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EFCS Task Statement
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The SSFPO, in Feb. 1992, asked Draper to develop an Early Flight
Control System (EFCS) as a feasibility demonstration of flight critical
SDP-level functions essential for controlling the Space Station
Freedom for Mission Builds 2-4.

— Develop and demonstrate a system that could be used to
provide schedule relief.

— Implement simplified (as compared to the "mainline") versions
of the essential systems (DMS, GN&C, EPS, C&T, etc.).

— Replace the truss avionics with an MDM-based system.

— Follow mainline truss avionics external interface specifications
(to the SSCC, the Shuttle, and all lower level MDMs and firmware
controllers).

— Use rapid prototyping.



EFCS DEVELOPMENT
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Utilized a small multi-disciplined System Engineering Team.

Designed an integrated system architecture allowing adding and
modifying capabilities as required.

Includes SSF system requirements for unmanned operations.
Used the Rapid-prototyping life cycle (Progressive Refinement):
— Risk reduction methodology for system development.

— Early evaluation of system designs.

— Early identification of performance issues.

— Minimal early documentation.



EFCS Requirements Development
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Used Mainline Requirements documentation as starting point for
requirements.

Added GPS, for time, position, velocity and attitude.
Simplified where appropriate.

— Eliminated functions to support payloads or manned operation.
Generated requirements for each subsystem.
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Spiral Development Model
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1SS

Software Development Phases

« Development process is "progressive refinement".

— Four demonstrations were scheduled:

First demonstration (Nov. 92) showed basic capability for
each system, integrated into a Station-level simulation.

Second demonstration (May 93) refined and added further
capability to each system.

Third demonstration was scheduled to refine the overall
system, add further capability, show that Draper on-board
software meets external interfaces, and show that GCS meets
FSW interfaces.

 Redesign changed priorities; redesigned Data
Management System interface.

Fourth demonstration was scheduled to show that the
integrated system was essentially complete.
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Top Level Functionality
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1SS EFCS Functional Block Diagram
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Development Environment
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« Development utilizes the following process:

* Integrated system development and testing is performed on a
non-realtime host based configuration.

 This integrated system is then moved to the Realtime Testbed.

« This two-phased process permits:

« System development, system integration and integrated testing
Is performed without complication of realtime operations.

 Realtime-specific modifications to integrated system are made
as required when the integrated system is ported to the realtime
testbed.
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1SS Host-Based Configuration

Initial integration is performed, non-real-time, on host computer.

Host and real-time testbed are running identical software except for
machine-dependent routines.

All systems and all environment modules, are linked together into one
Ada program (real-time environment uses multiple Ada programs).

— Application interfaces remain the same.
Unique within Space Station Program.

Benefits

— Instrumenting software for debugging does not affect timing.

— It is possible to stop a simulation, look at data, and then continue.
— Many simulations can run at the same time.
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EFCS Test Bed Configuration
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| SS Real-Time Testbed

Currently running flight software on the SDP emulation.
— 80386DX (about twice as fast as MDM 80386SX).
— Multibus Il backplane bus.
— No EEPROM; all RAM.

Real-time environment models, along with a model of a Bus
Interface Unit, run on 80486.

Ethernet card is used by the Environment processors to send
simulation data to “outside world”.

Data Center collects and logs data, sends data to displays or
analysis programs.
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Demo Data Flow
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|SS Roles Needed

 For the Control System software, the following roles need to be
partitioned among the available personnel:

— OQverall leader

» Responsible for creating the Software Development Plan,
maintaining the schedule, creating status reports, etc.

— Requirements Analyst

» Responsible for writing the Software Requirements
Specification (SRS)

— Control algorithm developer
» Responsible for the design of the control systems

« Generates at least the Top-Level Design documentation
for the Control system

— Software architect
» Responsible for the high-level software design

 Creates at least the Top-Level Design documentation
laying out the structure of the software
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1SS Roles (Continued)

— Control software coder
» Writes the Control software
— Design documenter
» Writes the Detailed Design document
— Test Lead
» Writes the Software Test Plan
— Test SW algorithm developer
— Test SW coder
— Version Control person
» Responsible for dealing with the version control system
— Integration lead

» The problem solver. Responsible for integrating the Control
software with the other software in the ISS, and getting it to
work

— Display developer
» Takes telemetry data and displays it
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|SS Guidelines

Expect requirements changes

— Trying to stay ahead of the main developers means NASA or the
contractors might change something

The customer wants demonstrations. Part of the job is making sure
the demonstrations are professional

— Look good
— Provide enough information to show the system working well

All the software was developed quickly. There is no guarantee that
problems are all due to new software
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