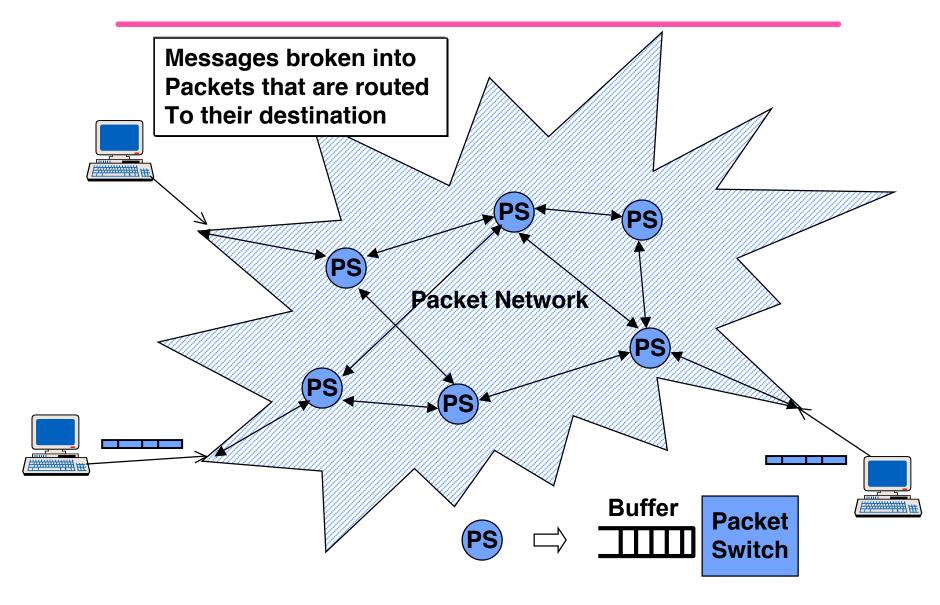
16.36: Communication Systems Engineering

Lecture 18/19: Delay Models for Data Networks

Eytan Modiano

Packet Switched Networks



Queueing Systems

- Used for analyzing network performance
- In packet networks, events are random
 - Random packet arrivals
 - Random packet lengths
- While at the physical layer we were concerned with bit-error-rate, at the network layer we care about delays
 - How long does a packet spend waiting in buffers ?
 - How large are the buffers ?

Random events

- Arrival process
 - Packets arrive according to a random process
 - Typically the arrival process is modeled as Poisson
- The Poisson process
 - Arrival rate of λ packets per second
 - Over a small interval δ ,

P(exactly one arrival) =
$$\lambda\delta$$

P(0 arrivals) = 1 - $\lambda\delta$
P(more than one arrival) = 0

– It can be shown that:

P(narrivals in interval T)=
$$\frac{(\lambda T)^n e^{-\lambda T}}{n!}$$

The Poisson Process

P(narrivals in interval T)=
$$\frac{(\lambda T)^n e^{-\lambda T}}{n!}$$

n = number of arrivals in T

It can be shown that,

$$E[n] = \lambda T$$

$$E[n^2] = \lambda T + (\lambda T)^2$$

$$\sigma^2 = E[(n-E[n])^2] = E[n^2]-E[n]^2 = \lambda T$$

Inter-arrival times

Time that elapses between arrivals (IA)

P(IA
$$\leq$$
= t) = 1 - P(IA > t)
= 1 - P(0 arrivals in time t)
= 1 - e^{- λ t}

- This is known as the exponential distribution
 - Inter-arrival CDF = F_{IA} (t) = 1 $e^{-\lambda t}$
 - Inter-arrival PDF = d/dt $F_{IA}(t) = \lambda e^{-\lambda t}$
- The exponential distribution is often used to model the service times (I.e., the packet length distribution)

Markov property (Memoryless)

$$P(T \le t_0 + t \mid T > t_0) = P(T \le t)$$

Proof:

$$P(T \le t_0 + t \mid T > t_0) = \frac{P(t_0 < T \le t_0 + t)}{P(T > t_0)}$$

$$= \frac{\int_{t_0}^{t_0+t} \lambda e^{-\lambda t} dt}{\int_{t_0}^{\infty} \lambda e^{-\lambda t} dt} = \frac{-e^{-\lambda t} \Big|_{t_0}^{t_0+t}}{-e^{-\lambda t} \Big|_{t_0}^{\infty}} = \frac{-e^{-\lambda (t+t_0)} + e^{-\lambda (t_0)}}{e^{-\lambda (t_0)}}$$

$$=1-e^{-\lambda t} = P(T \le t)$$

- Previous history does not help in predicting the future!
- Distribution of the time until the next arrival is independent of when the last arrival occurred!

Example

- Suppose a train arrives at a station according to a Poisson process with average inter-arrival time of 20 minutes
- When a customer arrives at the station the average amount of time until the next arrival is 20 minutes
 - Regardless of when the previous train arrived
- The average amount of time since the last departure is 20 minutes!
- Paradox: If an average of 20 minutes passed since the last train arrived and an average of 20 minutes until the next train, then an average of 40 minutes will elapse between trains
 - But we assumed an average inter-arrival time of 20 minutes!
 - What happened?
- Answer: You tend to arrive during long inter-arrival times
 - If you don't believe me you have not taken the T

Properties of the Poisson process

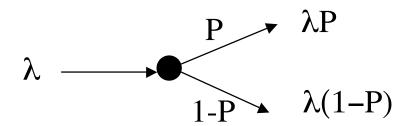
Merging Property

$$\lambda_1$$
 λ_2
 λ_k
 λ_k

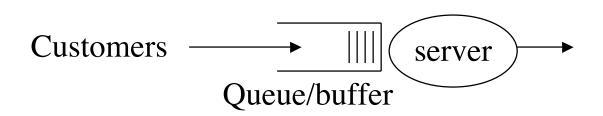
Let A1, A2, ... Ak be independent Poisson Processes of rate $\lambda 1$, $\lambda 2$, ... λk

$$A = \sum A_i$$
 is also Poisson of rate = $\sum \lambda_i$

- Splitting property
 - Suppose that every arrival is randomly routed with probability P to stream 1 and (1-P) to stream 2
 - Streams 1 and 2 are Poisson of rates $P\lambda$ and $(1-P)\lambda$ respectively



Queueing Models



Model for

- Customers waiting in line
- Assembly line
- Packets in a network (transmission line)

Want to know

- Average number of customers in the system
- Average delay experienced by a customer

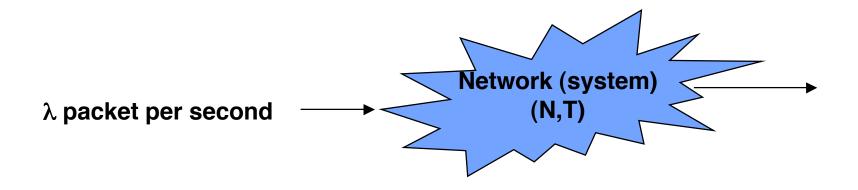
Quantities obtained in terms of

- Arrival rate of customers (average number of customers per unit time)
- Service rate (average number of customers that the server can serve per unit time)

Analyzing delay in networks (queueing theory)

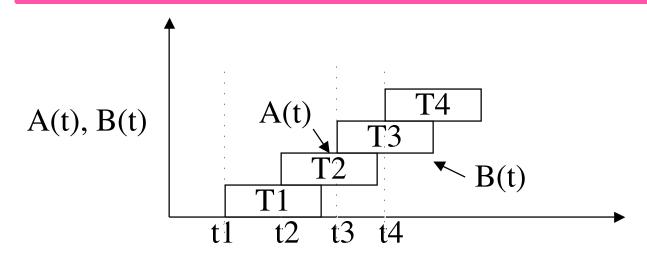
- Little's theorem
 - Relates delay to number of users in the system
 - Can be applied to any system
- Simple queueing systems (single server)
 - M/M/1, M/G/1, M/D/1
 - M/M/m/m
- Poisson Arrivals => $P(\text{n arrivals in interval T}) = \frac{(\lambda T)^n e^{-\lambda T}}{n!}$
 - λ = arrival rate in packets/second
- Exponential service time => $P(\text{service time } < T) = 1 e^{-\mu T}$
 - μ = service rate in packets/second

Little's theorem



- N = average number of packets in system
- T = average amount of time a packet spends in the system
- λ = arrival rate of packets into the system (not necessarily Poisson)
- Little's theorem: $N = \lambda T$
 - Can be applied to entire system or any part of it
 - Crowded system ↔ long delays
 On a rainy day people drive slowly and roads are more congested!

Proof of Little's Theorem



- A(t) = number of arrivals by time t
- B(t) = number of departures by time t
- t_i = arrival time of ith customer
- T_i = amount of time ith customer spends in the system
- N(t) = number of customers in system at time t = A(t) B(t)

$$N = \lim_{t \to \infty} \frac{\sum_{i=1}^{A(t)} T_i}{t}, \quad T = \lim_{t \to \infty} \frac{\sum_{i=1}^{A(t)} T_i}{A(t)} \Rightarrow \sum_{i=1}^{A(t)} T_i = A(t)T$$

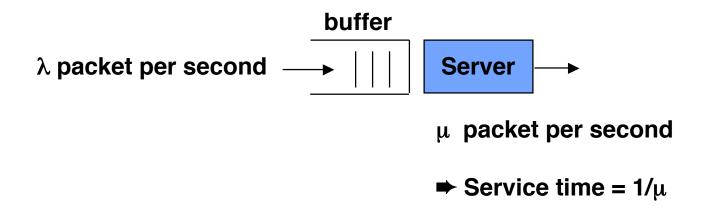
$$N = \frac{\sum_{i=1}^{A(t)} T_i}{t} = \left(\frac{A(t)}{t}\right) \frac{\sum_{i=1}^{A(t)} T_i}{A(t)} = \lambda T$$

Application of little's Theorem

Little's Theorem can be applied to almost any system or part of it

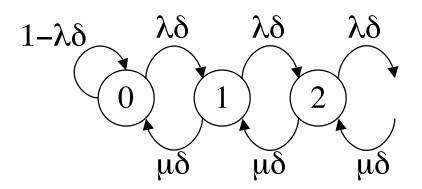
- 1) The transmitter: D_{TP} = packet transmission time
 - Average number of packets at transmitter = $\lambda D_{TP} = \rho$ = link utilization
- 2) The transmission line: $D_p = propagation delay$
 - Average number of packets in flight = λD_p
- 3) The buffer: D_q = average queueing delay
 - Average number of packets in buffer = $N_q = \lambda D_q$
- 4) Transmitter + buffer
 - Average number of packets = ρ + N_q

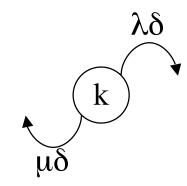
Single server queues



- M/M/1
 - Poisson arrivals, exponential service times
- M/G/1
 - Poisson arrivals, general service times
- M/D/1
 - Poisson arrivals, deterministic service times (fixed)

Markov Chain for M/M/1 system





- State k => k customers in the system
- P(I,j) = probability of transition from state I to state j
 - As $\delta => 0$, we get:

$$P(0,0) = 1 - \lambda \delta$$
,

$$P(j,j+1) = \lambda \delta$$

$$P(j,j) = 1 - \lambda \delta - \mu \delta$$

$$P(j,j-1) = \mu \delta$$

P(I,j) = 0 for all other values of I,j.

- Birth-death chain: Transitions exist only between adjacent states
 - $-\lambda \delta$, $\mu \delta$ are flow rates between states

Equilibrium analysis

- We want to obtain P(n) = the probability of being in state n
- At equilibrium $\lambda P(n) = \mu P(n+1)$ for all n

-
$$P(n+1) = (\lambda/\mu)P(n) = \rho P(n), \rho = \lambda/\mu$$

- It follows: $P(n) = \rho^n P(0)$
- Now by axiom of probability:

$$\sum_{i=0}^{\infty} P(n) = 1$$

$$\Rightarrow \sum_{i=0}^{\infty} \rho^{n} P(0) = \frac{P(0)}{1-\rho} = 1$$

$$\Rightarrow P(0) = 1 - \rho$$

$$P(n) = \rho^n (1 - \rho)$$

Average queue size

$$N = \sum_{n=0}^{\infty} nP(n) = \sum_{n=0}^{\infty} n\rho^{n} (1 - \rho) = \frac{\rho}{1 - \rho}$$

$$N = \frac{\rho}{1 - \rho} = \frac{\lambda / \mu}{1 - \lambda / \mu} = \frac{\lambda}{\mu - \lambda}$$

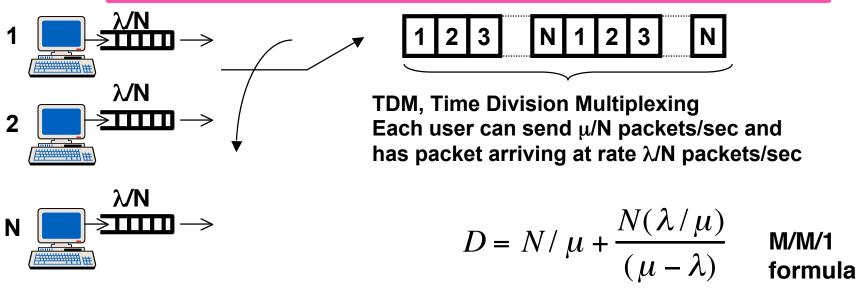
- N = Average number of customers in the system
- The average amount of time that a customer spends in the system can be obtained from Little's formula (N= λ T => T = N/ λ)
- T includes the queueing delay plus the service time (Service time = D_{TP} = 1/μ)
 - me = D_{TP} = 1/ μ) - W = amount of time spent in queue = T - 1/ μ => $W = \frac{1}{\mu - \lambda} - \frac{1}{\mu}$
- Finally, the average number of customers in the buffer can be obtained from little's formula

$$N_Q = \lambda W = \frac{\lambda}{u - \lambda} - \frac{\lambda}{u} = N - \rho$$

Example (fast food restaurant)

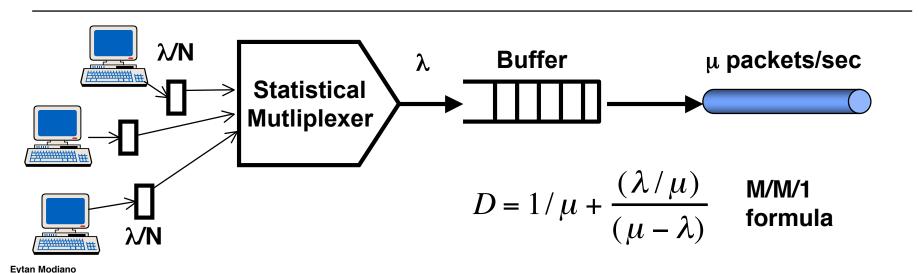
- Customers arrive at a fast food restaurant at a rate of 100 per hour and take 30 seconds to be served.
- How much time do they spend in the restaurant?
 - Service rate = μ = 60/0.5=120 customers per hour
 - $T = 1/\mu \lambda = 1/(120-100) = 1/20$ hrs = 3 minutes
- How much time waiting in line?
 - W = T $1/\mu$ = 2.5 minutes
- How many customers in the restaurant?
 - N = λ T = 5
- What is the server utilization?
 - $\qquad \rho = \lambda/\mu = 5/6$

Packet switching vs. Circuit switching

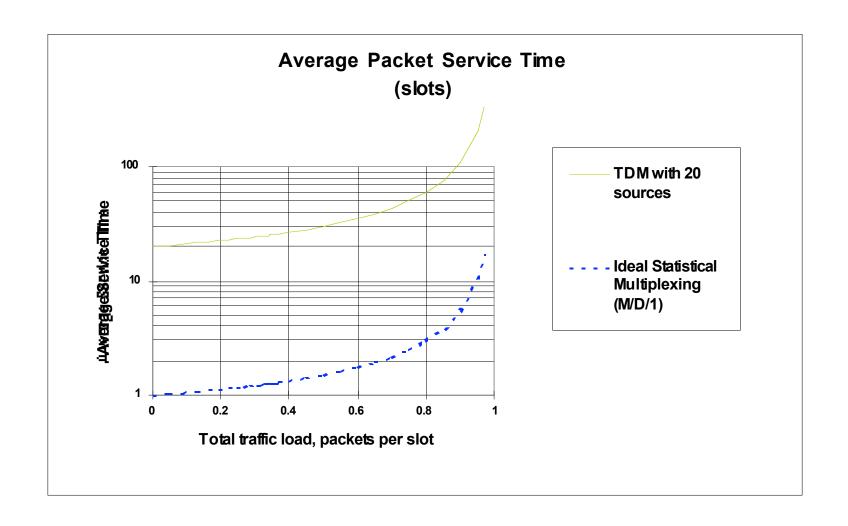


Packets generated at random times

Slide 20



Circuit (tdm/fdm) vs. Packet switching



Delay formulas

M/G/1

$$D = \overline{X} + \frac{\lambda \overline{X}^2}{2(1 - \lambda / \mu)}$$

M/M/1

$$D = \overline{X} + \frac{\lambda / \mu}{\mu - \lambda}$$

• M/D/1

$$D = \overline{X} + \frac{\lambda / \mu}{2(\mu - \lambda)}$$

Delay components:

Service (transmission) time (LHS)

Queueing delay (RHS)

Use Little's Theorem to compute N, the average number of customers in the system

Blocking Probability

- A circuit switched network can be viewed as a Multi-server queueing system
 - Calls are blocked when no servers available "busy signal"
 - For circuit switched network we are interested in the call blocking probability
- M/G/m/m system
 - Poisson call arrivals and General call duration distribution
 - m servers => m circuits
 - Last m indicated that the system can hold no more than m users
- Erlang B formula
 - Gives the probability that a caller finds all circuits busy

$$P_B = \frac{(\lambda/\mu)^m/m!}{\sum_{n=0}^m (\lambda/\mu)^n/n!}$$

Erlang B formula

- Used for sizing transmission line
 - How many circuits does the satellite need to support?
 - The number of circuits is a function of the blocking probability that we can tolerate

Systems are designed for a given load predictions and blocking probabilities (typically small)

Example

- Arrival rate = 4 calls per minute, average 3 minutes per call
- How many circuits do we need to provision?
 Depends on the blocking probability that we can tolerate

<u>Circuits</u>	<u> </u>
20	1%
15	8%
7	30%