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Set theory

– In naïve set theory everything is a set, including the
empty set ;; So any collection of objects can be re-
garded as a single entity (i.e. a set)

– A set is a collection of elements which are sets (but
sets in sets in sets . . . cannot go for ever);

– In practice one consider a universe of objects (which
are not sets and called atoms) out of which are built
sets of objects, set of sets of objects, etc.
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Membership

– a 2 xmeans that the object a belongs to/is an element
of the set x

– a 62 x means that the object a does not belong to/is
not an element of the set x:

(a 62 x)
def
= :(a 2 x)
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Logical symbols

If P , Q, . . . are logical statements about sets, then we
use the following abbreviations:

– P ^Q abbreviates “P and Q”

– :P abbreviates “not P ”

– 8x : P abbreviates “forall x, P ”
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Additional notations are as follows:

P _Q
def
= :((:P ) ^ (:Q)) “P or Q”

P =) Q
def
= (:P ) _Q “P implies Q”

P () Q
def
= (P =) Q) ^ (Q =) P ) “P iff 1Q”

P _Q
def
= (P _Q) ^ :(P ^Q) “P exclusive or Q”

9x : P
def
= :(8x : (:P )) “there exists x

such that P ”

9a 2 S : P
def
= 9a : a 2 S ^ P

9a1; a2; : : : ; an 2 S : P
def
= 9a1 2 S : 9a2; : : : ; an 2 S : P

8a 2 S : P
def
= 8a : (a 2 S) =) P

8a1; a2; : : : ; an 2 S : P
def
= 8a1 2 S : 8a2; : : : ; an 2 S : P

1 if and only if
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Comparison of sets

x „ y
def
= 8a : (a 2 x =) a 2 y) inclusion

x « y
def
= y „ x superset

x = y
def
= (x „ y) ^ (y „ x) equality

x 6= y
def
= :(x = y) inequality

x  y
def
= (x „ y) ^ (x 6= y) strict inclusion

x ff y
def
= (x « y) ^ (x 6= y) strict superset

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 8 — [] ¨—���Iľ P. Cousot, 2005



Operations on sets

(z = x [ y)
def
= 8a : (a 2 z), (a 2 x _ a 2 y) union

(z = x \ y)
def
= 8a : (a 2 z), (a 2 x ^ a 2 y) intersection

(z = x n y)
def
= 8a : (a 2 z), (a 2 x ^ a 62 y) difference

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 9 — [] ¨—���Iľ P. Cousot, 2005

Partial order

„ is a partial order in that:

x „ x reflexivity
(x „ y ^ y „ x) =) (x = y) antisymetry
(x „ y) ^ (y „ z) =) (x „ z) transitivity

 is a strict partial order in that:

:(x  x) irrreflexivity
(x  y) ^ (y  z) =) (x  z) transitivity
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Set theoretic laws
Intuition provided by Venn diagrams but better proved
formally from the definitions.

x [ x = x
x \ x = x
x „ x [ y upper bound

x \ y „ x lower bound
x [ y = y [ x commutativity
x \ y = y \ x

(x „ z) ^ (y „ z) =) (x [ y) „ z lub 2

(z „ x) ^ (z „ y) =) z „ (x \ y) glb 3

2 lub: least upper bound.
3 glb: greatest lower bound
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x [ (y [ z) = (x [ y) [ z associativity
x \ (y \ z) = (x \ y) [ z
x [ (y \ z) = (x [ y) \ (x [ z) distributivity
x \ (y [ z) = (x \ y) [ (x \ z)

x „ y () (x [ y) = y
(x \ y) = x

x n y = x n (x \ y)
z n (z n x) = x
x „ y () (z n y) „ (z n x)

x [ (z n x) = z
z n (x [ y) = (z n x) \ (z n y)
z n (x \ y) = (z n x) [ (z n y)
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Empty set

– 8a : (a 62 ;) Definition of the empty set

– The emptyset is unique 4.

– Emptyset laws:

x n ; = x ; „ x
x n x = ; x [ ; = x

x \ (y n x) = ; x \ ; = ;

4 [8a:(a 62 x)] =) [(8a : (a 62 x) =) (a 62 ;)) ^ (8a : (a 62 ;) =) (a 62 x))] =) [(8a : (a 2 ;) =) (a 2
x)) ^ (8a : (a 2 x) =) (at 2 ;))] =) [; „ x ^ x „ ;] =) [x = ;].
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Notations for sets

– Definitions in extension:

- ; Empty set

- fag Singleton

- fa; bg Doubleton (a 6= b)

- fa1; : : : ; ang Finite set

- fa1; : : : ; an; : : :g Infinite set

– Definition in comprehension:
- fa j P (a)g Examples: x [ y = fa j a 2 x _ a 2 yg

x \ y = fa j a 2 x ^ a 2 yg
x n y = fa j a 2 x ^ a 62 yg
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Operations on set
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Pairs

– ha; bi
def
= ffag; fa; bgg

– ha; bi1 = a first projection 5

– ha; bi2 = b second projection 6

– x0, x1 undefined for non-pairs

5 Other notations are ha; bi:1, ha; bi # 1,. . . Formally ha; bi1
def

=
ST

ha; bi =
ST

ffag; fa; bgg =
S

fag = a.
6 Formally, if

S

ha; bi =
T

ha; bi then a = b whence ha; bi2
def

=
SS

ha; bi =
SS

ffbgg =
S

fbg = b. Otherwise
S

ha; bi 6=
T

ha; bi that is a 6= b, in which case ha; bi2
def

=
S

(
S

ha; bi n
T

ha; bi) =
S

(
S

ffag; fa; bgg n
T

ffag; fa; bgg) =
S

(
S

fa; bg n fag) =
S

fbg = b.
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Tuples

– ha1; : : : ; an+1i
def
= hha1; : : : ; ani; an+1i tuple

– ha1; : : : ; anii
def
= ai i = 1; : : : ; n projection

– Law:
ha1; : : : ; ani = ha

0
1; : : : ; a

0
ni , a1 = a

0
1^: : :^an = a

0
n
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Cartesian product

– xˆ y
def
= fha; bi j a 2 x ^ b 2 yg

– x1 ˆ : : :ˆ xn+1
def
= (x1 ˆ : : :ˆ xn)ˆ xn+1 so

x1ˆ : : :ˆxn = fha1; : : : ; ani j a1 2 x1^ : : :^an 2 xng

– xn
def
= xˆ : : :ˆ x
| {z }

n times

– x0
def
= ;
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Powerset

– }(x)
def
= fy j y „ xg powerset

–
S

y
def
= fa j 9x 2 y : a 2 xg Union

–
T

y
def
= fa j 8x 2 y : a 2 xg Intersection

– Laws:
x [ y =

[

fx; yg
\

fxg = x

x \ y =
\

fx; yg
[

; = ;
[

fxg = x
\

; = fa j trueg Universe
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Families (indexed set of sets)

– x = fyi j i 2 Ig I indexing set for the elements of x

–
S

i2I yi
def
=
S

x

= fa j 9i 2 I : a 2 yig

–
T

i2I yi
def
=
T

x
= fa j 8i 2 I : a 2 yig

– Laws:
8i 2 I : (xi „ y) =) (

[

i2I

xi „ y)

8i 2 I : (y „ xi) =) (y „
\

i2I

xi)
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[

i2I

(xi [ yi) = (
[

i2I

xi) [ (
[

i2I

yi)

\

i2I

(xi \ yi) = (
\

i2I

xi) \ (
\

i2I

yi)

[

i2I

(xi \ y) = (
[

i2I

(xi) \ y

\

i2I

(xi [ y) = (
\

i2I

(xi) [ y

z n
[

i2I

xi =
[

i2I

(z n xi)

z n
\

i2I

xi =
\

i2I

(z n xi)
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Relations
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Relations
– r „ x unary relation on x

– r „ xˆ y binary relation

– r „ x1 ˆ : : :ˆ xn n-ary relation

– Graphical representation of a relation r on a finite set
x:

r

› elements of the set x

a
› !̀

b
› ha; bi 2 r
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Notations for relations

– If r „ x1 ˆ : : :ˆ xn then we use the notation:

r(a1; : : : ; an)
def
= ha1; : : : ; ani 2 r

– In the specific case of binary relation, we also use:

a r b
def
= ha; bi 2 r example: 5 » 7

a
r
!̀ b

def
= ha; bi 2 r
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Properties of binary relations

Let r „ xˆ x be a binary relation on the set x

– 8a 2 x : (a r a) reflexive

– 8a; b 2 x : (a r b) () (b r a) symmetric

– 8a; b 2 x : (a r b ^ a 6= b) =) :(b r a) antisymmetric

– 8a; b 2 x : (a 6= b) =) (a r b _ b r a) connected

– 8a; b; c 2 x : (a r b) ^ (b r c) =) (a r c) transitive
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Operations on relations

– ; empty relation

– 1x
def
= fha; ai j a 2 xg identity

– r`1
def
= fhb; ai j ha; bi 2 rg inverse

– r1 ‹ r2
def
= fha; ci j 9b : ha; bi 2 r1 ^ hb; ci 2 r2g

composition

– set operations r1 [ r2, r1 \ r2, r1 n r2
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Reflexive transitive closure
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Reflexive transitive closure of a relation

Let r be a relation on x:

– r0
def
= 1x powers

– rn+1
def
= rn ‹ r (= r ‹ rn)

– r?
def
=
S

n2N r
n reflexive transitive closure

– r+
def
=
S

n2Nnf0g r
n strict transitive closure

so r? = r+ [ 1x
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Example of relation

t
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The reflexive transitive closure of the example relation

t?
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Equational definition of the reflexive

transitive closure
– t? = 1x [ t ‹ t

?

Proof.

t?

=
[

n2N

tn �def. t?�

= t0 [
[

n2Nnf0g

tn �isolating t0�
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= 1x [
[

k2N

tk+1 �def. t0 and k + 1 = n�

= 1x [
[

k2N

t ‹ tk �def. power�

= 1x [ t ‹ (
[

k2N

tk) �def. ‹�

= 1x [ t ‹ t
? �def. t?�
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– If r = 1x [ t ‹ r then t
? „ r

Proof. - t0 = 1x „ 1x [ t ‹ r = r so t
0 „ r

- if tn „ r then tn+1 = t ‹ tn 6=„ t ‹ r „ 1x [ t ‹ r = r
so tn+1 „ r

- By recurrence, 8n 2 N : (tn „ r)

- t? =
S

n2N t
n „ r
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– If follows that r? is the„-least solution of the equation:
X = 1x [ t ‹ X

7

– This least solution is unique.

Proof. - let r1 and r2 be two solutions to X = 1x[t ‹

X

- r1 „ r2 since r1 is the least solution

- r2 „ r1 since r2 is the least solution

- r1 = r2 by antisymmetry.

7 So called „-least fixpoint of F (X) = 1x [ t ‹ X , written lfp
„

F .
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Equivalences and partitions
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Equivalence relation
– A binary relation r on a set x is an equivalence relation
iff it is reflexive, symmetric and transitive

– Examples: = equality, ”[n] equivalence modulo n > 0

– [a]r
def
= fb 2 x j a r bg equivalence class

– Examples: [a]= = fag, [a]”[n] = fa+ k ˆ n j k 2 Ng

– x=r
def
= f[a]r j a 2 xg quotient of x byr

– Examples: x== = ffag j a 2 xg
8,

x=”[n] = f[0]”[n]; : : : ; [n` 1]”[n]g
9

8 which is isomorphic to x through a 7! fag.
9 which is isomorphic to f0; : : : ; n` 1g through a 7! [a]”[n].
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Partition
– P is a partition of x iff P is a family of disjoint sets
covering x:

- 8y 2 P : (y 6= ;)

- 8y; z 2 P : (y 6= z) =) (y \ z = ;)

- x =
[

P

x x x x

x

x
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Correspondence between partitions and

equivalences

– If P is a partition of x then
fha; bi j 9y 2 P : a 2 y ^ b 2 yg

is an equivalence relation

– Inversely, if r is an equivalence relation on x, then
f[a]r j a 2 xg

is a partition of x.
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Posets
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Partial order relation

– A relation r on a set x is a partial order if and only if
it is reflexive, antisymmetric and transitive.
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Examples of partial order relations

– » on N

– » on Z

– „ on }(x)

– ha; bi »2 hc; di
def
= (a » c) ^ (b » d) component-

wise/cartesian ordering

– ha; bi »‘ hc; di
def
= (a » c ^ a 6= c) _ (a = c ^ b » d)

lexicographic ordering

– a1 : : : an »a b1 : : : bm
def
= 9k : (0 » k » n) ^ (k »

m) ^ (a1 = b1 ^ : : : ak`1 = bk`1) ^ (ak » bk) alphabetic
ordering
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Notations for partial order relations

– Partial order relations are often denoted in infix form
by symbols such as », v, „, —, . . . , meaning:

» = fha; bi j a » bg

– The inverse is written –, w, «, �, . . . , meaning:
– = »`1 = fhb; ai j a » bg

– The negation is written 6», 6v, 6„, 6—, . . . , meaning:
6» = fha; bi j :(a » b)g

– The strict ordering is denoted <, @, , ffi, . . . , mean-
ing:

< = fha; bi j a » b ^ a 6= bg
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Posets

– A partially ordered set (poset for short) is a pair hx; »i
where:

- x is a set

- » ia a partial order relation on x

– if hx; »i is a poset and y „ x then hy; »i is also a
poset.

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 43 — [] ¨—���Iľ P. Cousot, 2005

Hasse diagram

– The Hasse diagram of a poset hx; »i is a graph with

- vertices x

- arcs ha; bi whenever a » b and :(9c 2 x : a < c < b)

- the arc ha; bi is oriented bottom up, that is drawn
with vertex a below vertex b whenever a » b

– Example: 8i 2 Z : ? v ? v i v i v > v > is
represented as:

������ � � � � ���������

�

⊥
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Encoding N with sets
In set theory, natural numbers are encoded as follows:

– ; 0

– f;g 1 = f0g

– f;; f;gg 2 = f0; 1g

– . . .

– Sn = n [ fng n+ 1 = f0; 1; : : : ; ng

– . . .

– w = f0; 1; : : : ; n; : : :g = N first infinite ordinal

The ordering is:

– n < m
def
= n 2 m so that 0 < 1 < 2 < 3 < : : : < n < : : : < !

– n » m
def
= (n < m) _ (n = m)
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Domain and range of a relation

Let r be a n+ 1-ary relation on a set x.

– dom(r)
def
= fa j 9b : ha; bi 2 rg domain

– rng(r)
def
= fb j 9b : ha; bi 2 rg range/codomain
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Functions
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Functions

– An n-ary function on a set x is an (n+1)-ary relation
r on x such that for every a 2 dom(r) there is at most
one b 2 rng(r) such that ha; bi 2 r:

(ha; bi 2 r ^ ha; ci 2 r) =) (b = c)

– Fonctional notation:
One writes r(a1; : : : ; an) = b for ha1; : : : ; an; bi 2 r
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Partial and total functions

– x 7! y is the set of (total) functions f such that
dom(f) = x and rng(f) „ y

– x n7! y is the set of (partial) functions f such that
dom(f) „ x and rng(f) „ y. So f(z) is undefined
whenever z 2 x n dom(f).
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Notations for functions
The function f such that:

– dom(f) = x, rng(f) „ y i.e. f 2 x 7! y

– 8a 2 x : ha; e(a)i 2 f 10

is denoted as:

– f(a) = e or f(a : x) = e functional notation

– f = –a . e or f = –a : x . e Church’s lambda notation

– f : a 2 x 7! e

– fa ! b; c ! d; e ! fg denotes the function g = fha; bi;
hc; di; he; fig such that g(a) = b, g(c) = d, g(e) = f ,
dom(g) = fa; c; eg and rng(g) = fb; d; fg.

10 e(a) is an expression depending upon variable a 2 x which result is in y.
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Operations on functions

– f = –a . k
def
= fha; ki j a 2 dom(f)g 11constant function

– 1x
def
= fha; ai j a 2 xg identity function

– f ‹ g
def
= –a . f(g(a)) function composition

– f — u
def
= f \ (uˆ rng(f)) function restriction

– f`1
def
= fhf(a); ai j a 2 dom(f)g function inverse 12

11 where k 2 rng(f).
12 a relation but in general not a function.
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Properties of functions
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Injective/one-to-one function
– A function f 2 x 7! y is injective/one-to-one if differ-
ent elements have different images:

8a; b 2 x : a 6= b =) f(a) 6= f(b)
() 8a; b 2 x : f(a) = f(b) =) a = b

– The following situation is excluded:

a

b f�a��f�b�
f

fx y

– Notation: f 2 x y, f 2 x n y
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Surjective/onto function
– A function f 2 x 7! y is surjective/onto function if
all elements of its range are images of some element of
their domain:

8b 2 y : 9a 2 x : f(a) = b

– The following situation is excluded:

f

x y

– Notation: f 2 x 7“ y, f 2 x n7“ y
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Bijective function

– A function is bijective iff it is both injective and sur-
jective

– Notation: f 2 x“ y

– A bijective function is a bijection, also called an iso-
morphism

– Two sets x and y are isomorphic iff there exists an
isomorphism i 2 x“ y
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Inverse of bijective functions
– If f 2 x“ y is bijective then its inverse is the function
f`1 defined by:

f`1 = fhb; ai j ha; bi 2 fg
thus:

- f`1 2 y“ x

- f`1 ‹ f = 1x

- f ‹ `1 = 1y f

f

x yf ��

f ��
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Cartesian product (revisited)

– Given a family fxi j i 2 Ig of sets, the cartesian prod-
uct of the family fxi j i 2 Ig is defined as:
Y

i2I

xi
def
= ff j f 2 I 7!

[

i2I

xi ^ 8i 2 I : f(i) 2 xig

– If 8i 2 I : xi = x then we write:

xI or I 7! x instead of
Y

i2I

xi

– For example xn = xˆ : : :ˆ x
| {z }

n times
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Characteristic functions of subsets

– The powerset }(x) of a set x is isomorphic to x 7! B
where the set of booleans is B = ftrue; falseg or f¸; ttg
or f0; 1g or fNO;YESg.

– The isomorphism is called the characteristic function:
c 2 }(x)“ (x 7! B)

c(y)
def
= –a 2 x . a 2 y where y „ x

c`1(y) = –f 2 x 7! B . fa 2 x j f(a) = ttg

– Useful to implement subsets of a finite set by bit vec-
tors

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 58 — [] ¨—���Iľ P. Cousot, 2005

Sequences
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Finite sequences

Given a set x:

– x
~0 def= f~›g where ~› 2 ; 7! x is the empty sequence of
length 0

– x~n
def
= f0; : : : ; n` 1g 7! x, finite sequences ff of length

jffj = n. The i-th element of ff 2 x~n is ff(i) abbreviated
ffi so ff = ff0ff1 : : : ffn`1

– x~?
def
=
[

n2N

x~n finite sequences

– x~+
def
=

[

n2Nnf0g

x~n finite nonempty sequences
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Infinite sequences

– x~!
def
= N 7! x infinite sequences ff of length jffj = !

where 8i 2 N : i < !

– x~/
def
= x~? [ x~! infinitary sequences

– x~1
def
= x~+ [ x~! nonempty infinitary sequences

– The i-th element of ff 2 x~1 is ff(i) abbreviated ffi so
ff = ff0ff1 : : : ffn; : : :
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Operations on sequences

Concatenation ´:

– ~› ´ ff
def
= ff ´ ~›

def
= ff

– ff ´ ff0
def
= ff whenever ff 2 x~!

– ff0 : : : ffn`1 ´ ff
0 = ff0 : : : ffn`1ff

0

– ff ´ ff0 is often denoted ffff0

– x ´ y
def
= fffff0 j ff 2 x ^ ff0 2 yg

�

�

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 62 — [] ¨—���Iľ P. Cousot, 2005

Junction _:

– ~› _ ff and ff _ ~› are undefined

– ff _ ff0
def
= ff whenever ff 2 x~!

– ff0 : : : ffn`1 _ ff0 = ff0 : : : ffn`2ff
0 is defined only if

ffn`1 = ff
0
0

– x _ y
def
= fff _ ff0 j ff 2 x^ff0 2 y^ff _ ff0 is well-definedg

�

�
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Set transformers
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Image (postimage) of a set by a function/relation

– Let r „ xˆ y and z „ x.

- The image (or postimage) of z by r is:

r[z]
def
= fb j 9a 2 z : ha; bi 2 rg

(which is also written post[r]z or even r(z))

– For f 2 x 7! y and z „ x, we have:

f [z] = f(z) = post[f ]z
def
= ff(a) j a 2 zg

f

f

f

x
y

z f�z�
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Preimage of a set by a function/relation

– Let r „ x ˆ y and z „ y. The inverse image (or
preimage) of z by r is:

r`1[z]
def
= fa j 9b 2 z : ha; bi 2 rg

= fa j 9b 2 z : hb; ai 2 r`1g = post[r`1]z

(which is also written pre[r]z or even r`1(z))

– For f 2 x 7! y and z „ u, we have:

f`1[z] = f`1(z) = pre[f ]z
def
= fa j f(a) 2 zg

r

r

r

x y

z�z�

r

r��
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Dual image of a set by a function/relation

– Let r „ xˆ y and z „ x.

gpost[r]z = :post[r](:z) �informally�

= y n post[r](x n z) �formally�

= :fb j 9a 2 (:z) : ha; bi 2 rg

= :fb j 9a : a 62 z ^ ha; bi 2 rg

= fb j 8a : a 2 z _ ha; bi 62 rg

= fb j 8a : (ha; bi 2 r) =) (a 2 z)g
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It is impossible to reach gpost(r)z from x by following r
without starting from z

x

r

r

r

r

r

post�r�z

y

z
�
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Dual preimage of a set by a function/relation

– Let r „ xˆ y and z „ y.

fpre[r]z = :pre[r](:z) �informally�

= x n pre[r](y n z) �formally�

= :fa j 9b 2 (:z) : ha; bi 2 rg

= :fa j 9b : b 62 z ^ ha; bi 2 rg

= fa j 8b : b 2 z _ ha; bi 62 rg

= fa j 8b : (ha; bi 2 r) =) (b 2 z)g
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Starting from fpre(r)z from x and following r, it is im-
possible to arrive outside z (or one must reach z)

x

r

r

r

r

r

pre�r�z

y

� z
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Properties of [dual [inverse]] images

– post[r](
[

i2I

xi) =
[

i2I

post[r](xi)

pre[r](
[

i2I

xi) =
[

i2I

pre[r](xi)

fpre[r](
\

i2I

xi) =
\

i2I

fpre[r](xi)

gpost[r](
\

i2I

xi) =
\

i2I

gpost[r](xi)

– post[r](x) „ y () x „ fpre[r](y)

pre[r](x) „ y () x „ gpost[r](y)
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– pre[r](x) = post[r`1](x)

post[r](x) = pre[r`1](x)

fpre[r](x) = gpost[r`1](x)
gpost[r](x) = fpre[r`1](x)

– Notice that if f 2 x “ y is bijective with inverse
f`1 then the two possible interpretations of f`1[z] as
f`1[z] = pre[f ](z) and f`1[z] = post[f`1]z do coin-
cide since pre[f ](z) = post[f`1]z.
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Induction

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 73 — [] ¨—���Iľ P. Cousot, 2005

Well-founded relation, woset

– Let hx; »i be a poset, and let y „ x. An element a of
y is a minimal element of y iff :(9b 2 y : b < a) 13

– A poset hx; »i is well-founded iff every nonempty sub-
set of x has a minimal element

– A woset hx; »i is a poset hx; »i such that the partial
ordering relation » is well-founded

– Example: hN; »i, counter-example: hZ; »i 14

13 where as usual a < b
def

= a » b ^ a 6= b.
14 Z „ Z has no minimal element since 8a 2 Z : 9b 2 Z : b < a.

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 74 — [] ¨—���Iľ P. Cousot, 2005

Characteristic property of wosets

– hx; »i is a woset iff there is no infinite strictly decreas-
ing sequence a 2 N 7! x (that is such that a0 > a1 >
a2 > : : :).
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Proof.
1) If hx; »i is not well-founded, their exists y „ x which is nonempty and has
no minimal element. So let a0 2 y. Since a0 is not minimal, we can find a1 2 y
such that a1 < a0. If we have built a0 > : : : > an in y then an is not minimal,
so we can find an+1 2 y such that an+1 < an. So proceeding inductively, we
can build an infinite strictly decreasing sequence a0 > : : : > an > : : : in y.

By contraposition 15, if hx; »i has no infinite strictly decreasing sequence
a0 > : : : > an > : : : then hx; »i is a woset

2) Reciprocally, if x has an infinite strictly decreasing sequence a0 > a1 > a2 >
: : : > an > : : : then y = fa0; a1; a2; : : : ; an; : : :g has no minimal element.

By contraposition, if x hx; »i is a woset then hx; »i has no infinite strictly

decreasing sequence a0 > : : : > an > : : :.

15 :P =) :Q iff P =) Q

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 76 — [] ¨—���Iľ P. Cousot, 2005



Proof by induction on a woset
If hx; »i is a woset, and P „ x. One wants to prove
x „ P (that is property P holds for all elements of x).
If one can prove property P for any element a of x

by assuming that P holds for strictly smaller elements
(which requires a direct proof for minimal elements) then
P holds for all elements of x.
Formally:

8a 2 x : (8b : (b < a) =) (b 2 P )) =) a 2 P

8a 2 x : a 2 P

16

16 The rule
P1; : : : ; Pn

c
with premiss P1; : : : ; Pn and conclusion c is a common notation for (

Vn
i=1 Pi) =) c.
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Proof. By reductio ad absurdum, assume the premiss
holds but not the conclusion. So 9a0 2 x : a0 62 P . By
the premiss, a0 62 P implies :(8b : (b < a0) =) (b 2 P ))
= 9a1 < a0 : a1 62 P . Assume we have built an < : : : <
a1 < a0 with all ai in x but not in P . Again by the
premiss, an 62 P implies 9an+1 < an : an+1 62 P . So we
can built a strictly decreasing infinite chain a0 > : : : >
an > : : : of elements of x, in contradiction with hx; »i
is a woset.
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Proof by recurrence

For hN; »i, the structural induction principle becomes
(writing P (n) for n 2 P that is “n has property P ”):

8n 2 N : (8k : (k < n) =) P (k)) =) P (n)

8n 2 N : P (n)
(1)

We can distinguish the case of 0 17:

P (0); 8n 2 N n f0g : (8k < n : P (k)) =) P (n)

8n 2 N : P (n)
(2)

17 and abbreviate 8k : (k < n) =) Q by 8k < n : Q.
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This is equivalent to the more classical:

P (0); 8n 2 N : P (n) =) P (n+ 1)

8n 2 N : P (n)
(3)

Proof. A proof done with (3) can also be done with (2)
since 8n 2 N n f0g : (8k < n : P (k)) =) P (n) implies
8n 2 N : P (n) =) P (n + 1)). Reciprocally, if a proof
has been done by (2), then by redefining P 0(n) = (8k <
n : P (k)) we can prove by (3) that 8n 2 N : P 0(n) which
implies the conclusion of (2), namely 8n 2 N : P (n).
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Example of recursive/structural definitions
h(n; k) = n ˜ k can be recursively defined on N as:

h(0; k) = 0
h(n; k) = k + h(n` 1; k) when n > 0

This can be written as

h(n; k) = f(n; k; h — fhn0; ki j n0 < ng)

where

f(0; k; g) = 0
f(n; k; g) = k + g(n` 1; k) when n > 0
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Recursive/Structural Definitions

Let hx; »i be a woset, y be a set, and
f 2 (xˆ y ˆ ((xˆ y) 7! y)) 7! y. Define

g(a; b)
def
= f(a; b; g — fha0; bi j a0 < ag)

then g 2 (xˆ y) 7! y is well-defined and unique.
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Proof.

(1) Define»2
def
= fhha0; bi; ha; bii j a0 » ag. Then hxˆ y; »2i

is a woset since otherwise the existence of ha0; b0i >
2

ha1; b1i >
2 : : : would imply b0 = b1 = : : : so ha0; bi –

2

ha1; bi and ha0; bi 6= ha1; bi, . . . implies a0 > a1 > : : :
in contradiction with the hyposthesis that hx; »i is a
woset.
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(2) Assuming that g(a0; b0) is well-defined for all ha0; b0i <2

ha; bi that is, by definition of »2, iff b = b0 and a0 < a
then g — fha0; bi j a0 < ag is well defined. It follows that
g(a; b) = f(a; b; g — fha0; bi j a0 < ag) is well-defined
by hypothesis that f is a total function. By structural
induction, we have proved g 2 (xˆy) 7! y is well-defined
for all ha; bi 2 xˆ y.

(3) If g0 also satisfies the definition and g0(a0; b0) = g(a; b)
for all ha0; b0i <2 ha; bi by induction hypothesis, then
obviously g — fha0; bi j a0 < ag = g0 — fha0; bi j a0 < ag so
g(a; b) = g0(a; b) proving g0 = g by structural induction.
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Cardinals

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 85 — [] ¨—���Iľ P. Cousot, 2005

Intuition on ordinals and cardinals

– The ordinals 1st, 2nd, 1rd, . . . and cardinals 1, 2, 3, . . .
elements do coincide for natural numbers

– This is not otherwise the case.

– For example if we consider the sets f0; 1; 2; : : :g and
f0; 1; 2; : : : ;+1g ordered by 0 < 1 < 2 < : : : < +1,
they are equipotent (by b(+1) = 0 and b(n) = n + 1
otherwise) hence have same cardinality 18 but the 1th

element does not exists in f0; 1; 2; : : :g so the two sets
are different as ordinals 19.

18 hence are equivalent when used as quantities for mesuring the “size”/number of elements of sets.
19 hence are different when used as positions for ranking elements of a set.
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Equipotence

– Two sets x and y are equipotent of and only if there
exists a bijection b 2 x“ y 20

– Examples:

- The set of even integers is equipotent to the set Z of integers (by b(n) =
2n)

- The set of odd integers is equipotent to the set Z of integers (by b(n) =
2n+ 1)

- The set of integers Z is equipotent to the set N of natural numbers, by

b(n)
def
= 2n` 1 if n > 0

b(n)
def
= `2n if n < 0

b(0)
def
= 0

20 The intuition is that “x and y have the same number of elements”.
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Properties of Equipotence

– Equipotence is an equivalence relation denoted ”c

– A set x is denumerable (also said countable) iff x ”c N
(otherwise uncountable)

– A set x is finite iff 9n 2 N : x ”c fi j i < ng (otherwise
infinite)

– Example: Z is denumerable and infinite
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Cardinality

– The cardinality jxj (also written Card(x)) of a set x is

jxj
def
= [x]”c

i.e., intuitively, a representative of the class of all sets
with “the same number of elements”

– jNj
def
= @0

21

21 @ is the hebrew aleph letter.
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The set of all real numbers is uncountable

Proof. (Cantor) Assume that R is countable, i.e., is the
range of some infinite sequence r(n), n 2 N. We show
that some r 2 R is missing in that enumeration.

Let a
(n)
0 :a

(n)
1 a

(n)
2 a

(n)
3 : : : be the decimal expansion of r(n).

Let bn = 1 if a
(n)
n = 0 and otherwise bn = 0. Let r be

the real number whose decimal expansion is 0:b1b2b3 : : :.

We have bn 6= a
(n)
n , hence 8n 2 N : r 6= r(n), for all n =

1, 2, 3, . . . , a contradiction.
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The set of all sets of naturals is uncountable

j}(N)j > jNj

Proof. The function f 2 N 7! }(N) defined by f(n) =
fng is injective, so jNj » j}(N)j.
Let s 2 N 7! N be a sequence sn; n 2 N of naturals.We
show that some S 2 }(N) is missing in that enumeration.
Define the set S = fn 2 N j n 62 sng. If n 2 sn then
n 62 S and if n 62 sn then n 2 S. So 8n : S 6= sn. This
shows that there is no surjective mapping of N onto }(N),
whence j}(N)j > jNj.
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Operations on cardinals

– Cardinal addition m + n = jA [ Bj where m = jA],
n = jBj and A \B = ; 22

– Cardinal multiplication mˆn = jAˆBj where m = jA]
and n = jBj

– Cardinal exponentiation m
n = jB 7! Aj where m = jA]

and n = jBj

– For example, 2n = j}(A)j where 2 = jBj and m = jA] 23

22 All these definitions are independant of the choice of A and B.
23 Using the characteristic function of subsets of A into the booleans B = ftt;¸g. This explains the notation
2A for }(A).
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Ordering on cardinals

– We write m » n where m = jA] and n = jBj iff there
exists an injective function of A into B 24

– A cardinal m is finite iff m < @0, otherwise it is infinite

24 Again this definition is independant of the choice of A and B.
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Ordinals
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Order-preserving maps

– Given two posets hx; »i and hy; —i, a map f 2 x 7! y
which is order-preserving (also called monotone, iso-
tone, . . . ) if and only if:

8a; b 2 x : (a » b) =) (f(a) » f(b))

– Example: –x 2 Z .x+ 1

– Counter-example: –x 2 Z . jxj 25

25 Here jxj is the absolute value of x.
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Order-isomorphism

– Two posets hx; »i hy; —i are order-isomorphic iff there
exists an order-preserving bijection b 2 x“ y

– Notation: hx; »i ”o hy; —i

– ”o is an equivalence relation on wosets
26.

26 Not true on posets sincee symmetry is lacking.
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Ordinals

– The equivalence classes [hx; »i]”o for wosets hx; »i
are called the ordinals. [hx; »i]”o is called the rank
(also called order-type) of the woset hx; »i

– We let O be the class 27 of all ordinals

– On O which is the quotient of wosets by ”o, ”o and
= do coincide (so we use =)

– the rank of f0; 1; : : : ; n` 1g with ordering

0 < 1 < 2 < : : : is written n so 0
def
= [h;; ;i]”o

– the rank of N is writen ! so !
def
= [hN; »i]”o

27 It is a class but not a set because sets are not large enough to contain all ordinals.
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Ordering on ordinals

– We have ‹ » ” whenever ‹ = [hx; »i]”o, ” = [hy; —i]”o
and there exists an order-preserving injection i 2 x
y 28

– Example: 0 < 1 < 2 < . . . < !

– An ordinal ‹ is finite if ‹ < ! and otherwise infinite

28 This definition does not depend upon the particular choice of hx; »i and hy; —i
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Wosets and ordinals
– The rank of hf˛ j ˛ < ¸g; »i is ¸ so ¸ ”o f˛ j ˛ < ¸g
that is ¸ = f˛ j ˛ < ¸g

– it follows that every woset is order-isomorphic to the
woset of all ordinals less than some given ordinal ¸:

[hx; »i]”o ”o ¸ ”o f˛ j ˛ < ¸g

– It follows that for any woset hx; —i there is an ordinal
¸ and an indexing x‚; ‚ 2 f˛ j ˛ < ¸g such that
hx; »i is order-isomorphic to hfx˛ j ˛ < ¸g; »

0i and
x‚ »

0 x‹ iff ‚ < ‹

– Otherwise stated, every woset is order isomorphic to
an ordinal
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– A well-founded set is ismorphic to an ordinal through
an order-preserving bijection, for example:

– This is the reason why ordinals are used in Manna-
Pnueli proof rule for while-loops instead of arbitrary
wosets in Floyd’s method.
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Operations on ordinals
– The addition of ¸ = [hx; »i]”o and ˛ = [hy; —i]”o
where x \ y = ; is ¸+ ˛ = [hx [ y; vi]”o with

a v b iff (a; b 2 x ^ a » b)
_ (a 2 x ^ b 2 y)
_ (a; b 2 y ^ a — y)

– Intuition:

– Addition is not commutative: ! = 1 + ! 6= ! + 1
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– Themultiplication of ¸ = [hx; »i]”o and ˛ = [hy; —i]”o
where x \ y = ; is ¸ˆ ˛ = [hxˆ y; »‘i]”o

29.

– Intuition:

29 Recall that »‘ is the lexicographic ordering: ha; bi »‘ ha
0; b0i iff (a < a0) _ ((a = a0) ^ (b < b0)).
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Successor and limit ordinal

– A successor ordinal is ¸ 2 O such that
9˛ : ¸ = ˛ + 1

() 9˛ : ¸ = ˛ [ f˛g
Otherwise it’s a limit ordinal 30.

– 0 is the first limit ordinal. ! is the first infinite limit
ordinal.

– Intuition: › = successor ordinal, = limit ordinal

...... ... ...

30 A limit ordinal – is such that 8¸ < – : 9˛ : ¸ < ˛ < – and so for a successor ordinal ”, 9¸ < ” : 8˛ :
:(¸ < ˛ < ”).
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Induction principal for ordinals

– As a special case of structural induction, we get:

P (0);
8˛ : P (˛) =) P (˛ + 1);
(8˛ < – : P (˛)) =) P (–) for all limit ordinals –

8¸ : P (¸)
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Properties of limit ordinals (Cont’d)

– The successor ¸+ 1 (also written S¸) of ¸ satisfies

¸+ 1

= f˛ j ˛ < ¸+ 1g

= f˛ j ˛ < ¸g [ f¸g

= ¸ [ f¸g
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Properties of limit ordinals (Cont’d)

– A limit ordinal – is such that if ‚ < – then
9˛ : ‚ < ˛ < –

– This is not true of ” < ” + 1 whence of successor
ordinals
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Properties of limit ordinals (Cont’d)

Assume that – is a limit ordinal, then:

–

= f‚ j ‚ < –g

= f‚ j ‚ < ˛ < –g �– is a limit ordinal�

=
[

ff‚ j ‚ < ˛g j ˛ < –g

=
[

f˛ j ˛ < –g �since ˛ = f‚ j ‚ < ˛g�

=
[

˛<–

˛
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Ordinals are well-ordered by 2

– If ¸ < ˛ then ˛ = f‚ j ‚ < ˛g so ¸ 2 ˛

– Reciprocally, if ¸ 2 ˛ then ˛ = f‚ j ‚ < ˛g implies
¸ 2 f‚ j ‚ < ˛g so ¸ < ˛

– we conclude that ¸ < ˛ () ¸ 2 ˛
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Ordinals are well-ordered by “„”

¸ < ˛

() 8‚ : (‚ < ¸) =) (‚ < ˛)

() 8‚ : (‚ 2 ¸) =) (‚ 2 ˛)

() ¸ „ ˛

So ordinals are 2-transitive in that 8¸ 2 ˛ : (¸ „ ˛).
Every member of an ordinal is 2-transitive.
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Proof by transfinite induction on ordinals

P (0);
8˛ : P (˛) =) P (˛ + 1);
8– limit ordinal : (8˛ < – : P (˛)) =) P (–)

8¸ : P (¸)
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Transfinite inductive definitions on ordinals

– g(0) = a

– g(˛ + 1) = f(˛; g(˛))

– g(–) = h(–; g — –) when – is a limit ordinal

is well defined and unique.
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More generaly, transfinite inductive definitions on ¸ have
the form:

– f 2 (¸ˆ y ˆ ((¸ˆ y) 7! y) 7! y)

– d(˛; b)
def
= f(˛; b; g — fh‚; bi j ‚ < ˛g)

and g 2 (¸ˆ y) 7! y is well-defined and unique.

Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005J���— 112 — [] ¨—���Iľ P. Cousot, 2005



Totally ordered set

– A total order (or “totally ordered set”, or “linearly or-
dered set”) is a partial order hx; »i such that any two
elements are comparable:

8a; b 2 x : (a » b) _ (b » a)
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Well ordered set

– A well ordered set is a well-founded total order.

– totally ordered set is well ordered.

– The set of integers Z, which has no least element, is
an example of a set that is not well ordered.
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Ordinal number (rank) of a well ordered set

– Let hx; »i be a well ordered set. We define the rank
 2 x 7! O as follows:

- (a) = 0 iff a the minimal element of x

- (a) =
S

b<a (b)

- (x) =
S

a2x (a)

�

�

�

�
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Burali-Forti Paradox

Assume O is a set. We have seen that:

1. Every well ordered set has a unique rank;

2. Every segment of ordinals (i.e., any set of ordinals arranged
in natural order which contains all the predecessors of each
of its elements) has a rank which is greater than any ordinal
in the segment, and

3. The set O of all ordinals in natural order is well ordered.

Then by statements (3) and (1), O has a rank, which is an ordinal
˛. Since ˛ is in O, it follows that ˛ < ˛ by (2), which is a
contradiction.

So the class O of ordinals is not a set 31.
31 It’s an ordinal O 2 O.
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Axiomatizations

Two main Axiomatizations of naïve set theory:

– Zermalo/Fraenkel

– Bernays/Gödel

that lead to a rigourous treatment of the notion of set/class
avoiding seeming paradoxes.
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Paul I. Bernays Adolf A. Fraenkel Ernst Zermelo
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THE END, THANK YOU

My MIT web site is http://www.mit.edu/~cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.
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