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Undecidability
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The fundamental limitation: undecidability

– In 1921, David Hilbert put forward the so-called Hilbert’s
Program, calling for a formalization of all of mathe-
matics in axiomatic form, together with a proof that
this axiomatization of mathematics is consistent, to be
carried out using only “finitary” methods.
– Kurt Gödel’s incompleteness theorems [1] essentially
show that Hilbert’s Program cannot be carried out.

Reference

[1] Gödel, K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I”,
Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198.
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David Hilbert Kurt Gödel
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Decision Problems

– A decision problem is a computational problem where
the answer is always YES/NO:

solve_problem(data) 7! fYES, NOg
– The complement :P of a decision problem P is one
where all the YES and NO answers are exchanged.
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Decidability/Semidecidable/Undecidability

A decision problem is:
– “Decidable” if and only if there exists an algorithm to
solve the problem in finite time;
– “Undecidable” if and only if there exists no algorithm
to solve the problem in finite time;
– “Semidecidable” if and only if there exists an algorithm
to solve the problem in finite time when the answer is
YES but which may not terminate when the answer is
NO;
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The termination problem

– “Termination problem”: given a sequential program
and its input data, will execution of this program on
these data ever terminate?
– The complement is the “Nontermination problem”: given
a sequential program and its input data, will execution
of this program on these data never terminate?
– Termination is undecidable (but semidecidable);
– Nontermination is undecidable (and not semidecid-
able).
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Interpretor

– We let Ff be the text file (of type text) containing the
text of a program encoding a function f of type text
-> bool;
– We let Fd be the text file (of type text) containing the
text encoding the data d
– An interpreter I : text * text -> bool is a program
which execution I(Ff, Fd) is the result f(d) of the
evaluation of function f on the data d.
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Termination is semidecidable

Terminaison(Ff, Fd) = if I(Ff, Fd) then YES else YES

– Will answer YES if and only if I(Ff, Fd) that is f(d)
does terminate
– Will not terminate if and only if I(Ff, Fd) that is f(d)
does not terminate
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Termination is undecidable

The proof given by Alonso Church [2] and Alan Turing
[3] results from Gödel’s second incompleteness theorem
[1].

Reference

[2] Church, A., “An unsolvable problem of elementary number theory”, Fundamenta mathematicæ, vol. 28, pp.
11–21, (1936).

[3] Turing, A.M., “Computability and –-definability”, The Journal of Symbolic Logic, vol. 2, pp. 153–163,
(1937).
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Alonso Church Alan Turing
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Proof that termination is undecidable

It can be schematized as follows:
– Assume, by reductio ad absurdum, that we can design
a termination algorithm T : text * text -> bool, which
execution is assumed to always terminate, and returns
T(Ff, Fd) = YES if and only if I(Ff, Fd) terminates
and T(Ff, Fd) = NO otherwise.
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Let Fc be the text of a function c : text -> bool de-
fined by:

c(F) = if T(F, F) then :I(F, F) else YES

Observe that execution of c always terminate, whence

T(Fc, Fc) = true

It follows that:
I(Fc, Fc) = if T(Fc, Fc) then :I(Fc, Fc) else YES

= :I(Fc, Fc)
a contradiction.
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Nontermination is not semidecidable
a) Decidable(P ), [Semidecidable(P )^ Semidecidable(:P )]
) obvious (by defining Semidecision(P ) def= Decision(P )
and Semidecision(:P ) def=:Decision(P ));
( alternatively execute one step of the semidecision
algorithms of P and :P . Stop as soon as the first
answer is returned.

b) :Semidecidable(:Terminaison)
By reductio ad absurdum,

Semidecidable(Terminaison) and Semidecidable(:Terminaison)
would imply Decidable(Terminaison).
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Problem Reduction

– To prove that a problem P is undecidable, prove, by
reductio ad absurdum, that if it were decidable, then
the termination problem would be decidable.
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Constant propagation is undecidable

– The constant propagation problem: determines whether,
after initialization, a variable is constant (is never as-
signed a different value);
– The program P does not terminate if and only if the
variable X has a constant value after initialization in
the program:

var X : boolean; (* new variable not in P *)
X := true;
P;
X := false;
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Absence of runtime errors is undecidable

The absence of runtime errors is not semidecidable:
– If absence of runtime errors in a program P where semi-
decidable then the nontermination of P would be semi-
decidable, by answering the question to know if P; 1/0
has no runtime error.
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What to do about undecidable problems?

Beyond simply abandoning:
– Consider decidable subcases only (but computational
complexity strikes!)
– Ask for correct, intelligent, interactive human help
– Accept nontermination
– Accept approximations (I don’t know)
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Example of approximation: false alarms

When verifying the absence of runtime errors in a pro-
gram, it may be the case that the automatic verifier is en-
able to establish statically that some error can be raised
at runtime although this will never happen during exe-
cution.

For soundness, it must report a possibility of runtime
error, which is impossible. This is called a false alarm.
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Example of false alarms in ASTRÉE

% cat -n falsealarm.c
1 /* falsealarm.c */
2 void main()
3 {
4 int x, y;
5 if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32767 < x)

&& ((7*y*y - 1) == x*x)) {
6 y = 1 / x;
7 };
8 }

% astree –exec-fn main falsealarm.c | grep WARN
falsealarm.c:6:9-6:14:[call#main@2:]: WARN: integer division by zero

[-32766, 32766]
%
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Computational Complexity
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Computational Complexity

– Decidable problems can have a very high computa-
tional complexity;
– The time complexity of a problem is the number of
steps that it takes to solve an instance of the problem,
as a function of the size of the input, (usually measured
in bits) using the most efficient algorithm;
– For example sorting an n-elements array is O(n logn);

1 Recall the big O notation: if f(x) and g(x) are two rean functions then f(x) is O(g(x)) as x! +1 if and
only if there exist numbers x0 and M such that jf(x)j »M jg(x)j for x > x0.
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Complexity Classes
– the class P consists of all those decision problems that
can be solved in polynomial time in the size of the
input on a deterministic sequential machine;
– the class NP consists of all those decision problems
whose positive solutions can be verified in polynomial
time given the right information 1;
– the class co-NP consists of all those decision problems
whose complement is in P.
Reference

[4] Hartmanis, J., and Stearns, R.E. “ On the computational complexity of algorithms”, Trans. Amer. Math.
Soc. 117 (1965), 285–306.

2 equivalently, whose solution can be found in polynomial time on a non-deterministic machine.
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Problem Reduction

– A problem decision A is reducible [5] to a decision
problem B

()
– there exists a deterministic polynomial-time algorithm
which transforms instances a of A into instances b of
B, such that the answer to b is YES if and only if the
answer to a is YES.

Reference

[5] R.M. Karp, “Reducibility among combinatorial problems”, In Complexity of Computer Computations, R.E.
Miller and J.W. Thatcher, editors, pages 85–103. Plenum Press, New York, NY, 1972.
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NP-hardness

A decision problem is NP-hard if and only if
– every other problem in NP is reducible to it.

If we can find a polynomial algorithm to solve a NP-hard
problem, then P = NP (?).
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NP-completeness

A decision problem is NP-complete [6] if
– it is in NP, and
– every other problem in NP is reducible to it.

Reference

[6] Stephen A. Cook. “The Complexity of Theorem Proving Procedures”. Proceedings Third Annual ACM
Symposium on Theory of Computing (STOC), May 1971, pp 151–158.
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The boolean satisfiability problem (SAT)

– An instance of SAT is defined by a Boolean expres-
sion written using only AND, OR, NOT, variables, and
parentheses.
– The question is: given the expression, is there some as-
signment of TRUE and FALSE values to the variables
that will make the entire expression true?
– For n variables, there are 2n possible truth assign-
ments to be checked.
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Complexity of the boolean satisfiability
problem

– The boolean satisfiability problem is NP-complete [7]

Reference

[7] Stephen A. Cook. “The Complexity of Theorem Proving Procedures”. Proceedings Third Annual ACM
Symposium on Theory of Computing (STOC), May 1971, pp 151–158.
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What to do about NP-complete problems?

– Small is beautiful: Consider only problems of very
small size.
– Special cases: An algorithm that is provably fast if
the problem instances belong to a certain special case.
Fixed-parameter algorithms can be seen as an imple-
mentation of this approach.
– Probabilistic: An algorithm that provably yields good
average runtime behavior for a given distribution of
the problem instances—ideally, one that assigns low
probability to "hard" inputs.
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– Heuristic: An algorithm that works "reasonably well"
on many cases, but for which there is no proof that it
is always fast (a rule of thumb, intuition).
– Approximation: An algorithm that quickly finds a
suboptimal solution that is within a certain (known)
range of the optimal one.
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SAT solvers
– modern variants of the Davis-Logemann-Loveland al-
gorithm [8] (depth first search with backtracking), such
as zchaff 2 [9];
– stochastic local search algorithms, e.g. WalkSAT [10].
Reference

[8] M. Davis, G. Logemann and D. Loveland, “A Machine Program for Theorem-Proving”, Communications of
ACM, Vol. 5, No. 7, pp. 394-397, 1962

[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. “Chaff: Engineering an Efficient SAT Solver”.
38th Design Automation Conference (DAC2001), Las Vegas, June 2001.

[10] Bart Selman, Henry Kautz, and Bram Cohen. “Local Search Strategies for Satisfiability Testing”. in
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11-13, 1993.
David S. Johnson and Michael A. Trick, ed. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 26, AMS, 1996.

3 A few thousands variables, reported to solve a problem with a million variables and 10 million clauses.
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Polynomial Time Complexity
– Polynomial-time computability is identified with the
intuitive notion of algorithmic efficiency;
– Intuitively valid only for small powers:

Execution time at 109 ops/s
n O(n) O(n:log(n)) O(n2) O(n3)
1 › › › ›
10 › › 0:1—s 1—s
103 1—s 6—s 1ms 1s
106 1ms 13ms 16mn 32 years
109 1s 20s 32 years 300 000 000 centuries
1012 16mn 7:7h 300 000 centuries —
1015 11:6 days 1 year — —
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S.A. Cook R. Karp J. Hartmanis R.E. Stearn
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Large problems
A computer program with

– 10 000 global variables

– represented on 32 bits

– and 500 000 lines of code

has about 2:1019 = 264 states!
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Abstract termination proofs
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The following slides are based based on:

Patrick Cousot.
Proving Program Invariance and Termination by
Parametric Abstraction, Lagrangian Relaxation and
Semidefinite Programming (Invited paper).
In Sixth International Conference on Verification,
Model Checking and Abstract Interpretation
(VMCAI’05).
Paris, France, January 17—19, 2005.
Lecture Notes in Computer Science 3385,
ľ Springer, Berlin, pp. 1—24.
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Overview of the
Termination Analysis Method

§�xx§x
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Proving Termination of a Loop
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The main point in this talk is (4).
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Proving Termination of a Loop

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example

while (x <> y) do
x := x - 1;
y := y + 1

od

The polyhedral abstraction used for the static analysis of the examples is

implemented using Bertrand Jeannet’s NewPolka library.
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Forward/reachability properties

II

Example: partial correctness (must stay into safe states)
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Backward/ancestry properties

II
F

Example: termination (must reach final states)
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Forward/backward properties

I
F

I

Example: total correctness (stay safe while reaching final
states)
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Arithmetic Mean Example:
Termination Precondition (1)

{x>=y}
while (x <> y) do

{x>=y+2}
x := x - 1;

{x>=y+1}
y := y + 1

{x>=y}
od

{x=y}
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Idea 1

The auxiliary termination counter method
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Arithmetic Mean Example:
Termination Precondition (2)

{x=y+2k,x>=y}
while (x <> y) do

{x=y+2k,x>=y+2}
k := k - 1;

{x=y+2k+2,x>=y+2}
x := x - 1;

{x=y+2k+1,x>=y+1}
y := y + 1

{x=y+2k,x>=y}
od

{x=y,k=0}
assume (k = 0)

{x=y,k=0}

Add an auxiliary termi-
nation counter to enforce
(bounded) termination in
the backward analysis!
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example:
Loop Invariant

assume ((x=y+2*k) & (x>=y));
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{k=0,x=y}
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example:
Body Relational Semantics

Case x < y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x < y);
empty(6)
assume (x0=x)&(y0=y)&(k0=k);
empty(6)
k := k - 1;
x := x - 1;
y := y + 1
empty(6)

Case x > y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x > y);
{x=y+2k,x>=y+2}
assume (x0=x)&(y0=y)&(k0=k);
{x=y+2k0,y=y0,x=x0,x=y+2k,

x>=y+2}k := k - 1;
x := x - 1;
y := y + 1
{x+2=y+2k0,y=y0+1,x+1=x0,

x=y+2k,x>=y}
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

Course 16.399: “Abstract interpretation”, Tuesday, February 22, 2005 — 52 — ľ P. Cousot, 2005



Floyd’s method for termination of while B do C

Given a loop invariant I, find an R=Q=Z-valued unkown
rank function r such that:
– The rank is nonnegative:

8 x0; x : I(x0) ^ �B; C�(x0; x) ) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x : I(x0) ^ �B; C�(x0; x) ) r(x) » r(x0)` ”

” – 1 for Z, ” > 0 for R=Q to avoid Zeno 12, 14, 18. . .
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Arithmetic Mean Example:
Ranking Function

» clear all;

[v0,v] = variables(’x’,’y’,’k’)

% linear inequalities

% x0 y0 k0

Ai = [ 0 0 0];

% x y k

Ai_ = [ 1 -1 0]; % x0 - y0 >= 0

bi = [0];

[N Mk(:,:,:)]=linToMk(Ai,Ai_,bi);

% linear equalities

% x0 y0 k0

Ae = [ 0 0 -2;

0 -1 0;

-1 0 0;

0 0 0];

% x y k

Ae_ = [ 1 -1 0; % x - y - 2*k0 - 2 = 0

0 1 0; % y - y0 - 1 = 0

1 0 0; % x - x0 + 1 = 0

1 -1 -2]; % x - y - 2*k = 0

be = [2; -1; 1; 0];

[M Mk(:,:,N+1:N+M)]=linToMk(Ae,Ae_,be);

Input the loop abstract
semantics

Course 16.399: “Abstract interpretation”, Tuesday, February 22, 2005 — 54 — ľ P. Cousot, 2005

» display_Mk(Mk, N, v0, v);

...

+1.x -1.y >= 0

-2.k0 +1.x -1.y +2 = 0

-1.y0 +1.y -1 = 0

-1.x0 +1.x +1 = 0

+1.x -1.y -2.k = 0

...

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’linear’);

» disp(diagnostic)

feasible (bnb)

» intrank(R, v)

r(x,y,k) = +4.k -2

– Display the abstract se-
mantics of the loop while
B do C

– compute ranking func-
tion, if any
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Proving Termination by
Parametric Abstraction,
Lagrangian Relaxation and
Semidefinite Programming
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Idea 2

Express the loop invariant and relational semantics
as numerical positivity constraints
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Relational semantics of while B do C od loops

– x0 2 R=Q=Z: values of the loop variables before a loop
iteration
– x 2 R=Q=Z: values of the loop variables after a loop
iteration
– I(x0): loop invariant, �B; C�(x0; x): relational seman-
tics of one iteration of the loop body

– I(x0) ^ �B; C�(x0; x) =

N̂

i=1

ffi(x0; x) >i 0 (>i 2 f>;–;=g)

– not a restriction for numerical programs
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Example of linear program (Arithmetic mean)
[AA0][x0 x]> > b

{x=y+2k,x>=y}
while (x <> y) do

k := k - 1;
x := x - 1;
y := y + 1

od

+1.x -1.y >= 0
-2.k0 +1.x -1.y +2 = 0
-1.y0 +1.y -1 = 0
-1.x0 +1.x +1 = 0
+1.x -1.y -2.k = 0

2
66664
0 0 0 1 `1 0
0 0 `2 1 `1 0
0 `1 0 0 1 0
`1 0 0 1 0 0
0 0 0 1 `1 `2

3
77775

2
6666664

x0
y0
k0
x
y
k

3
7777775

–
=
=
=
=

2
66664
0
`2
1
`1
0

3
77775
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Example of quadratic form program (factorial)
[x x0]A[x x0]> + 2[x x0] q + r > 0

n := 0;
f := 1;
while (f <= N) do

n := n + 1;
f := n * f

od

-1.f0 +1.N0 >= 0
+1.n0 >= 0
+1.f0 -1 >= 0
-1.n0 +1.n -1 = 0
+1.N0 -1.N = 0
-1.f0.n +1.f = 0

[n0f0N0nfN ]

2
66666664

0 0 0 0 0 0

0 0 0 `12 0 0
0 0 0 0 0 0

0 `12 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
77777775

2
6666664

n0
f0
N0
n
f
N

3
7777775
+ 2[n0f0N0nfN ]

2
6666664

0
0
0
0
1
2
0

3
7777775
+ 0 = 0
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Example of semialgebraic program
(logistic map)

eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do
x := a*x*(1-x)

od

�
��
��
��
�
�

	�

� �
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Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r and ” >
0 such that:
– The rank is nonnegative:

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0 ) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0 ) r(x0)` r(x)` ” – 0
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Idea 3

Eliminate the conjunction
V
and implication ) by

Lagrangian relaxation
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Implication (general case)

BA

A) B
,
8x 2 A : x 2 B
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Implication (linear case)

BA

A) B (assuming A 6= ;)
( (soundness)
) (completeness)
border of A parallel to border of B
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Lagrangian relaxation (linear case)

BA
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Lagrangian relaxation, formally
Let V be a finite dimensional linear vector space, N > 0
and 8k 2 [0; N ] : ffk 2 V 7! R.

8x 2 V :
0
@ N̂

k=1

ffk(x) – 0
1
A) (ff0(x) – 0)

( soundness (Lagrange)
) completeness (lossless)
6) incompleteness (lossy)

9– 2 [1; N ] 7! R+ : 8x 2 V : ff0(x)`
NX
k=1

–kffk(x) – 0

relaxation = approximation, –i = Lagrange coefficients
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Lagrangian relaxation, equality constraints

8x 2 V :
0
@ N̂

k=1

ffk(x) = 0

1
A) (ff0(x) – 0)

( soundness (Lagrange)

9– 2 [1; N ] 7! R+ : 8x 2 V : ff0(x)`
NX
k=1

–kffk(x) – 0

^ 9–0 2 [1; N ] 7! R+ : 8x 2 V : ff0(x) +
NX
k=1

–0kffk(x) – 0

, (–00 = –
0 ` –
2
)

9–00 2 [1; N ] 7! R : 8x 2 V : ff0(x)`
NX
k=1

–00kffk(x) – 0
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Example: affine Farkas’ lemma, informally

– An application of Lagrangian relaxation to the case
when A is a polyhedron

B

A
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Example: affine Farkas’ lemma, formally

– Formally, if the system Ax+ b – 0 is feasible then
8x : Ax+ b – 0) cx+ d – 0

( (soundness;Lagrange)
) (completeness;Farkas)
9– – 0 : 8x : cx+ d` –(Ax+ b) – 0 :
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Yakubovich’s S-procedure, informally

– An application of Lagrangian relaxation to the case
when A is a quadratic form

B

A
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Incompleteness (convex case)

B

A
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Yakubovich’s S-procedure, completeness cases

– The constraint ff(x) – 0 is regular if and only if 9‰ 2
V : ff(‰) > 0.
– The S-procedure is lossless in the case of one regular
quadratic constraint:
8x 2 Rn : x>P1x+ 2q>1 x+ r1 – 0)

x>P0x+ 2q>0 x+ r0 – 0( (Lagrange)
) (Yakubovich)

9– – 0 : 8x 2 Rn : x>
 "
P0 q0
q>0 r0

#
` –

"
P1 q1
q>1 r1

#!
x – 0:
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Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r which
is:
– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : r(x0)`
NX
i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x : (r(x0)` r(x)` ”)`
NX
i=1

–0iffi(x0; x) – 0
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Idea 4

Parametric abstraction of the ranking function r
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Parametric abstraction

– How can we compute the ranking function r?
! parametric abstraction:

1. Fix the form ra of the function r a priori, in term
of unkown parameters a

2. Compute the parameters a numerically
– Examples:

ra(x) = a:x
> linear

ra(x) = a:(x 1)
> affine

ra(x) = (x 1):a:(x 1)
> quadratic
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Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:
– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : ra(x0)`
NX
i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x : (ra(x0)` ra(x)` ”)`
NX
i=1

–0iffi(x0; x) – 0
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Idea 5

Eliminate the universal quantification 8 using
linear matrix inequalities (LMIs)
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Mathematical programming

9x 2 Rn:
N̂

i=1

gi(x) > 0

[Minimizing f(x)]

feasibility problem : find a solution to the constraints

optimization problem : find a solution, minimizing f(x)

Example: Linear programming
9x 2 Rn: Ax > b
[Minimizing cx]
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Feasibility

– feasibility problem: find a solution s 2 Rn to the op-
timization program, such that

N̂

i=1

gi(s) – 0, or to de-
termine that the problem is infeasible
– feasible set: fx j VNi=1 gi(x) – 0g
– a feasibility problem can be converted into the opti-
mization program

minf`y 2 R j
N̂

i=1

gi(x)` y – 0g
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Semidefinite programming, once again

9x 2 Rn: M(x) < 0
[Minimizing cx]

Where the linear matrix inequality (LMI) is

M(x) = M0 +
nX
k=1

xkMk

with symetric matrices (Mk = Mk>) and the positive
semidefiniteness is

M(x) < 0 = 8X 2 RN : X>M(x)X – 0
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Semidefinite programming, once again
Feasibility is:

9x 2 Rn: 8X 2 RN : X>
0
@M0 + nX

k=1

xkMk

1
AX – 0

of the form of the formulæ we are interested in for pro-
grams which semantics can be expressed as LMIs:

N̂

i=1

ffi(x0; x) >i 0 =
N̂

i=1

(x0 x 1)Mi(x0 x 1)
> >i 0
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Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:
– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : ra(x0)`
NX
i=1

–i(x0 x 1)Mi(x0 x 1)
> – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x:(ra(x0)`ra(x)`”)`
NX
i=1

–0i(x0 x 1)Mi(x0 x 1)
>–0
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Main steps in a typical
soundness/completeness proof

9r : 8x; x0 : �B;C�(x x0)) r(x; x0) – 0

() 9r : 8x; x0 :
N̂

k=1

ffk(x; x
0) – 0) r(x; x0) – 0

(= �Lagrangian relaxation (=) if lossless)�
9r : 9– 2 [1; N ] 7! R˜ : 8x; x0 2 Dn : r(x; x0) `
NX
k=1

–kffk(x x
0) – 0

Course 16.399: “Abstract interpretation”, Tuesday, February 22, 2005 — 84 — ľ P. Cousot, 2005



(= �Semantics abstracted in LMI form (=) if ex-
act abstraction)�

9r : 9– 2 [1; N ] 7! R˜ : 8x; x0 2 Dn : r(x; x0) `
NX
k=1

–k(x x
0 1)Mk(x x0 1)> – 0

() �Choose form of r(x; x0) = (xx01)M0(xx01)>�

() 9M0 : 9– 2 [1; N ] 7! R˜ : 8x; x0 2 Dn :

(x x0 1)M0(x x0 1)>`
NX
k=1

–k(x x
0 1)Mk(x x0 1)> – 0
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() 9M0 : 9– 2 [1; N ] 7! R˜ : 8x; x0 2 D(nˆ1) :2
4xx0
1

3
5
>0
@M0 ` NX

k=1

–kMk

1
A
2
4xx0
1

3
5 – 0

() �if (x 1)A(x 1)> – 0 for all x, this is the same
as (y t)A(y t)> – 0 for all y and all t 6= 0
(multiply the original inequality by t2 and
call xt = y). Since the latter inequality holds
true for all x and all t 6= 0, by continuity it
holds true for all x, t, that is, the original
inequality is equivalent to positive semidefi-
niteness of A�
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9M0 : 9– 2 [1; N ] 7! R˜ :
0
@M0 ` NX

k=1

–kMk

1
A < 0

�LMI solver provides M0 (and –)�
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Idea 6

Solve the convex constraints by semidefinite
programming
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The simplex for linear programming

x

y

AX � b

cx�c y

Dantzig 1948, exponential in worst case, good in prac-
tice
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George Dantzig
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Polynomial methods

Ellipsoid method : Khachian 1979 [11], polynomial in worst
case but not good in practice

Interior point method : Narendra Karmarkar 1984 [12], poly-
nomial in worst case and good in practice (hundreds
of thousands of variables)

Reference

[11] L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Dokl., 20:191-194, 1979.

[12] Narendra Karmarkar. “A new polynomial-time algorithm for linear programming”. Combinatorica 4(4):
373–396 (1984)
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The interior point method

cx�c y x

y

AX � b
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Interior point method for semidefinite programming

– Nesterov & Nemirovskii 1988 [13], polynomial in worst
case and good in practice (thousands of variables)

x

y

cx�c y

– Various path strategies e.g. “stay in the middle”
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Narendra Karmarkar Arkadii Nemirovskii Yurii Nesterov

Reference

[13] Yurii Nesterov and A. Nemirovsky. “Interior Point Polynomial Algorithms in Convex Programming” Soci-
ety for Industrial and Applied Mathematics, 1994. (SIAM Studies in Applied Mathematics).
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Semidefinite programming solvers
Numerous solvers available under Mathlabő, a.o.:

– lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali

– Sdplr: S. Burer, R. Monteiro, C. Choi

– Sdpt3: R. Tütüncü, K. Toh, M. Todd

– SeDuMi: J. Sturm

– bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

– Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,. . . )
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Linear program: termination of Euclidean division
» clear all

% linear inequalities

% y0 q0 r0

Ai = [ 0 0 0; 0 0 0;

0 0 0];

% y q r

Ai_ = [ 1 0 0; % y - 1 >= 0

0 1 0; % q - 1 >= 0

0 0 1]; % r >= 0

bi = [-1; -1; 0];

% linear equalities

% y0 q0 r0

Ae = [ 0 -1 0; % -q0 + q -1 = 0

-1 0 0; % -y0 + y = 0

0 0 -1]; % -r0 + y + r = 0

% y q r

Ae_ = [ 0 1 0; 1 0 0;

1 0 1];

be = [-1; 0; 0];

Iterated forward/back-
ward polyhedral analysis:
{y>=1}
q := 0;
{q=0,y>=1}
r := x;
{x=r,q=0,y>=1}
while (y <= r) do
{y<=r,q>=0}
r := r - y;
{r>=0,q>=0}
q := q + 1
{r>=0,q>=1}

od
{q>=0,y>=r+1}

Course 16.399: “Abstract interpretation”, Tuesday, February 22, 2005 — 96 — ľ P. Cousot, 2005



» [N Mk(:,:,:)]=linToMk(Ai, Ai_, bi);

» [M Mk(:,:,N+1:N+M)]=linToMk(Ae, Ae_, be);

» [v0,v]=variables(’y’,’q’,’r’);

» display_Mk(Mk, N, v0, v);

+1.y -1 >= 0

+1.q -1 >= 0

+1.r >= 0

-1.q0 +1.q -1 = 0

-1.y0 +1.y = 0

-1.r0 +1.y +1.r = 0

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’quadratic’);

» disp(diagnostic)

termination (bnb)

» intrank(R, v)

r(y,q,r) = -2.y +2.q +6.r

Floyd’s proposal r(x; y; q; r) = x` q is more intuitive but requires to discover
the nonlinear loop invariant x = r + qy.
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Imposing a feasibility radius

x

y

cx�c y
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Quadratic program: termination of factorial
Program:

n := 0;
f := 1;
while (f <= N) do

n := n + 1;
f := n * f

od

LMI semantics:

-1.f0 +1.N0 >= 0
+1.n0 >= 0
+1.f0 -1 >= 0
-1.n0 +1.n -1 = 0
+1.N0 -1.N = 0
-1.f0.n +1.f = 0

r(n,f,N) = -9.993455e-01.n +4.346533e-04.f
+2.689218e+02.N +8.744670e+02
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Idea 7

Convex abstraction of non-convex constraints
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Semidefinite programming relaxation for
polynomial programs

eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do
x := a*x*(1-x)

od

�
��
��
��
�
�

	�

� �

Write the verification conditions in polynomial form, use
SOS solver to relax in semidefinite programming form.
SOStool+SeDuMi:

r(x) = 1.222356e-13.x + 1.406392e+00
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Principle

– Show 8x : p(x) – 0 by 8x : p(x) =Pki=1 qi(x)2
– Hibert’s 17th problem (sum of squares)
– Undecidable (but for monovariable or low degrees)
– Look for an approximation (relaxation) by semidefi-
nite programming
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General relaxation/approximation idea

– Write the polynomials in quadratic form with mono-
mials as variables: p(x; y; : : :) = z>Qz where Q < 0
is a semidefinite positive matrix of unknowns and z =
[: : : x2; xy; y2; : : : x; y; : : : 1] is a monomial basis
– If such a Q does exist then p(x; y; : : :) is a sum of
squares 3

– The equality p(x; y; : : :) = z>Qz yields LMI contrains
on the unkown Q: z>M(Q)z < 0
4 Since Q < 0, Q has a Cholesky decomposition L which is an upper triangular matrix L such that Q=L>L.
It follows that p(x) = z>Qz = z>L>Lz = (Lz)>Lz = [Li;: ´ z]>[Li;: ´ z] =

P
i(Li;: ´ z)2 (where ´ is the vector

dot product x ´ y =Pi xiyi), proving that p(x) is a sum of squares whence 8x : p(x) – 0, which eliminates
the universal quantification on x.
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– Instead of quantifying over monomials values x, y, re-
place the monomial basis z by auxiliary variables X
(loosing relationships between values of monomials)
– To find such a Q < 0, check for semidefinite positive-
ness 9Q : 8X : X>M(Q)X – 0 i.e. 9Q : M(Q) < 0
with LMI solver
– Implement with SOStools underMathlabő of Prajna,
Papachristodoulou, Seiler and Parrilo

– Nonlinear cost since the monomial basis has size
„
n+m

m

«
for multivariate polynomials of degree n with m vari-
ables
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Considering More General
Forms of Programs
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Handling disjunctive loop tests and tests in
loop body

– By case analysis
– and “conditional Lagrangian relaxation” (Lagrangian
relaxation in each of the cases)
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Loop body with tests

!̀ case analysis:


i – 0
i < 0

while (x < y) do
if (i >= 0) then

x := x+i+1
else

y := y+i
fi

od

lmilab:
r(i,x,y) = -2.252791e-09.i -4.355697e+07.x +4.355697e+07.y

+5.502903e+08
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Quadratic termination of linear loop
{n>=0}  ̀ termination precondition

determined by iterated for-
ward/backward polyhedral
analysis

i := n; j := n;
while (i <> 0) do

if (j > 0) then
j := j - 1

else
j := n; i := i - 1

fi
od
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sdplr (with feasibility radius of 1.0e+3):

r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i ...
-2.809222e-03.n.j +1.533829e-02.n ...
+1.569773e-03.i^2 +7.077127e-05.i.j ...
+3.093629e+01.i -7.021870e-04.j^2 ...
+9.940151e-01.j +4.237694e+00

Successive values of
r(n; i; j) for n = 10 on
loop entry

0

5

10

0
2

4
6

8
10

0

50

100

150

200

250

300

350

j

Ranking function

i

r(
10

,i,
j)
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Handling nested loops

– by induction on the loop depth
– use an iterated forward/backward symbolic analysis to
get a necessary termination precondition
– use a forward symbolic symbolic analysis to get the
semantics of a loop body
– use Lagrangian relaxation and semidefinite program-
ming to get the ranking function
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Example of termination of nested loops:
Bubblesort inner loop

...

+1.i’ -1 >= 0

+1.j’ -1 >= 0

+1.n0’ -1.i’ >= 0

-1.j +1.j’ -1 = 0

-1.i +1.i’ = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0 = n & j >= 0 & i >= 1 & n0 >= i & j <> i);
{n0=n,i>=1,j>=0,n0>=i}
assume (n01 = n0 & n1 = n & i1 = i & j1 = j);
{j=j1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=0,n0>=i}
j := j + 1
{j=j1+1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=1,n0>=i}

termination (lmilab)
r(n0,n,i,j) = +434297566.n0 +226687644.n -72551842.i

-2.j +2147483647
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Example of termination of nested loops:
Bubblesort outer loop

...

+1.i’ +1 >= 0

+1.n0’ -1.i’ -1 >= 0

+1.i’ -1.j’ +1 = 0

-1.i +1.i’ +1 = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0=n & i>=0 & n>=i & i <> 0);
{n0=n,i>=0,n0>=i}

assume (n01=n0 & n1=n & i1=i & j1=j);
{j1=j,i=i1,n0=n1,n0=n01,n0=n,i>=0,n0>=i}

j := 0;
while (j <> i) do

j := j + 1
od;
i := i - 1

{i+1=j,i+1=i1,n0=n1,n0=n01,n0=n,i+1>=0,n0>=i+1}
termination (lmilab)
r(n0,n,i,j) = +24348786.n0 +16834142.n +100314562.i +65646865
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Handling nondeterminacy

– By case analysis
– Same for concurrency by interleaving
– Same with fairness by nondeterministic interleaving
with encoding of an explicit scheduler
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Termination of a concurrent program
[| 1: while [x+2 < y] do

2: [x := x + 1]
od

3:
||

1: while [x+2 < y] do
2: [y := y - 1]

od
3:

|]

interleaving

!̀

while (x+2 < y) do
if ?=0 then

x := x + 1
else if ?=0 then

y := y - 1
else

x := x + 1;
y := y - 1

fi fi
od

penbmi: r(x,y) = 2.537395e+00.x+-2.537395e+00.y+
-2.046610e-01
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Termination of a fair parallel program
[[ while [(x>0)|(y>0) do x := x - 1] od ||

while [(x>0)|(y>0) do y := y - 1] od ]]

interleaving
+ scheduler!̀

{m>=1}  termination precondition determined by iterated
forward/backward polyhedral analysist := ?;

assume (0 <= t & t <= 1);

s := ?;

assume ((1 <= s) & (s <= m));

while ((x > 0) | (y > 0)) do

if (t = 1) then

x := x - 1

else

y := y - 1

fi;

s := s - 1;

if (s = 0) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

else

skip

fi

od;;

penbmi: r(x,y,m,s,t) = +1.000468e+00.x +1.000611e+00.y
+2.855769e-02.m -3.929197e-07.s +6.588027e-06.t +9.998392e+03
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Relaxed Parametric
Invariance Proof Method
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Floyd’s method for invariance
Given a loop precondition P , find an unkown loop in-
variant I such that:
– The invariant is initial:

8 x : P (x) ) I

"
(x)

– The invariant is inductive:

8 x; x0 : I
"
???

(x) ^ �B; C�(x; x0) ) I

"
(x0)
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Abstraction

– Express loop semantics as a conjunction of LMI con-
straints (by relaxation for polynomial semantics)
– Eliminate the conjunction and implication by Lagrangian
relaxation
– Fix the form of the unkown invariant by parametric
abstraction

. . . we get . . .
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Floyd’s method for numerical programs
Find R=Q=Z-valued unkown parameters a, such that:
– The invariant is initial: 9— 2 R+ :

8 x : Ia(x)` —:P (x) – 0

– The invariant is inductive: 9– 2 [0; N ] !̀ R+ :

8 x; x0 : Ia(x0)` –0:Ia(x)
" "
bilinear in –0 and a

`
NX
k=1

–k:ffk(x; x
0) – 0
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Idea 8

Solve the bilinear matrix inequality (BMI) by
semidefinite programming
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Bilinear matrix inequality (BMI) solvers

9x 2 Rn :
m̂

i=1

0
@Mi0 +

nX
k=1

xkM
i
k +

nX
k=1

nX
‘=1

xkx‘N
i
k‘ < 0

1
A

[Minimizing x>Qx+ cx]
Two solvers available under Mathlabő:
– PenBMI: M. Kočvara, M. Stingl

– bmibnb: J. Löfberg
Common interfaces to these solvers:
– Yalmip: J. Löfberg
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Example: linear invariant
Program:
i := 2; j := 0;
while (??) do

if (??) then
i := i + 4

else
i := i + 2;
j := j + 1

fi
od;

– Invariant:
+2.14678e-12*i -3.12793e-10*j +0.486712 >= 0

– Less natural than i` 2j ` 2 – 0
– Alternative:
- Determine parameters (a) by other
methods (e.g. random interpreta-
tion)
- Use BMI solvers to check for invari-
ance
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Conclusion
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Constraint resolution failure

– infeasibility of the constraints does not mean “non ter-
mination” or “non invariance” but simply failure
– inherent to abstraction!
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Numerical errors

– LMI/BMI solvers do numerical computations with round-
ing errors, shifts, etc
– ranking function is subject to numerical errors
– the hard point is to discover a candidate for the rank-
ing function
– much less difficult, when the ranking function is known,
to re-check for satisfaction (e.g. by static analysis)
– not very satisfactory for invariance (checking only ???)
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Related work

– Linear case (Farkas lemma):
- Invariants: Sankaranarayanan, Spima, Manna (CAV’03,
SAS’04, heuristic solver)
- Termination: Podelski & Rybalchenko (VMCAI’03,
Lagrange coefficients eliminated by hand to reduce
to linear programming so no disjunctions, no tests,
etc)
- Parallelization & scheduling: Feautrier, easily gener-
alizable to nonlinear case
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Seminal work
– LMI case, Lyapunov 1890,
“an invariant set of a dif-
ferential equation is sta-
ble in the sense that it at-
tracts all solutions if one
can find a function that is
bounded from below and
decreases along all solu-
tions outside the invariant
set” .
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THE END, THANK YOU
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