
16.35 – problem set 3 – 10/16/02

For all problems in problem set 3:
Solutions to Part 3 must be submitted both electronically (on server \\aero-astro\16.35) and on paper.

Problem sets should have a title in the following format: LastName_PSXx.ad[bs]. Due date:
10/23/02, 3pm.

2) All submitted problems must contain your name, email address, and which problem you are
submitting.

3) The following should be written as comments in the code: a short description of what the program
is doing, and also document what the most important variables, data structures, and constants are,
and how they are used in the program.

4) In addition to 3) each module should have a “header comment” with the following information:

-- Module name: Name of module
-- Explanation: What is the purpose of this module. Explain it so a person
-- unfamiliar with the code can understand.
-- Input: Input to this module from the calling unit.
-- Output: Data that is returned to calling unit (for procedures).
-- Return value: Value that is returned to calling unit (for functions).
-- Comments: Extra information that might be needed for the unit to execute properly.

Generics and Tasking

Problem 1- Set_Of
Write the body for the generic package Set_Of that enables the manipulation of sets of an
arbitrary type. The specification of the package looks like:
 generic
 type Element is (<>);
 package Set_Of is
 type Set is private;
 type List is array (Positive range <>) of Element;

 Empty, Full: constant Set;

 function Make_Set(L: List) return Set;
 function Make_Set(E: Element) return Set;
 function Decompose(S: Set) return List;

 function "+" (S, T:Set) return Set; --union
 function "*" (S, T:Set) return Set; --intersection
 function "-" (S, T:Set) return Set; --symmetric difference
 function "<" (E: Element; S:Set) return Boolean; --inclusion
 function "<=" (S, T: Set) return Boolean; --contains
 function Size(S: Set) return Natural; --no of elements

 private
 type Set is array (Element) of Boolean;

 Empty: constant Set := (Set'range => False);
 Full: constant Set := (Set'range => True);
 end;

16.35 – problem set 3 – 10/16/02

The single generic parameter is the element type which must be discrete. The type Set is
made private so that the Boolean operations cannot be directly applied. Aggregates of the
type List are used to represent literal sets. The constants Empty and Full denote the
empty and full set respectively. The function Make_Set enable the creation of a set
from a list of the element values or a single element value. Decompose turns a set back
into a list of elements.
In the private part the type Set is declared as a Boolean array indexed by the element
type (which is why the element type had to be discrete). The constants Empty and Full
are declared as arrays whose elements are all False and all True respectively.

Problem 2 – Set_Of again
Rewrite the private part of Set_Of so that an object of the type Set is by default given
the initial value Empty when declared.

Problem 3 - Rendezvous
Note: this is simply an exercise on using the rendezvous. A better solution is to use a
protected object.
Write the body of a task whose specification is:
task Char_To_Line is
 entry Put(C: in Character);
 entry Get(L: out Line);
end;

where

type Line is array (1 .. 80) of Character;

the task acts as a buffer which alternately builds up a line by accepting successive calls of
Put and then delivers a complete line on a call of Get.

Problem 4 – Protected Object
Reconsider Problem 3 above using a protected object.

