needed

• For the Control System software, the following roles need to be
partitioned among the available personnel:
— Overall leader

» Responsible for creating the Software Development Plan,
maintaining the schedule, creating status reports, etc.

— Requirements Analyst
» Responsible for writing the Software Requirements

Specification (SRS)
— Control algorithm developer

» Responsible for the design of the control systems
• Generates at least the Top-Level Design documentation

for the Control system
— Software architect

» Responsible for the high-level software design
• Creates at least the Top-Level Design documentation

laying out the structure of the software

16

ISS Roles (Continued)

— Control software coder
» Writes the Control software

— Design documenter
» Writes the Detailed Design document

— Test Lead
» Writes the Software Test Plan

— Test SW algorithm developer
— Test SW coder
— Version Control person

» Responsible for dealing with the version control system
— Integration lead

» The problem solver. Responsible for integrating the Control
software with the other software in the ISS, and getting it to
work

— Display developer
» Takes telemetry data and displays it

17

ISS Guidelines

• Expect requirements changes
— Trying to stay ahead of the main developers means NASA or the

contractors might change something
• The customer wants demonstrations. Part of the job is making sure

the demonstrations are professional
— Look good
— Provide enough information to show the system working well

• All the software was developed quickly. There is no guarantee that
problems are all due to new software

