1SS

Early Flight Control
System Overview

Roger Racine

9 Sept. 2002



1SS

Topics

EFCS Task Statement
Development Approach
Architecture

Test Environment
Relevance to Redesign



EFCS Task Statement

1SS

The SSFPO, in Feb. 1992, asked Draper to develop an Early Flight
Control System (EFCS) as a feasibility demonstration of flight critical
SDP-level functions essential for controlling the Space Station
Freedom for Mission Builds 2-4.

— Develop and demonstrate a system that could be used to
provide schedule relief.

— Implement simplified (as compared to the "mainline") versions
of the essential systems (DMS, GN&C, EPS, C&T, etc.).

— Replace the truss avionics with an MDM-based system.

— Follow mainline truss avionics external interface specifications
(to the SSCC, the Shuttle, and all lower level MDMs and firmware
controllers).

— Use rapid prototyping.



EFCS DEVELOPMENT

1SS

Utilized a small multi-disciplined System Engineering Team.

Designed an integrated system architecture allowing adding and
modifying capabilities as required.

Includes SSF system requirements for unmanned operations.
Used the Rapid-prototyping life cycle (Progressive Refinement):
— Risk reduction methodology for system development.

— Early evaluation of system designs.

— Early identification of performance issues.

— Minimal early documentation.



EFCS Requirements Development

1SS

Used Mainline Requirements documentation as starting point for
requirements.

Added GPS, for time, position, velocity and attitude.
Simplified where appropriate.

— Eliminated functions to support payloads or manned operation.
Generated requirements for each subsystem.



1SS

Spiral Development Model

Initial Initial
Analysis | Design
~—
Change |[Change
quts DeS|gn
Change |Change
Rgmts |Design \
KT f ond First
st <N Prototype
Prototype rototyp
2nd
Prototype
Test 1st
Prototype




1SS

Software Development Phases

« Development process is "progressive refinement".

— Four demonstrations were scheduled:

First demonstration (Nov. 92) showed basic capability for
each system, integrated into a Station-level simulation.

Second demonstration (May 93) refined and added further
capability to each system.

Third demonstration was scheduled to refine the overall
system, add further capability, show that Draper on-board
software meets external interfaces, and show that GCS meets
FSW interfaces.

 Redesign changed priorities; redesigned Data
Management System interface.

Fourth demonstration was scheduled to show that the
integrated system was essentially complete.



1SS

Top Level Functionality

SVCS GNC ISE C&T RJ EPS
DMS Process ISE ACS Gnd Exec Exec &
5 Control Cont Comm Cmds Control
Attitude SYS End-to-End Monitor Monitor
UIL Control Cont Gnd Comm MDM EPS
P C C S
Nav & Auto Ctrl Primary
Guidance Sé(ljr\:\{r FDI Track Pwr
C C S
: ACS
Attitude ,
Detorm FR St'able Ant FDI FDI
P P S
Pointing Station NonACS
& Support Modes ClO EATCS and OMCS
p s are not included
FDI . Complete Partial Stub Only




1SS EFCS Functional Block Diagram

L (=

C&C MDM
SCRIPT GNC MDM
[
C&T | SE UIL GNC EPS RJ SPC
DMS DMS
RODB
> BC B BC BC EBC RT B B
RT BC BC BC BC
INTERPROCESSOR
BUS
EXTERNAL
Sy = AFDWS W
C&T 1FT STDB BUS

2FT STBD

BUSES TRUSS BUSES TRUSS BUSES



Development Environment

1SS

« Development utilizes the following process:

* Integrated system development and testing is performed on a
non-realtime host based configuration.

 This integrated system is then moved to the Realtime Testbed.

« This two-phased process permits:

« System development, system integration and integrated testing
Is performed without complication of realtime operations.

 Realtime-specific modifications to integrated system are made
as required when the integrated system is ported to the realtime
testbed.

10



1SS Host-Based Configuration

Initial integration is performed, non-real-time, on host computer.

Host and real-time testbed are running identical software except for
machine-dependent routines.

All systems and all environment modules, are linked together into one
Ada program (real-time environment uses multiple Ada programs).

— Application interfaces remain the same.
Unique within Space Station Program.

Benefits

— Instrumenting software for debugging does not affect timing.

— It is possible to stop a simulation, look at data, and then continue.
— Many simulations can run at the same time.

11



1SS

EFCS Test Bed Configuration

iLBX Bus

BIU Service Requests
—

GNC Env D%a

"]

-

Telemetry Data

L

Multibusl|

BIU Service Requests
-

BIU BIU C&C

Emulation Emulation Pr ocessor
486 386
10 Server _ Cc&C
Environment
386 486
Env/Telemetry UDP/IP
Data
-

Realtime ]‘
Flight |
1553
System GN&C
Pr ocessor
386 BC/RTs
o
I I
. GCS
Realtime | Environment GN&C
Environment . Environment
== 486
TCPIP |
UDP/IP | Ethernet
Displays/ Visual Data
Analysis Simulation Center
GI

Labview
Displays

Mac

X-Windows
Displays

Laptop

12




| SS Real-Time Testbed

Currently running flight software on the SDP emulation.
— 80386DX (about twice as fast as MDM 80386SX).
— Multibus Il backplane bus.
— No EEPROM; all RAM.

Real-time environment models, along with a model of a Bus
Interface Unit, run on 80486.

Ethernet card is used by the Environment processors to send
simulation data to “outside world”.

Data Center collects and logs data, sends data to displays or
analysis programs.

13



Demo Data Flow

1SS

CC Env Processor

ECC FSW Processor

SIM Timeliner Script ISE Object

5
Command ¥ NOS ISE
call Uplink_Cmd Packet :_': : Command Command
Processing o Processing Processing
=
ol
ol
al
................. 1
MAC _ ¥ UIL Object
Status Display “ NOS UIL TL
Display Communication jff— Telemetry Command
Processing el Processing G Processing I Processing
| - I . _
_ g UIL Timeliner Script
o 2 RODB/DMS
[ = z set XXXX of YYYY to....
— -.'::"-:
. 2
.............. T 1553 Data % | GNC FSW Processor GNC Data
""""""""" e GNC
* -
o — Command
* o Processing
@
o, 1 |
* o
S o 1
* = |GNC Env Processor f ? : ‘
: Lz
| H
Vehicle GNC D S — GNC
Display Environment A Processing
Processing Processing ‘. i :
- [
Sun e ——



|SS Roles Needed

 For the Control System software, the following roles need to be
partitioned among the available personnel:

— OQverall leader

» Responsible for creating the Software Development Plan,
maintaining the schedule, creating status reports, etc.

— Requirements Analyst

» Responsible for writing the Software Requirements
Specification (SRS)

— Control algorithm developer
» Responsible for the design of the control systems

« Generates at least the Top-Level Design documentation
for the Control system

— Software architect
» Responsible for the high-level software design

 Creates at least the Top-Level Design documentation
laying out the structure of the software

15



1SS Roles (Continued)

— Control software coder
» Writes the Control software
— Design documenter
» Writes the Detailed Design document
— Test Lead
» Writes the Software Test Plan
— Test SW algorithm developer
— Test SW coder
— Version Control person
» Responsible for dealing with the version control system
— Integration lead

» The problem solver. Responsible for integrating the Control
software with the other software in the ISS, and getting it to
work

— Display developer
» Takes telemetry data and displays it

16



|SS Guidelines

Expect requirements changes

— Trying to stay ahead of the main developers means NASA or the
contractors might change something

The customer wants demonstrations. Part of the job is making sure
the demonstrations are professional

— Look good
— Provide enough information to show the system working well

All the software was developed quickly. There is no guarantee that
problems are all due to new software

17



