« Abstract Program Invariance and Termination Proofs »

Patrick Cousot
École normale supérieure
45 rue d'Ulm, 75230 Paris cedex 05, France

> Patrick.Cousot@ens.fr
> www.di.ens.fr/~cousot

Course 16.399: "Abstract interpretation" - MIT Tuesday, February 22, 2005
|li| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

The fundamental limitation: undecidability

- In 1921, David Hilbert put forward the so-called Hilbert's Program, calling for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent, to be carried out using only "finitary" methods.
- Kurt Gödel's incompleteness theorems [1] essentially show that Hilbert's Program cannot be carried out.

- Reference

[1] Gödel, K., "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I", Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173-198.

David Hilbert

Kurt Gödel

Decision Problems

- A decision problem is a computational problem where the answer is always YES/NO:

$$
\text { solve_problem(data) } \mapsto\{Y E S, \text { NO }\}
$$

- The complement $\neg P$ of a decision problem P is one where all the YES and NO answers are exchanged.

```
||| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 5 - C P. Cousot, 2005
```


The termination problem

- "Termination problem": given a sequential program and its input data, will execution of this program on these data ever terminate?
- The complement is the "Nontermination problem": given a sequential program and its input data, will execution of this program on these data never terminate?
- Termination is undecidable (but semidecidable);
- Nontermination is undecidable (and not semidecidable).

Decidability/Semidecidable/Undecidability

A decision problem is:

- "Decidable" if and only if there exists an algorithm to solve the problem in finite time;
- "Undecidable" if and only if there exists no algorithm to solve the problem in finite time;
- "Semidecidable" if and only if there exists an algorithm to solve the problem in finite time when the answer is YES but which may not terminate when the answer is NO;
|l|i\| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 $-6-\quad$ © P. Cousot, 2005

Interpretor

- We let Ff be the text file (of type text) containing the text of a program encoding a function f of type text -> bool;
- We let Fd be the text file (of type text) containing the text encoding the data d
- An interpreter I : text * text -> bool is a program which execution $\mathrm{I}(\mathrm{Ff}, \mathrm{Fd})$ is the result $f(d)$ of the evaluation of function f on the data d.

Termination is semidecidable

Terminaison(Ff, Fd) = if I(Ff, Fd) then YES else YES

- Will answer YES if and only if I (Ff, Fd) that is $f(d)$ does terminate
- Will not terminate if and only if I (Ff, Fd) that is $f(d)$ does not terminate
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005
- 9 -
(c) P. Cousot, 2005

Alonso Church

Alan Turing

Proof that termination is undecidable

It can be schematized as follows:

- Assume, by reductio ad absurdum, that we can design a termination algorithm T : text $*$ text -> bool, which execution is assumed to always terminate, and returns $\mathrm{T}(\mathrm{Ff}, \mathrm{Fd})=\mathrm{YES}$ if and only if $\mathrm{I}(\mathrm{Ff}, \mathrm{Fd})$ terminates and $T(F f, F d)=N O$ otherwise.

Termination is undecidable

The proof given by Alonso Church [2] and Alan Turing [3] results from Gödel's second incompleteness theorem [1].

- Reference

[2] Church, A., "An unsolvable problem of elementary number theory", Fundamenta mathematicæ, vol. 28, pp. 11-21, (1936).
[3] Turing, A.M., "Computability and λ-definability", The Journal of Symbolic Logic, vol. 2, pp. 153-163, (1937).
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 $-10-\quad$ © P. Cousot, 2005

Let Fc be the text of a function c : text $->$ bool defined by:

$$
c(F)=\text { if } T(F, F) \text { then } \neg I(F, F) \text { else YES }
$$

Observe that execution of c always terminate, whence

$$
\mathrm{T}(\mathrm{Fc}, \mathrm{Fc})=\text { true }
$$

It follows that:

$$
\begin{aligned}
\mathrm{I}(\mathrm{Fc}, \mathrm{Fc}) & =\operatorname{if} \mathrm{T}(\mathrm{Fc}, \mathrm{Fc}) \text { then } \neg \mathrm{I}(\mathrm{Fc}, \mathrm{Fc}) \text { else YES } \\
& =\neg \mathrm{I}(\mathrm{Fc}, \mathrm{Fc})
\end{aligned}
$$

a contradiction.

$$
\boldsymbol{\|} \boldsymbol{i \boldsymbol { I }} \text { Course 16.399: "Abstract interpretation", Tuesday, February 22, } 2005 \quad-13-\quad \text { © P. Cousot, } 2005
$$

Problem Reduction

- To prove that a problem P is undecidable, prove, by reductio ad absurdum, that if it were decidable, then the termination problem would be decidable.

Nontermination is not semidecidable

a) Decidable $(P) \Leftrightarrow[$ Semidecidable $(P) \wedge$ Semidecidable $(\neg P)]$ \Rightarrow obvious (by defining Semidecision $(P) \stackrel{\text { def }}{=} \operatorname{Decision}(P)$ and Semidecision $(\neg P) \stackrel{\text { def }}{=} \neg$ Decision $(P))$;
\Leftarrow alternatively execute one step of the semidecision algorithms of P and $\neg P$. Stop as soon as the first answer is returned.
b) \neg Semidecidable(\neg Terminaison)

By reductio ad absurdum,
Semidecidable(Terminaison) and Semidecidable(\neg Terminaison)
would imply Decidable(Terminaison).

Constant propagation is undecidable

- The constant propagation problem: determines whether, after initialization, a variable is constant (is never assigned a different value);
- The program P does not terminate if and only if the variable X has a constant value after initialization in the program:

```
var X : boolean; (* new variable not in P *)
X := true;
P;
X := false;
```

|川|ї Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-16-\quad$ © P. Cousot, 2005

Absence of runtime errors is undecidable

The absence of runtime errors is not semidecidable:

- If absence of runtime errors in a program P where semidecidable then the nontermination of P would be semidecidable, by answering the question to know if P; $1 / 0$ has no runtime error.

What to do about undecidable problems?

Beyond simply abandoning:

- Consider decidable subcases only (but computational complexity strikes!)
- Ask for correct, intelligent, interactive human help
- Accept nontermination
- Accept approximations (I don't know)

Example of approximation: false alarms

When verifying the absence of runtime errors in a program, it may be the case that the automatic verifier is enable to establish statically that some error can be raised at runtime although this will never happen during execution.

For soundness, it must report a possibility of runtime error, which is impossible. This is called a false alarm.

Example of false alarms in ASTRÉE

\% cat -n falsealarm.c

1 /* falsealarm.c */
void main()
3 \{
4 int x, y;
if $((-4681<y) \& \&(y<4681) \& \&(x<32767) \& \&(-32767<x)$
\&\& $((7 * y * y-1)==x * x))$ \{
$y=1 / x ;$
\};
8 \}
\% astree -exec-fn main falsealarm.c | grep WARN
falsealarm.c:6:9-6:14:[call\#main@2:]: WARN: integer division by zero
[-32766, 32766]
\%
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $20-$ © P. Cousot, 2005

Computational Complexity

Complexity Classes

- the class P consists of all those decision problems that can be solved in polynomial time in the size of the input on a deterministic sequential machine;
- the class NP consists of all those decision problems whose positive solutions can be verified in polynomial time given the right information ${ }^{1}$;
- the class co-NP consists of all those decision problems whose complement is in P .

- Reference

[4] Hartmanis, J., and Stearns, R.E. "On the computational complexity of algorithms", Trans. Amer. Math. Soc. 117 (1965), 285-306.

[^0]
Computational Complexity

- Decidable problems can have a very high computational complexity;
- The time complexity of a problem is the number of steps that it takes to solve an instance of the problem, as a function of the size of the input, (usually measured in bits) using the most efficient algorithm;
- For example sorting an n-elements array is $\mathcal{O}(n \log n)$;

[^1]
Problem Reduction

- A problem decision A is reducible [5] to a decision problem B
\Longleftrightarrow
- there exists a deterministic polynomial-time algorithm which transforms instances a of A into instances b of B, such that the answer to b is YES if and only if the answer to a is YES.

- Reference

[5] R.M. Karp, "Reducibility among combinatorial problems", In Complexity of Computer Computations, R.E. Miller and J.W. Thatcher, editors, pages 85-103. Plenum Press, New York, NY, 1972.
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 $-24-\quad$ © P. Cousot, 2005

NP-hardness

A decision problem is NP-hard if and only if - every other problem in NP is reducible to it.

If we can find a polynomial algorithm to solve a NP-hard problem, then $P=N P(?)$.

```
|||| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 25 - C P. Cousot, 2005
```

- An instance of SAT is defined by a Boolean expression written using only AND, OR, NOT, variables, and parentheses.
- The question is: given the expression, is there some assignment of TRUE and FALSE values to the variables that will make the entire expression true?
- For n variables, there are 2^{n} possible truth assignments to be checked.

NP-completeness

A decision problem is NP-complete [6] if

- it is in NP, and
- every other problem in NP is reducible to it.
\qquad
[6] Stephen A. Cook. "The Complexity of Theorem Proving Procedures". Proceedings Third Annual ACM Symposium on Theory of Computing (STOC), May 1971, pp 151-158.
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $26-$ P. Cousot, 2005

Complexity of the boolean satisfiability problem

- The boolean satisfiability problem is NP-complete [7]

- Reference

[7] Stephen A. Cook. "The Complexity of Theorem Proving Procedures". Proceedings Third Annual ACM Symposium on Theory of Computing (STOC), May 1971, pp 151-158.
|l|| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

What to do about NP-complete problems?

- Small is beautiful: Consider only problems of very small size.
- Special cases: An algorithm that is provably fast if the problem instances belong to a certain special case. Fixed-parameter algorithms can be seen as an implementation of this approach.
- Probabilistic: An algorithm that provably yields good average runtime behavior for a given distribution of the problem instances-ideally, one that assigns low probability to "hard" inputs.
- Heuristic: An algorithm that works "reasonably well" on many cases, but for which there is no proof that it is always fast (a rule of thumb, intuition).
- Approximation: An algorithm that quickly finds a suboptimal solution that is within a certain (known) range of the optimal one.

SAT solvers

- modern variants of the Davis-Logemann-Loveland algorithm [8] (depth first search with backtracking), such as zchaff ${ }^{2}$ [9];
- stochastic local search algorithms, e.g. WalkSAT [10].

- Reference

[8] M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 1962
[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. "Chaff: Engineering an Efficient SAT Solver". 38th Design Automation Conference (DAC2001), Las Vegas, June 2001.
[10] Bart Selman, Henry Kautz, and Bram Cohen. "Local Search Strategies for Satisfiability Testing". in Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11-13, 1993 David S. Johnson and Michael A. Trick, ed. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, AMS, 1996.

[^2]
Polynomial Time Complexity

- Polynomial-time computability is identified with the intuitive notion of algorithmic efficiency;
- Intuitively valid only for small powers:

	Execution time at $10^{9} \mathrm{ops} / \mathrm{s}$				
n	$\mathcal{O}(n)$	$\mathcal{O}(n \cdot l o g(n))$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$	
1	ϵ	ϵ	ϵ	ϵ	
10	ϵ	ϵ	$0.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	
10^{3}	$1 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$	1 ms	1 s	
10^{6}	1 ms	13 ms	16 mn	32 years	
10^{9}	1 s	20 s	32 years	300000000 centuries	
10^{12}	16 mn	7.7 h	300000 centuries	-	
10^{15}	11.6 days	1 year	-	-	
$\boldsymbol{\\| l i l}$					

Overview of the Termination Analysis Method

Proving Termination of a Loop

The main point in this talk is (4).
|l|ï Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-38-\quad$ © P. Cousot, 2005

Proving Termination of a Loop

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Arithmetic Mean Example

while (x <> y) do
$\mathrm{x}:=\mathrm{x}-1$;
y := y + 1
od

The polyhedral abstraction used for the static analysis of the examples is implemented using Bertrand Jeannet's NewPolka library.
|l||i| Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-40-$
C P. Cousot, 2005

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- ${ }^{41}$ -
© P. Cousot, 2005

Backward/ancestry properties

Example: termination (must reach final states)
|l||i Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 43 (C) P. Cousot, 2005

Forward/reachability properties

Example: partial correctness (must stay into safe states)
|li|i Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 42- © P. Cousot, 2005

Forward/backward properties

Example: total correctness (stay safe while reaching final states)
|l|il Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-44-\quad$ © P. Cousot, 2005

Arithmetic Mean Example:
 Loop Invariant

assume $((x=y+2 * \mathrm{k}) \&(\mathrm{x}>=\mathrm{y}))$;
$\{x=y+2 k, x>=y\}$
while (x <> y) do $\{x=y+2 k, x>=y+2\}$
$\mathrm{k}:=\mathrm{k}-1$;
$\{x=y+2 k+2, x>=y+2\}$
$\mathrm{x}:=\mathrm{x}-1$;
$\{x=y+2 k+1, x>=y+1\}$
y := y + 1
$\{x=y+2 k, x>=y\}$
od
$\{k=0, x=y\}$
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $49-\quad$ © P. Cousot, 2005

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop
$\boldsymbol{\|} \boldsymbol{\| I}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-50-\quad$ © P. Cousot, 2005

Arithmetic Mean Example:
 Body Relational Semantics

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Floyd's method for termination of while B do C
Given a loop invariant I, find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r such that:

- The rank is nonnegative:

$$
\forall x_{0}, x: I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{c} \rrbracket\left(x_{0}, x\right) \Rightarrow r\left(x_{0}\right) \geq 0
$$

- The rank is strictly decreasing:

$$
\forall x_{0}, x: I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x_{0}, x\right) \Rightarrow r(x) \leq r\left(x_{0}\right)-\eta
$$

$\eta \geq 1$ for $\mathbb{Z}, \eta>0$ for \mathbb{R} / \mathbb{Q} to avoid Zeno $\frac{1}{2}, \frac{1}{4}, \frac{1}{8} \ldots$
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $53-\quad$ P. Cousot, 2005

```
#clear all
```

[v0,v] = variables('x','y','k')
\% linear inequalities
$\% \quad \mathrm{xO} \mathrm{yok0}$
$\mathrm{Ai}=\left[\begin{array}{ccc}0 & 0 & 0\end{array}\right]$
$\% \quad \begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{k}\end{array}$
$A i_{-}=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right] ; \% \mathrm{x} 0-\mathrm{y} 0>=0$
bi $=$ [0];
[N Mk(:,:,:)]=linToMk(Ai,Ai_, bi)
\% linear equalities
$\% \quad \mathrm{x} 0 \mathrm{y} 0 \mathrm{k0}$
$A \mathrm{~A}=\left[\begin{array}{ccc}0 & 0 & -2 ; \\ 0 & -1 & 0 ;\end{array}\right.$
0-1 0;
$\begin{array}{lll}-1 & 0 & 0 ;\end{array}$
$\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\% \quad$ x y \quad k
$A e_{-}=\left[\begin{array}{ccc}1-1 & 0 ; & \% \\ x & y-2 * k 0-2=0\end{array}\right.$
Input the loop abstract
semantics
0 1 0; \% y - y0 - $1=0$
0 0; \% x - x0 + $1=0$
1-1-2]; \% x $-\mathrm{y}-2 * \mathrm{k}=0$
$\mathrm{be}=[2 ;-1 ; 1 ; 0]$.
$[M \operatorname{Mk}(:,:, N+1: N+M)]=\operatorname{linToMk}\left(A e, A e_{-}, b e\right)$;

» display_Mk(Mk, N, v0, v);
$+1 . x-1 . y>=0$
$-2 \cdot \mathrm{k} 0+1 \cdot \mathrm{x}-1 \cdot \mathrm{y}+2=0$
$-1 . y^{0}+1 . y-1=0$
$-1 \cdot x 0+1 \cdot x+1=0$
$+1 . x-1 . y-2 . k=0$
» [diagnostic, R] = termination(v0, v, Mk, N, 'integer', 'linear');
》 disp(diagnostic)
feasible (bnb)
» intrank(R, v)
$r(\mathrm{x}, \mathrm{y}, \mathrm{k})=+4 . \mathrm{k}-2$ B do C

- compute ranking function, if any

N, 'integer', 'linear');

- Display the abstract semantics of the loop while
\qquad

\square

> Proving Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming

Idea 2

Express the loop invariant and relational semantics as numerical positivity constraints

Example of linear program (Arithmetic mean) $\left[A A^{\prime}\right]\left[x_{0} x\right]^{\top} \geqslant b$

$$
\begin{aligned}
& \{x=y+2 k, x>=y\} \\
& \text { while (} x<>y \text {) do } \\
& +1 . x-1 . y>=0 \\
& \mathrm{k}:=\mathrm{k}-1 \text {; } \\
& -2 . \mathrm{k} 0+1 . \mathrm{x}-1 . \mathrm{y}+2=0 \\
& -1 \cdot y 0+1 \cdot y-1=0 \\
& -1 . x 0+1 . x+1=0 \\
& \mathrm{x}:=\mathrm{x}-1 \text {; } \\
& +1 . \mathrm{x}-1 . \mathrm{y}-2 . \mathrm{k}=0 \\
& \mathrm{y}:=\mathrm{y}+1 \\
& \text { od } \\
& {\left[\begin{array}{ccc|ccc}
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & -2 & 1 & -1 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0} \\
k_{0} \\
x \\
y \\
k
\end{array}\right]=\left[\begin{array}{c}
0 \\
= \\
=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

Relational semantics of while B do C od loops

- $x_{0} \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables before a loop iteration
$-x \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables after a loop iteration
- I(x_{0}): loop invariant, $\llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x_{0}, x\right)$: relational semantics of one iteration of the loop body
$-I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x_{0}, x\right)=\bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \quad\left(\geqslant_{i} \in\{>, \geq,=\}\right)$
- not a restriction for numerical programs
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-58-\quad$ © P. Cousot, 2005

Example of quadratic form program (factorial) $\left[x x^{\prime}\right] A\left[x x^{\prime}\right]^{\top}+2\left[x x^{\prime}\right] q+r \geqslant 0$

$$
\begin{array}{ll}
\mathrm{n}:=0 ; & -1 . \mathrm{f} 0+1 . \mathrm{N} 0>=0 \\
\mathrm{f}:=1 ; & +1 . \mathrm{n} 0>=0 \\
\text { while }(\mathrm{f}<=\mathrm{N}) \text { do } & +1 . \mathrm{f0}-1>=0 \\
\mathrm{n}:=\mathrm{n}+1 ; & -1 . \mathrm{n} 0+1 . \mathrm{n}-1=0 \\
\mathrm{f}:=\mathrm{n} * \mathrm{f} & +1 . \mathrm{NO}-1 \cdot \mathrm{~N}=0 \\
\mathrm{od} &
\end{array}
$$

$\left[n_{0} f_{0} N_{0} n f N\right]$
$\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{c}n_{0} \\ f_{0} \\ N_{0} \\ n \\ f \\ N\end{array}\right]_{\mathrm{y}, \text { February } 22,2005}+2\left[n_{0} f_{0} N_{0} n f N\right]$

[^3]Example of semialgebraic program (logistic map)

```
eps = 1.0e-9
```

while (0 <= a) \& (a <= 1 - eps)
\& (eps <= x) \& (x <= 1) do
$x:=a * x *(1-x)$
od

Illif Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- 61 -
© P. Cousot, 2005

Idea 3

Eliminate the conjunction \bigwedge and implication \Rightarrow by Lagrangian relaxation

Floyd's method for termination of while B do C
Find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r and $\eta>$ 0 such that:

- The rank is nonnegative:

$$
\forall x_{0}, x: \bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \Rightarrow r\left(x_{0}\right) \geq 0
$$

- The rank is strictly decreasing:

$$
\forall x_{0}, x: \bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \Rightarrow r\left(x_{0}\right)-r(x)-\eta \geq 0
$$

Implication (linear case)

$$
A \Rightarrow B
$$

\Leftarrow (soundness)
\Rightarrow (completeness)
border of A parallel to border of B

Lagrangian relaxation (linear case)

Lagrangian relaxation, formally

Let \mathbb{V} be a finite dimensional linear vector space, $N>0$ and $\forall k \in[0, N]: \sigma_{k} \in \mathbb{V} \mapsto \mathbb{R}$.

$$
\begin{aligned}
& \forall x \in \mathbb{V}:\left(\bigwedge_{k=1}^{N} \sigma_{k}(x) \geq 0\right) \Rightarrow\left(\sigma_{0}(x) \geq 0\right) \\
\Leftarrow & \quad \text { soundness (Lagrange) } \\
\Rightarrow & \text { completeness (lossless) } \\
\nRightarrow & \text { incompleteness (lossy) } \\
& \exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k} \sigma_{k}(x) \geq 0
\end{aligned}
$$

relaxation $=$ approximation, $\lambda_{i}=$ Lagrange coefficients
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- 67 -
(C) P. Cousot, 2005

Lagrangian relaxation, equality constraints

$$
\begin{aligned}
& \forall x \in \mathbb{V}:\left(\bigwedge_{k=1}^{N} \sigma_{k}(x)=0\right) \Rightarrow\left(\sigma_{0}(x) \geq 0\right) \\
\Leftarrow & \text { soundness (Lagrange) } \\
& \exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k} \sigma_{k}(x) \geq 0 \\
\wedge & \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)+\sum_{k=1}^{N} \lambda_{k}^{\prime} \sigma_{k}(x) \geq 0 \\
\Leftrightarrow & \left(\lambda^{\prime \prime}=\frac{\lambda^{\prime}-\lambda}{2}\right) \\
& \exists \lambda^{\prime \prime} \in[1, N] \mapsto \mathbb{R}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k}^{\prime \prime} \sigma_{k}(x) \geq 0
\end{aligned}
$$

|||і| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Example: affine Farkas' lemma, informally

- An application of Lagrangian relaxation to the case when A is a polyhedron

Example: affine Farkas' lemma, formally

- Formally, if the system $A x+b \geq 0$ is feasible then

$$
\begin{aligned}
& \forall x: A x+b \geq 0 \Rightarrow c x+d \geq 0 \\
\Leftarrow & \text { (soundness, Lagrange) } \\
\Rightarrow & \text { (completeness, Farkas) } \\
& \exists \lambda \geq 0: \forall x: c x+d-\lambda(A x+b) \geq 0 .
\end{aligned}
$$

Yakubovich's S-procedure, informally

- An application of Lagrangian relaxation to the case when A is a quadratic form

Incompleteness (convex case)

Yakubovich's S-procedure, completeness cases

- The constraint $\sigma(x) \geq 0$ is regular if and only if $\exists \xi \in$ $\mathbb{V}: \sigma(\xi)>0$.
- The S-procedure is lossless in the case of one regular quadratic constraint:

$$
\forall x \in \mathbb{R}^{n}: x^{\top} P_{1} x+2 q_{1}^{\top} x+r_{1} \geq 0 \Rightarrow
$$

$$
x^{\top} \bar{P}_{0} x+2 q_{0}^{\top} x+r_{0} \geq 0
$$

$\Leftarrow \quad$ (Lagrange)
$\Rightarrow \quad$ (Yakubovich)

$$
\exists \lambda \geq 0: \forall x \in \mathbb{R}^{n}: x^{\top}\left(\left[\begin{array}{cc}
P_{0} & q_{0} \\
q_{0}^{\top} & r_{0}
\end{array}\right]-\lambda\left[\begin{array}{cc}
P_{1} & q_{1} \\
q_{1}^{\top} & r_{1}
\end{array}\right]\right) x \geq 0
$$

|l|il Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- 73 -
© P. Cousot, 2005

Idea 4

Parametric abstraction of the ranking function r

Floyd's method for termination of while B do C
Find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r which is:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}{ }_{i}$:

$$
\forall x_{0}, x: r\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+i}$:
$\forall x_{0}, x:\left(r\left(x_{0}\right)-r(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime} \sigma_{i}\left(x_{0}, x\right) \geq 0$
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 $-74-\quad$ © P. Cousot, 2005

Parametric abstraction

- How can we compute the ranking function r ?
\rightarrow parametric abstraction:

1. Fix the form r_{a} of the function r a priori, in term of unkown parameters a
2. Compute the parameters a numerically

- Examples:

$$
\begin{array}{ll}
r_{a}(x)=a \cdot x^{\top} & \text { linear } \\
r_{a}(x)=a \cdot(x 1)^{\top} & \text { affine } \\
r_{a}(x)=\left(\begin{array}{ll}
x & 1) \cdot a \cdot\left(\begin{array}{ll}
x &)^{\top}
\end{array}\right. \\
\text { quadratic }
\end{array} \text { quall}{ }^{\top}\right.
\end{array}
$$

|l||i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $76-$

Floyd's method for termination of while B do C
Find $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown parameters a, such that:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}{ }_{i}$:

$$
\forall x_{0}, x: r_{a}\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+i}$:
$\forall x_{0}, x:\left(r_{a}\left(x_{0}\right)-r_{a}(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime} \sigma_{i}\left(x_{0}, x\right) \geq 0$

Idea 5

Eliminate the universal quantification \forall using
linear matrix inequalities (LMIs)
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-77-\quad$ © P. Cousot, 2005
|l|i] Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $78-\quad$ © P. Cousot, 2005

Feasibility

- feasibility problem: find a solution $s \in \mathbb{R}^{n}$ to the optimization program, such that $\bigwedge_{i=1}^{N} g_{i}(s) \geq 0$, or to determine that the problem is infeasible
- feasible set: $\left\{x \mid \bigwedge_{i=1}^{N} g_{i}(x) \geq 0\right\}$
- a feasibility problem can be converted into the optimization program

$$
\min \left\{-y \in \mathbb{R} \mid \bigwedge_{i=1}^{N} g_{i}(x)-y \geq 0\right\}
$$

$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-80-$

Semidefinite programming

$$
\begin{array}{ll}
\exists x \in \mathbb{R}^{n}: & M(x) \succcurlyeq 0 \\
\text { [Minimizing } & c x]
\end{array}
$$

Where the linear matrix inequality (LMI) is

$$
M(x)=M_{0}+\sum_{k=1}^{n} x_{k} M_{k}
$$

with symetric matrices ($M_{k}=M_{k}{ }^{\top}$) and the positive semidefiniteness is

$$
M(x) \succcurlyeq 0=\forall X \in \mathbb{R}^{N}: X^{\top} M(x) X \geq 0
$$

|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Semidefinite programming, once again Feasibility is:

$$
\exists x \in \mathbb{R}^{n}: \forall X \in \mathbb{R}^{N}: X^{\top}\left(M_{0}+\sum_{k=1}^{n} x_{k} M_{k}\right) X \geq 0
$$

of the form of the formulæ we are interested in for programs which semantics can be expressed as LMIs:

$$
\bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0=\bigwedge_{i=1}^{N}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geqslant_{i} 0
$$

|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005-82-\quad$ P. Cousot, 2005

Find $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown parameters a, such that:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}{ }_{i}$:

$$
\forall x_{0}, x: r_{a}\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geq 0
$$

- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+i}$:
$\forall x_{0}, x:\left(r_{a}\left(x_{0}\right)-r_{a}(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geq 0$
Floyd's method for termination of while B do C
$\Longleftarrow \quad$ 2Semantics abstracted in LMI form (\Longrightarrow if exact abstraction) S
$\exists r: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{n}: r\left(x, x^{\prime}\right)-$ $\sum_{k=1}^{N} \lambda_{k}\left(x x^{\prime} 1\right) M_{k}\left(x x^{\prime} 1\right)^{\top} \geq 0$
$\Longleftrightarrow \quad$ 2Choose form of $r\left(x, x^{\prime}\right)=\left(x x^{\prime} 1\right) M_{0}\left(x x^{\prime} 1\right)^{\top} \mathrm{S}$
$\Longleftrightarrow \exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{n}:$ $\left(x x^{\prime} 1\right) M_{0}\left(x x^{\prime} 1\right)^{\top}-\sum_{k=1}^{N} \lambda_{k}\left(x x^{\prime} 1\right) M_{k}\left(x x^{\prime} 1\right)^{\top} \geq 0$
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{i}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-85-\quad$ © P. Cousot, 2005

$$
\exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}:\left(M_{0}-\sum_{k=1}^{N} \lambda_{k} M_{k}\right) \succcurlyeq 0
$$

2LMI solver provides $M_{0}($ and $\lambda) \rho$

$$
\Longleftrightarrow \exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{(n \times 1)}:
$$

$$
\left[\begin{array}{c}
x \\
x^{\prime} \\
1
\end{array}\right]^{\top}\left(M_{0}-\sum_{k=1}^{N} \lambda_{k} M_{k}\right)\left[\begin{array}{c}
x \\
x^{\prime} \\
1
\end{array}\right] \geq 0
$$

$\Longleftrightarrow \quad \quad \quad$ if $(x 1) A(x 1)^{\top} \geq 0$ for all x, this is the same as $(y t) A(y t)^{\top} \geq 0$ for all y and all $t \neq 0$ (multiply the original inequality by t^{2} and call $x t=y$). Since the latter inequality holds true for all x and all $t \neq 0$, by continuity it holds true for all x, t, that is, the original inequality is equivalent to positive semidefiniteness of $A S$
|l|i\| Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-86-\quad$ © P. Cousot, 2005

Idea 6

Solve the convex constraints by semidefinite programming

The simplex for linear programming

Dantzig 1948, exponential in worst case, good in practice
|lili Course 16.399: "Abstract interpretation", Tuesday, February $22,2005-89-\quad$ © P. Cousot, 2005

Polynomial methods

Ellipsoid method : Khachian 1979 [11], polynomial in worst case but not good in practice
Interior point method: Narendra Karmarkar 1984 [12], polynomial in worst case and good in practice (hundreds of thousands of variables)

- Reference

[11] L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Dokl., 20:191-194, 1979.
[12] Narendra Karmarkar. "A new polynomial-time algorithm for linear programming". Combinatorica 4(4): 373-396 (1984)

The interior point method

Interior point method for semidefinite programming

- Nesterov \& Nemirovskii 1988 [13], polynomial in worst case and good in practice (thousands of variables)

- Various path strategies e.g. "stay in the middle"
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{i}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-93-\quad$ © P. Cousot, 2005

Narendra Karmarkar

Arkadii Nemirovskii Yurii Nesterov

- Reference
[13] Yurii Nesterov and A. Nemirovsky. "Interior Point Polynomial Algorithms in Convex Programming" Society for Industrial and Applied Mathematics, 1994. (SIAM Studies in Applied Mathematics).
Ilii \qquad

Linear program: termination of Euclidean division
»clear all
\% linear inequalities
$\% \quad \mathrm{y} 0 \mathrm{q0} \mathrm{r0}$
Ai $=\left[\begin{array}{lllll}0 & 0 & 0 ; & 0 & 0 \\ 0 & 0 & 0\end{array}\right.$
0 0 0];
$\% \quad y \quad q \quad r$
$A i_{-}=\left[\begin{array}{lll}1 & 0 & 0 ;\end{array} \% y-1>=0\right.$
0 1 0; \% q - $1>=0$
0 0 1]; \% r >= 0
bi $=[-1 ;-1 ; 0]$;
$\%$ linear equalities
$\% \quad$ y0 q0 r0
$A e=\left[\begin{array}{llll}0 & -1 & 0 ; & \%-q 0+q-1\end{array}\right) 0$
$-1 \quad 0 \quad 0 ; \%-y 0+y=0$
0 0-1]; \% -r0 $+\mathrm{y}+\mathrm{r}=0$
$\% \quad$ y \quad q \quad r
$A e_{-}=\left[\begin{array}{llllll}0 & 1 & 0 ; 1 & 0 & 0 \text {; } \\ 1 & 0 & 1\end{array}\right]$
$\begin{array}{ccc}1 & 0 & 1] ;\end{array}$
; 0; 0]
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Iterated forward/backward polyhedral analysis:

$$
\begin{aligned}
& \{\mathrm{y}>=1\} \\
& \mathrm{q}:=0 ; \\
& \{\mathrm{q}=0, \mathrm{y}>=1\} \\
& \mathrm{r}:=\mathrm{x} ; \\
& \{\mathrm{x}=\mathrm{r}, \mathrm{q}=0, \mathrm{y}>=1\} \\
& \text { while }(\mathrm{y}<=\mathrm{r}) \mathrm{do} \\
& \quad\{\mathrm{y}<=\mathrm{r}, \mathrm{q}>=0\} \\
& \quad \mathrm{r}:=\mathrm{r}-\mathrm{y} ; \\
& \quad\{\mathrm{r}>=0, \mathrm{q}>=0\} \\
& \quad \mathrm{q}:=\mathrm{q}+1
\end{aligned} \quad \begin{aligned}
& \{\mathrm{r}>=0, \mathrm{q}>=1\} \\
& \text { od } \\
& \{\mathrm{q}>=0, \mathrm{y}>=\mathrm{r}+1\}
\end{aligned}
$$

» $[\mathrm{N} \operatorname{Mk}(:,:,:)]=\operatorname{linToMk}\left(A i, A i_{-}, \mathrm{bi}\right)$;
» $[\mathrm{M} \mathrm{Mk}(:,:, N+1: N+M)]=\operatorname{linToMk}\left(A e, A e_{-}, b e\right) ;$
» [v0, v]=variables('y', 'q','r');
» display_Mk(Mk, N, v0, v);
$+1 . \mathrm{y}-1>=0$
+1 . $q-1>=0$
$+1 . r>=0$
$-1 . q 0+1 . q-1=0$
$-1 \cdot \mathrm{y} 0+1 \cdot \mathrm{y}=0$
$-1 . r 0+1 . y+1 . r=0$
» [diagnostic, R] = termination(v0, $\mathrm{v}, \mathrm{Mk}, \mathrm{N}$, 'integer', 'quadratic');
» disp(diagnostic)
termination (bnb)
》intrank(R, v)
$r(y, q, r)=-2 \cdot y+2 \cdot q+6 \cdot r$
Floyd's proposal $r(x, y, q, r)=x-q$ is more intuitive but requires to discover the nonlinear loop invariant $x=r+q y$.
|l|i] Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Quadratic program: termination of factorial

Program:

```
n := 0;
f := 1;
while (f <= N) do
    n := n + 1;
    n := n + 1;
od
r(n,f,N)=
r(n,f,N)=
    -1.f0 +1.N0 >= 0
    +1.n0 >= 0
    +1.f0 -1 >= 0
    -1.n0 +1.n -1 = 0
    +1.NO -1.N = 0
    -1.f0.n +1.f = 0
```


LMI semantics:
 LMI semantics:

$$
\begin{aligned}
& -1 . \mathrm{fo}+1 . \mathrm{NO}>=0 \\
& +1 . \mathrm{n} 0>=0 \\
& +1 . \mathrm{fo}-1>=0 \\
& -1 . \mathrm{n} 0+1 . \mathrm{n}-1=0 \\
& +1 . \mathrm{NO}-1 . \mathrm{N}=0 \\
& -1 . \mathrm{f0} 0 \mathrm{n}+1 . \mathrm{f}=0
\end{aligned}
$$

Imposing a feasibility radius

|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- 98 -
(C) P. Cousot, 2005

Idea 7

Convex abstraction of non-convex constraints

Semidefinite programming relaxation for polynomial programs

```
eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)
            & (eps <= x) & (x <= 1) do
    x := a*x*(1-x)
od
```


Write the verification conditions in polynomial form, use SOS solver to relax in semidefinite programming form.
SOStool+SeDuMi:

```
r}(x)=1.222356e-13.x + 1.406392e+00
```

\|liil Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 101 - © P. Cousot, 2005

Principle

- Show $\forall x: p(x) \geq 0$ by $\forall x: p(x)=\sum_{i=1}^{k} q_{i}(x)^{2}$
- Hibert's 17th problem (sum of squares)
- Undecidable (but for monovariable or low degrees)
- Look for an approximation (relaxation) by semidefinite programming

General relaxation/approximation idea

- Write the polynomials in quadratic form with monomials as variables: $p(x, y, \ldots)=z^{\top} Q z$ where $Q \succcurlyeq 0$ is a semidefinite positive matrix of unknowns and $z=$ $\left[\ldots x^{2}, x y, y^{2}, \ldots x, y, \ldots 1\right]$ is a monomial basis
- If such a Q does exist then $p(x, y, \ldots)$ is a sum of squares ${ }^{3}$
- The equality $p(x, y, \ldots)=z^{\top} Q z$ yields LMI contrains on the unkown $Q: z^{\top} M(Q) z \succcurlyeq 0$

[^4]- Instead of quantifying over monomials values x, y, replace the monomial basis z by auxiliary variables X (loosing relationships between values of monomials)
- To find such a $Q \succcurlyeq 0$, check for semidefinite positiveness $\exists Q: \forall X: X^{\top} M(Q) X \geq 0$ i.e. $\exists Q: M(Q) \succcurlyeq 0$ with LMI solver
- Implement with SOStools under MAThlAB ${ }^{*}$ of Prajna, Papachristodoulou, Seiler and Parrilo
- Nonlinear cost since the monomial basis has size $\binom{n+m}{m}$ for multivariate polynomials of degree n with m variables
|l||| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005
- 104 -
C) P. Cousot, 2005

Considering More General Forms of Programs

Handling disjunctive loop tests and tests in loop body

- By case analysis
- and "conditional Lagrangian relaxation" (Lagrangian relaxation in each of the cases)
|l|il Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad$ - 106 - P. Cousot, 2005

Loop body with tests

Quadratic termination of linear loop

```
{n>=0}
i := n; j := n;
while (i <> 0) do
    if (j > 0) then
            j := j - 1
        else
            j := n; i := i - 1
        fi
od
```

termination precondition determined by iterated forward/backward polyhedral analysis
sdplr (with feasibility radius of $1.0 \mathrm{e}+3$):

```
r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i
    -2.809222e-03.n.j +1.533829e-02.n
    +1.569773e-03.i^2 +7.077127e-05.i.j
    +3.093629e+01.i -7.021870e-04.j^2
    +9.940151e-01.j +4.237694e+00
```

Ranking function
Successive values of $r(n, i, j)$ for $n=10$ on loop entry
|l|il Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Handling nested loops

- by induction on the loop depth
- use an iterated forward/backward symbolic analysis to get a necessary termination precondition
- use a forward symbolic symbolic analysis to get the semantics of a loop body
- use Lagrangian relaxation and semidefinite programming to get the ranking function
|l|i| Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005
(c) P. Cousot, 2005

Example of termination of nested loops:
 Bubblesort outer loop

$+{ }_{+1 . i^{\prime},+1>=0} \quad$ Iterated forward/backward polyhedral analysis $+1 . n 0,-1 . \mathrm{i}^{\prime}-1>=0$ followed by forward analysis of the body:
$+1 . \mathrm{i}^{\prime}-1 . \mathrm{j}^{\prime}+1=0$
assume ($n 0=n$ \& $i>=0$ \& n>=i \& i <> 0);
$-1 . i+1 \cdot i^{\prime}+1=0 \quad\{n 0=n, i>=0, n 0>=i\}$
$-1 \cdot n+1 \cdot n 0^{\prime}=0$

$+1 \cdot n 0-1 \cdot n 0^{\prime}=0 \quad\{j 1=j, i=i 1, \mathrm{n} 0=\mathrm{n} 1, \mathrm{n} 0=\mathrm{n} 01, \mathrm{n} 0=\mathrm{n}, \mathrm{i}>=0, \mathrm{n} 0>=\mathrm{i}\}$
$+1 \cdot \mathrm{n} 0^{\prime}-1 \cdot \mathrm{n}^{\prime}=0$
j := 0;
while (j <> i) do
$j:=j+1$
od;
i := i - 1
$\{i+1=j, i+1=i 1, n 0=n 1, n 0=n 01, n 0=n, i+1>=0, n 0>=i+1\}$
termination (lmilab)
$r(n 0, n, i, j)=+24348786 . n 0+16834142 . n+100314562 . i+65646865$
Ilii
Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

- 112 -

C P. Cousot, 2005

Handling nondeterminacy

- By case analysis
- Same for concurrency by interleaving
- Same with fairness by nondeterministic interleaving with encoding of an explicit scheduler
|l|ī Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005

Termination of a fair parallel program

```
[[ while [(x>0)|(y>0) do x := x - 1] od ||
while [(x>0)|(y>0) do y := y - 1] od ]]
    {m>=1}}\leftarrow termination precondition determined by iterated
        if (s = 0) then
    t:= ?; forward/backward polyhedral analysis if (t=1) then
    assume (0<= t & t<= 1);
    s := ?;
    assume ((1 <= s) & (s <= m)).
    while ((x > 0) | (y > 0)) do
        if (t = 1) then
        x := x - 1
        else
            y := y - 1
        fi;
        s := s - 1;
```

 penbmi: \(r(x, y, m, s, t)=+1.000468 e+00 . x+1.000611 e+00 . y\)
 $+2.855769 e-02 . m-3.929197 e-07 . s+6.588027 e-06 . t+9.998392 e+03$

Termination of a concurrent program

while ($x+2<y$) do if ? $=0$ then $\mathrm{x}:=\mathrm{x}+1$ else if ?=0 then y := y - 1 else $\mathrm{x}:=\mathrm{x}+1$; y := y - 1
fi fi
od
$.537395 \mathrm{e}+00 . \mathrm{y}^{+}$

- 114 -
© P. Cousot, 2005
-

Relaxed Parametric Invariance Proof Method

Floyd's method for invariance

Given a loop precondition P, find an unkown loop invariant I such that:

- The invariant is initial:

$$
\forall x: P(x) \Rightarrow \underset{\uparrow}{I}(x)
$$

- The invariant is inductive:

$$
\forall x, x^{\prime}: \underset{\uparrow}{I}(x) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x, x^{\prime}\right) \Rightarrow \underset{\uparrow}{I}\left(x^{\prime}\right)
$$

IIliì Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 117 - © P. Cousot, 2005

Floyd's method for numerical programs

Find $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown parameters a, such that:

- The invariant is initial: $\exists \mu \in \mathbb{R}^{+}$:

$$
\forall x: I_{a}(x)-\mu \cdot P(x) \geq 0
$$

- The invariant is inductive: $\exists \lambda \in[0, N] \longrightarrow \mathbb{R}^{+}:$

$$
\begin{gathered}
\forall x, x^{\prime}: I_{a}\left(x^{\prime}\right)-\underset{\substack{\lambda_{0} \\
\uparrow}}{ } \cdot I_{a}(x)-\sum_{k=1}^{N} \lambda_{k} \cdot \sigma_{k}\left(x, x^{\prime}\right) \geq 0 \\
\text { bilinear in } \lambda_{0} \text { and } a
\end{gathered}
$$

Abstraction

- Express loop semantics as a conjunction of LMI constraints (by relaxation for polynomial semantics)
- Eliminate the conjunction and implication by Lagrangian relaxation
- Fix the form of the unkown invariant by parametric abstraction
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $118-\quad$ P. Cousot, 2005

Idea 8

Solve the bilinear matrix inequality (BMI) by semidefinite programming

Bilinear matrix inequality (BMI) solvers
$\exists x \in \mathbb{R}^{n}: \bigwedge_{i=1}^{m}\left(M_{0}^{i}+\sum_{k=1}^{n} x_{k} M_{k}^{i}+\sum_{k=1}^{n} \sum_{\ell=1}^{n} x_{k} x_{\ell} N_{k \ell}^{i} \succcurlyeq 0\right)$
[Minimizing $\left.x^{\top} Q x+c x\right]$
Two solvers available under Mathlab ${ }^{\text {© }}$

- PenBMI: M. Kočvara, M. Stingl
- bmibnb: J. Löfberg

Common interfaces to these solvers:

- Yalmip: J. Löfberg
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $121-\quad$ P. Cousot, 2005

Example: linear invariant

Program:

- Invariant:

```
i \(:=2 ; j:=0\);
while (??) do
    if (??) then
        \({ }^{i}:=i+4 \quad-\) Less natural than \(i-2 j-2 \geq 0\)
    else
        i : = i +2 ;
\(+2.14678 e-12 * i-3.12793 e-10 * j+0.486712>=0\)
- Alternative:
```

 \(j:=j+1\)
 fi
 od;
fi

- Determine parameters (a) by other methods (e.g. random interpretation)
- Use BMI solvers to check for invariance
|lili Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - 122 - © P. Cousot, 2005

Conclusion

Constraint resolution failure

- infeasibility of the constraints does not mean "non termination" or "non invariance" but simply failure
- inherent to abstraction!

Numerical errors

- LMI/BMI solvers do numerical computations with rounding errors, shifts, etc
- ranking function is subject to numerical errors
- the hard point is to discover a candidate for the ranking function
- much less difficult, when the ranking function is known, to re-check for satisfaction (e.g. by static analysis)
- not very satisfactory for invariance (checking only ???)

Related work

- Linear case (Farkas lemma):
- Invariants: Sankaranarayanan, Spima, Manna (CAV'03, SAS'04, heuristic solver)
- Termination: Podelski \& Rybalchenko (VMCAI'03, Lagrange coefficients eliminated by hand to reduce to linear programming so no disjunctions, no tests, etc)
- Parallelization \& scheduling: Feautrier, easily generalizable to nonlinear case
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005 \quad-125-\quad$ © P. Cousot, 2005

Seminal work

- LMI case, Lyapunov 1890, "an invariant set of a differential equation is stable in the sense that it attracts all solutions if one can find a function that is bounded from below and decreases along all solutions outside the invariant set".

THE END, THANK YOU

[^0]: ${ }^{2}$ equivalently, whose solution can be found in polynomial time on a non-deterministic machine.
 \|ili Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005-23-\quad$ © P. Cousot, 2005

[^1]: ${ }^{1}$ Recall the big O notation: if $f(x)$ and $g(x)$ are two rean functions then $f(x)$ is $\mathcal{O}(g(x))$ as $x \rightarrow+\infty$ if and only if there exist numbers x_{0} and M such that $|f(x)| \leq M|g(x)|$ for $x>x 0$.
 |lili Course 16.399: "Abstract interpretation", Tuesday, February $22,2005-22-\quad$ P. Cousot, 2005

[^2]: ${ }^{3}$ A few thousands variables, reported to solve a problem with a million variables and 10 million clauses.
 Ilii
 Course 16.399: "Abstract interpretation", Tuesday, February 22, $2005-31-\quad$ © P. Cousot, 2005

[^3]: $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ 0\end{array}\right]+0=0$ (C) P. Cousot, 2005

[^4]: 4 Since $Q \succcurlyeq 0, Q$ has a Cholesky decomposition L which is an upper triangular matrix L such that $Q=L^{\top} L$. It follows that $p(x)=z^{\prime} Q z=z^{\prime} L \mathcal{L}=(L z) L z=\left[L_{i,:} \cdot z\right]^{\top}\left[L_{i,:} \cdot z\right]=\sum_{i}\left(L_{i,:} \cdot z\right)^{2}$ (where \cdot is the vector dot product $x \cdot y=\sum_{i} x_{i} y_{i}$), proving that $p(x)$ is a sum of squares whence $\forall x: p(x) \geq 0$, which eliminates the universal quantification on x.
 Ilii
 Course 16.399: "Abstract interpretation", Tuesday, February 22, 2005 - $103-\quad$ © P. Cousot, 2005

