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Set theory

— In naive set theory everything is a set, including the
empty set 0; So any collection of objects can be re-
garded as a single entity (i.e. a set)

— A set is a collection of elements which are sets (but
sets in sets in sets ... cannot go for ever);

— In practice one consider a universe of objects (which
are not sets and called atoms) out of which are built
sets of objects, set of sets of objects, etc.
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Sets

« C
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Membership

Additional notations are as follows:

def

— a € z means that the object a belongs to/is an element PvQ = =((=P)A(-Q)) “Por @
of the set = P—Q o (-P)vQ “P implies Q”
— a ¢ = means that the object a does not belong to/is P& QE (P=QA(Q=P) “Pifi'Q
not an element of the set z: PvQ¥ (PVQ)AN-(PAQ) “P exclusive or Q”
(a & :B) déf —|(a € Z) dz: P o —(Vz : (—P)) “there exists
such that P”
JaeS:P¥3a:acSAP
day,a2,...,an € S: P o da; € S:das,...,an€S: P
VaES:PdgVa:(aES):P
Vai,a9,...,an € S: P o Va1 € S:Vag,...,an€ S: P
1 if and only if
IIiE  Course 16.390: “Abstract interpretation”, Tuesday March 15t, 2005 4 <0<l — 5 — | l— >[5 B © P. Cousot, 2005 IMiT Course 16.399: “Abstract interpretation”, Tuesday March 15t, 2005 4 <0<l — 7 — | M — > [5> B ©) P. Cousot, 2005
Logical symbols Comparison of sets
If P, @, ... are logical statements about sets, then we de
use the following abbreviations: zCy=Va:(a€z=acy) inclusion
— P N\ @Q abbreviates “P and Q" T2y oo yCzx superset
— —P abbreviates “not P” zT=y af (zCy)A(yCz) equality
— Vz : P abbreviates “forall z, P” 24y ¥ ~(z=1y) inequality

=
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zCyE (zCy)A(z#Y)
2oy E (@2y)A(z #v)

strict inclusion

strict superset

-
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Operations on sets
(z=zUy) défVa:(aEz)ﬁ(aE:CVaey) union

(z=zNy) o Va:(a €2) < (a €z Aa € y) intersection
(z=z\vy) défVa:(aEZ)@(aEz/\aQy) difference
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Set theoretic laws

Intuition provided by Venn diagrams but better proved
formally from the definitions.

2 lub: least upper bound.

3

-
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(

rUczx
TNz

T
TNy
TUYy
TNy

glb: greatest lower bound

T
T
TUYy
T
yUcz
yne

1NNl

(zC2)A(yC2) = (zUy)Cz
2Cz)AN(z2Cy)=2C(znNny) glb’

upper bound
lower bound
commutativity

lub?
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Partial order

C is a partial order in that:

zCz reflexivity
(zCyAyCz)=— (z=y) antisymetry
(zCy)AN(yCz)= (z C2) transitivity
C is a strict partial order in that:
—(z C z) irrreflexivity

(z Cy)AN(yCz)= (z C2) transitivity

-
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zU(yUz)
zN(yNz)
zU(ynNz)
zN(yUz)

TCy

—

—

(zUy)Uz
(zNy)Uz

associativity

(zUy)N(zUz) distributivity

(zNy)U(zNz)

(zUy)=vy
(zNny) ==z
z\(zNy)

" Tuesday March 15t, 2005 €< <J— 12 — | l— >[5 P © P. Cousot, 2005




Empty set
- Va: (a ¢ 0)

— The emptyset is unique*.

Definition of the empty set

— Emptyset laws:

=
I 1N

4 Va(agz) = [(Va:(agz)= (a€0)A(Va:(ag0) = (agz))] = [Va:(ac) = (ac
z))A(Va:(acz)= (at€)] =P CzAzCO = [z=0]
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Operations on set

« C
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Notations for sets

— Definitions in extension:

-0 Empty set
- {a} Singleton
- {a,b} Doubleton (a # b)

Finite set

{a1,...,an}
- {a1,...,an,...}
— Definition in comprehension:
- {a| P(a)} Examples: zUy = {a|aczVacy}
zNy={ala€zNha€y}
z\y={alaczhady}

Infinite set

Illil- Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 € 1 <]— 14 — [l — [> [& P> (©) P. Cousot, 2005

Pairs
def
- <CL, b> = {{a’}){a’)b}}
-(a,b);=a
- <a, b>2 =b
— z0, 1 undefined for non-pairs

first projection®
second projection®

5 Other notations are (a, b).1, (a, b) | 1,... Formally (a, b, = UN(a, b) = UN{{a}, {a,b}} = U{a} = a.

8 Formally, if | (a, b) = () {a, b) then a = b whence (a, by = UU (g, b) = JU{{b}} = U{b} = b. Otherwise
U(a, b) # N {a, b) that is a # b, in which case (a, b), = U(U(a, b)) \ N{a, b)) = UU{{a},{a,b}} \
M{{a}, {a, }}) = U(U{a, b} \ {a}) = U0} =&.

T
III" Course 16.399: “Abstract interpretation”, Tuesday March 15t, 2005 € <0 <] — 16 — [l — > [ P> (©) P. Cousot, 2005




Tuples

def

- <CL]_, SRR a”fH—1> = <<a’17 SR an>, an+1> tuple

1=1,...,n projection

L an) & ap=ajA..  Aap =ay,
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Powerset
- p(z) e {y|yCz} powerset
—Uydéf{aﬁla:Ey:aE:c} Union
-Ny £ {a|Vzey:accz} Intersection
— Laws:

TUY = U{xyy} ﬂ{x} =z
mﬁy:ﬂ{x,y} U@:@
U{w} =z ﬂ(Z) = {a | true} Universe
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Cartesian product

:r><yd§f{<a,b>|a€a:/\b€y}

def
— 1 X ...XZpy1l = (T1 X ... X Tp) X Tpy1 SO

z1X...X¢n ={(a1, ..., an) | a1 € TIA...Nap € Tp}

def
- =z x...Xzx

N———
n times

def
20 =

=
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Families (indexed set of sets)

-z ={y; |+ €I} I indexing set for the elements of =
def

—Uicrvi = Uz
={a|Fel:acy}
def
~Nic1% = Nz
={a|Viel:acy}
— Laws:
Viel:(z;Cy) = (| Jz Cy)
1€]
Viel:(yCaz)= (yC[)z)
1e]

T
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Uivw) = (J=z)u (U w)

icl icl icl
(@iny:) = (2N ([ %)
1€l 1€l 1€l
U@iny) = (J@)ny
1€l 1€l
(=z:ivy) = ([ (=) Uy
1€] 1€l
2\ Jzi=J@z\z)
icl icl
2\ [zi=[(z\z)
icl icl
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Relations
-rCz unary relation on z
-rCzxy binary relation
-rCzyX...X2Tp n-ary relation

— Graphical representation of a relation r on a finite set
z:

e |elements of the set =

o »¢ a b
I - o—e (a,b)Er
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Relations

« C

=
III" Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 € <€ <{— 22 — |l — > [> P © P. Cousot, 2005

Notations for relations

—Ifr Czy X... Xz, then we use the notation:

def
r(ai,...,an) = (a1, ..., ap) €7

— In the specific case of binary relation, we also use:

rbo% (a, b) € r example: 5 <7

ai>bd:ef(a,b>6r

T
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Properties of binary relations

Let »r C = X  be a binary relation on the set z
-Vacz:(ara) reflexive
-Va,bez:(ard) < (bra)
-Va,becz:(arbAa#b) = —(bra) antisymmetric
- Va,bez:(a#b)=—= (arbVbra)
- Va,b,cez:(arb)A(brc)=— (arc)

symmetric

connected
transitive

Illil- Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 € <€ <] — 25 — | Il — > > P ©) P. Cousot, 2005

Reflexive transitive closure

« C
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Operations on relations

-0 empty relation
1, ¥ {{(a, a) | a € =} identity
_p (b, a) | (a, b) € r} inverse

—riory E {{a,c) | Ib: (a, b) € 71 A, C) € o)
composition

set operations 1 Uy, 71 Nrg, 71\ 72
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Reflexive transitive closure of a relation

Let r be a relation on z:

-0y, pOWers
1l n g, (=ror™

- Unenm" reflexive transitive closure
— ot & Unemyor ™" strict transitive closure

sor*=rTUlg

T
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Example of relation

IS
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Eiquational definition of the reflexive

transitive closure

-t =1,Utotr
PRrROOF.
t*

= [J

neN

= t%u U "

neN\{0}

(def. t*§

lisolating 7§
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The reflexive transitive closure of the example relation
t*
“wom
@/,fﬁ;

:

e
-
?

Ty

=

Y
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_ 1:cUUtk+1
keN
= 1,0 | JtotF
keN
= 1,Uto (| J¢F)
keN
= 1, Utot"

{def. t° and k + 1 = n§
(def. power §

(def. of

(def. t*§

T
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—Ifr=1,Utorthent*Cr
PROOF.—tozlmglxutor:rsotogr
S if " Crthen "l =toth #£Ctor CigUtor =17
sot"tl Cr
- By recurrence, Vn € N: (" C r)

-t =Upent" Cr
[
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Eiquivalences and partitions

« C
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— If follows that 7* is the C-least solution of the equation:
X — 11; Ut o X 4
— This least solution is unique.

PROOF. - let r1 and 79 be two solutions to X = 1,Ut o
X

- r1 C r9 since 71 is the least solution
- r9 C r1 since 7y is the least solution
- 71 = r9 by antisymmetry.

[

7 So called C-least fixpoint of F(X)=1,Uto X, written Ifp" F.

=
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Elquivalence relation
— A binary relation r on a set z is an equivalence relation
iff it is reflexive, symmetric and transitive

— Examples: = equality, =[n] equivalence modulon > 0

—[a]rd:ef{bE:c\arb}

— Examples: [a]= = {a}, [a]lzfnj={a+k xn |k €N}

~z/r = {la)r | a € 2}

— Examples: z/— = {{a} | a € z}?,
z/=n) = {O0lzpn), - - [0 — Lzpm)}®

equivalence class

quotient of = byr

8 which is isomorphic to z through a — {a}.
9 which is isomorphic to {0, .. ., n — 1} through a — [a]=pn).

T
III" Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 € <€ <] — 36 — |l — > [ P ©) P. Cousot, 2005




Partition

— P is a partition of z iff P is a family of disjoint sets
covering z:
-VyeP:(y#0)
-Vy,z€P:(y#2)=— (yNnz=0)

-m:UP
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Posets

« C
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Correspondence between partitions and
equivalences

— If P is a partition of z then
{(a,b) | Iye P:acynbey}
1s an equivalence relation
— Inversely, if r is an equivalence relation on z, then

{la]r | a € z}
is a partition of z.
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Partial order relation

— A relation r on a set z is a partial order if and only if
it is reflexive, antisymmetric and transitive.
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Examples of partial order relations
- <onN
-<onZ
— C on p(z)
(@, b) <o (c, d) E (a<c)A(b< d)
wise/cartesian ordering
~{a,0) <ple,d) E(@a<cha#c)Via=cAb<d)

lexicographic ordering

component-

—a1...an <g b1 b E Tk (0< k< n)A(k <

m)A (a1 =b1A...ax_1 =bg_1) A (ag < bg) alphabetic
ordering
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Posets

— A partially ordered set (poset for short) is a pair (z, <)
where:
- z is a set
- < ia a partial order relation on z

—if (z, <) is a poset and y C z then (y, <) is also a
poset.
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Notations for partial order relations

— Partial order relations are often denoted in infix form
by symbols such as <, C, C, <, ..., meaning:
< ={{a, b) |a <t}
— The inverse is written >, I, D, >, ..., meaning:
>=<1={(ba)|a<t)
— The negation is written £, Z, ¢, A, ..., meaning:
Z = {{a, b) | ~(a < )}
— The strict ordering is denoted <, C, C, <, ..., mean-
ing:
<={{a,b)|a<bAa#b}

=
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Hasse diagram

— The Hasse diagram of a poset (z, <) is a graph with
- vertices z
- arcs (a, b) whenever a < band ~(dc€z:a<c<b)
- the arc (a, b) is oriented bottom up, that is drawn
with vertex a below vertex b whenever a < b
—Example: Vi e Z : L C L C+:C:C TLCTis
represented as:

T
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Encoding N with sets

In set theory, natural numbers are encoded as follows:

-0 0
- {0} 1 = {0}
- {0,103} 2= {0,1}
—:5:7;,:nu{n} n+1=4{0,1,...,n}

w={0,1,...,n,...} =N first infinite ordinal
The ordering is:
—n<md§fn€msothat0<l<2<3<...<n<...<w

—ngmd:ef(n<m)\/(n:m)

Iir Course 16.390: “Abstract interpretation”, Tuesday March 15t, 2005 « €0 <] — 45 — | B — [> [ B ©) P. Cousot, 2005

Functions

« C
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Domain and range of a relation

Let » be a n + 1l-ary relation on a set z.

— dom(7) o {a|3b: (a, b) er} domain

def

—rmg(r) = {b|3b: (a, b) € 7} range/codomain
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Functions

— An n-ary function on a set x is an (n + 1)-ary relation
r on x such that for every a € dom(r) there is at most
one b € rng(r) such that (a, b) € r:

((a, by erA{a,c)er)=— (b=c)

— Fonctional notation:

One writes r(ay,...,ap) =bfor (a1, ..., an, b) €7

T
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Partial and total functions

—z — y is the set of (total) functions f such that
dom(f) = z and rng(f) Cy

— ¢ vv y is the set of (partial) functions f such that
dom(f) C z and rng(f) C y. So f(z) is undefined
whenever z € z \ dom(f).
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Operations on functions

-f=Xak o {{(a, k) | a € dom(f)} "constant function
T (a, a) | a € z}
- f°9% X f(s(a))

= f 1w = £ (ux mg(f))

- F ¥ {(f(a), a) | a € dom(f)}

identity function
function composition
function restriction

function inverse 2

11 where k € rg(f).

12 3 relation but in general not a function.
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Notations for functions
The function f such that:
— dom(f) ==z, mg(f) Cyie. feEz—y
-Va€z:(a,ela)) € fl
is denoted as:
- f(a)=eor fla:z)=e
—f=Xa.eor f=MXa:z.e

- fracz—e

functional notation

Church’s lambda notation

- {a = b,c — d,e — f} denotes the function g = {(a, b),
(c, d), (e, f)} such that g(a) = b, g(c) = d, g(e) = f,
dom(g) = {a, ¢, e} and rng(g) = {b,d, f}.

e(a) is an expression depending upon variable a € z which result is in y.

10
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Properties of functions

« C
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Injective/one-to-one function
— A function f € z +— y is injective/one-to-one if differ-
ent elements have different images:

Va,bez:a#b=— f(a) # f(b)
— Va,becz: f(a)=f(b)=a=0b

— The following situation is excluded:

«Fa)=f0)
r f Y

— Notation: fez— vy, fez oy
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Bijective function

— A function is bijective iff it is both injective and sur-
jective
— Notation: fez »»y

— A bijective function is a bijection, also called an iso-
morphism

— Two sets z and y are isomorphic iff there exists an
isomorphism 2 € ¢ »» y

I Cousse 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 4 <1<]— 55 — | ll — > [> B © P. Cousot, 2005

Surjective/onto function

— A function f € z — y is surjective/onto function if
all elements of its range are images of some element of
their domain:

Voey:Jaczx: fla)=10

— The following situation is excluded:

X Y
— Notation: fez—»y, fEzr»y

=
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Inverse of bijective functions

- If f € z »» y is bijective then its inverse is the function
f~1 defined by:

f7h={, a) | (a, b) € £}

thus:
-1
-frey»z
- fT Lo f=1g
—1
- o =
f 1y f
X f—l Yy
Illil- Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 € €1 <] — 56 — | Il — > [ P ©) P. Cousot, 2005




Cartesian product (revisited)

— Given a family {z; | ¢ € I} of sets, the cartesian prod-
uct of the family {z; | « € I} is defined as:
[[e: S {flfelw|Jznviel: f(i) €z}
el el
- If Vo € I : z; = = then we write:
2! or I — z instead of H z;

1€l
— For example 2" = z x ... Xz
N —
n times
IIiE  Course 16.390: “Abstract interpretation”, Tuesday March 15t, 2005 4 <€ <] — 57 — | B — [> [ P ©) P. Cousot, 2005

Sequences

« C
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Characteristic functions of subsets

— The powerset gp(z) of a set z is isomorphic to z — B
where the set of booleans is B = {true, false} or {ff, tt}
or {0,1} or {NO, YES}.

— The isomorphism is called the characteristic function:
c€ p(z) > (z— B)

def
clyy=Xdaczacy
clly)=Afez—B.{acz|fla)=tt}

— Useful to implement subsets of a finite set by bit vec-
tors

where y C z

=
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Finite sequences

Given a set z:

0 {€} where € € 0 — z is the empty sequence of
length O
g {0,...,n— 1} — z, finite sequences o of length

|o| = n. The i-th element of o € " is o(7) abbreviated
0; 80 0 = 0901 ...0p—1

% def 7

T def =
-zt = U z"

finite sequences

finite nonempty sequences

T
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Infinite sequences

7 def . .
— 2% = N — z infinite sequences o of length |o| = w
where Vi e N: 1 <w
< def 3 . .
—z* =zFruz¥ infinitary sequences
o def T = e
—z® =ztuz¥ nonempty infinitary sequences

The i-th element of o € z® is o(4) abbreviated o; so
0 =0001...0p,...
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Junction —~:
— € ~0 and o —~ € are undefined
/ def (D’
— 0 ~0 = o whenever o €
-0g...0p_1 ~ 0 = 0g...0n_90" is defined only if
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Operations on sequences

Concatenation -:
N def _def
— €. 0c=0-€=0
def "
— 0.0 = o whenever o € z¥
- 09...0n-1-0 =o0qg...0p_10"
— ¢ - ¢’ is often denoted oo’
def
—z-y = {od' |oceznd ey}
000000 060000090
= 000000000000 0°
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Set transformers

« C
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Image (postimage) of a set by a function/relation
—Let rCzxyand 2z Crz.
- The image (or postimage) of z by r is:
riz] € {b|3acz:(a,b)er}
(which is also written post|r|z or even r(z))
—ForfEmr—wyandsz Wehave

f(z _post z = {f(a) |a €z}

Iir  Course 16.390: “Abstract interpretation”, Tuesday March 15t, 2005 4 €0 <] — 65 — | Il — [> [ B ©) P. Cousot, 2005

Dual image of a set by a function/relation

—LetrCzxyandz Cxz.
post[r]z = —post[r](—z) (informally §
= y \ post[r](z \ 2) (formally §
= —{b|Ja€(—2):(a, b)er}
= ~{b|Jda:agzA(a,b)cr}
= {b|Va:aczV(a,b) gr}
= {b|Va:((a,b)er) = (a € 2)}
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Preimage of a set by a function/relation
—Let »r C z xy and z C y. The inverse image (or
preimage) of z by r is:
_1[2] {a|TFbez:(a, b)er}
= {a|3b€z:(b a)cr !t} =postriz
(which is also written pre[r]z or even 7~1(2))
— For f € £ — y and 2z C u, we have:

e = £7(z) = prelflz  a| f(a) € 2}
N p—
I
GESE
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It is impossible to reach 1:3—5375(r)z from z by following r
without starting from 2

T
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Dual preimage of a set by a function/relation

—LetrCzxyand z Cy.
pre|r|z = —pre[r|(—z) (informally §

= 2\ prelr)(y\ 2)

= ~{a|3be(-2):(a, b)er}

= ~{a|3b:bf2zA(a,b)er}

= {a|Vb:bezVa,b) &r}

= {a|Vb:((a,b)er) = (b€E 2)}

(formally§
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Properties of [dual [inverse|| images

- post[r](|_J z:) = | post[r](z;)

icl icl
pre[r](| ) z;) = | prelr](z;)
1e] 1€l
pre[r]([) z;) = [ ) Brelr)(z;)
iel icl
post[r]([] z;) = (] post[r](z;)
icl i€l

- post[r](z) Cy — = Q!ZG[T](y)
pre[r|(z) Cy <= =z C post[r|(y)
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Starting from pre(r)z from z and following r, it is im-
possible to arrive outside z (or one must reach z)

=
III" Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 €4 <€ <I— 70 — | Il — > [> P ©) P. Cousot, 2005

- pre[r](z) = post[r~*](z)
post[r](z) = pre[r*](z)
pre[r)(z) = post[r~](z)
post[r](z) = pre[r '] (z)

— Notice that if f € z »» y is bijective with inverse
f~! then the two possible interpretations of f~![z] as
f~1[z] = pre[f](z) and f~![z] = post[f~1]z do coin-
cide since pre[f](z) = post[f~1z.

-
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Induction

« C
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Characteristic property of wosets

- (z, <) is a woset iff there is no infinite strictly decreas-
ing sequence a € N +— z (that is such that ag > a1 >
as > .. )
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Well-founded relation, woset

— Let (z, <) be a poset, and let y C z. An element a of
y is a minimal element of y iff ~(bcy:b<a)®

— A poset (z, <) is well-founded iff every nonempty sub-
set of z has a minimal element

— A woset (z, <) is a poset (z, <) such that the partial
ordering relation < is well-founded

— Example: (N, <), counter-example: (Z, <) ™

13 Whereasusua1a<bd:e‘a§b/\a76b.
14 Z C Z has no minimal element since Va € Z: I € Z : b < a.

=
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Proor.

1) If (z, <) is not well-founded, their exists y C z which is nonempty and has
no minimal element. So let ag € y. Since ap is not minimal, we can find a; € y
such that a; < ag. If we have built ag > ... > a, in y then a, is not minimal,
so we can find a,.; € y such that a,,1 < a,. So proceeding inductively, we
can build an infinite strictly decreasing sequence ag > ... >a, > ... in y.

By contraposition %, if (z, <) has no infinite strictly decreasing sequence
ag > ...>a, > ...then (z, <) is a woset

2) Reciprocally, if z has an infinite strictly decreasing sequence ag > a; > a2 >
...>ap > ... then y = {ag,a1,as,...,an,...} has no minimal element.

By contraposition, if z (z, <) is a woset then (z, <) has no infinite strictly

decreasing sequence ag > ... > Qp > .. .. [

5 p— Qif P=Q

T
III" Course 16.399: “Abstract interpretation”, Tuesday March 15t 2005 € <€ <] — 76 — |l — > [ P ©) P. Cousot, 2005




Proof by induction on a woset

If (z, <) is a woset, and P C z. One wants to prove
z C P (that is property P holds for all elements of z).

If one can prove property P for any element a of z
by assuming that P holds for strictly smaller elements
(which requires a direct proof for minimal elements) then
P holds for all elements of z.

Formally:

Vacz:(VW:(b<a)=— (be P))=—a€cP .

Vaczxz:a€P
16 P17 ceeydn . . . . . n
The rule with premiss P, ..., P, and conclusion c is a common notation for (A}, P) = c.
c
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Proof by recurrence

For (N, <), the structural induction principle becomes
(writing P(n) for n € P that is “n has property P”):

VneN: (Vk: (k <n)= P(k)) = P(n) )

Vn € N: P(n)
We can distinguish the case of 0'":
P(0), vn e N\ {0} : (Vk <n: P(k)) = P(n)
Vn € N: P(n)

(2)

17 and abbreviate Vk : (k<n)=QbyvVk<n:Q.
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PRoOOF. By reductio ad absurdum, assume the premiss
holds but not the conclusion. So dag € = : ag € P. By
the premiss, ag ¢ P implies =(Vb: (b < ag) = (b € P))
= da; < ag:a; € P. Assume we have built a, < ... <
a1 < ag with all a; in = but not in P. Again by the
premiss, an € P implies dap+1 < an : ant1 € P. So we

can built a strictly decreasing infinite chain ag > ... >
an > ... of elements of z, in contradiction with (z, <)
is a woset.

[

-
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This is equivalent to the more classical:

P(0), Vn e N: P(n Pn+1
(0), vn € (n) = P(n+1) 3

Vn € N: P(n)

PRrROOF. A proof done with (3) can also be done with (2)
since Vn € N\ {0} : (Vk < n : P(k)) = P(n) implies
Vn € N: P(n) = P(n + 1)). Reciprocally, if a proof
has been done by (2), then by redefining P'(n) = (Vk <
n : P(k)) we can prove by (3) that Vn € N : P/(n) which
implies the conclusion of (2), namely Vn € N : P(n).

[

-
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Example of recursive/structural definitions

h(n,k) = n x k can be recursively defined on N as:

h(0,k) = 0

h(n,k) = k+ h(n—1,k) when n > 0

This can be written as

h(n, k) = f(n,k,h T {(n, k) | n' <n})

where
f(0,k,g) =0
fn,k,9) =k+gn—1,k) when n > 0
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PRrRoOOF.

(1) Define <2 def {{{a, b), (a, b)) | a’ < a}. Then (z x y, §2>

is a woset since otherwise the existence of (ag, by) >2
(a1, b1) >2 ... would imply bg = by = ... so (ag, b) >2
(a1, b) and (ag, b) # (a1, b), ... implies ag > a1 > ...
in contradiction with the hyposthesis that (z, <) is a
woset.
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Recursive/Structural Definitions

Let (z, <) be a woset, y be a set, and
fe(xxyx((zxy)—y))—y. Define

9(a,b) < f(a,b,g 1 {(d', b) | & < a})

then g € (z x y) — y is well-defined and unique.

-
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(2) Assuming that g(a/,?) is well-defined for all (a’, b') <2

(a, b) that is, by definition of <?, if b =’ and a’ < a
then g [ {{a/, b) | a’ < a} is well defined. It follows that
g(a,b) = f(a,b,g | {{d/, b) | @’ < a}) is well-defined
by hypothesis that f is a total function. By structural
induction, we have proved g € (zxy) — vy is well-defined
for all (a, b) € z x y.

(3) If g’ also satisfies the definition and g'(a’,d') = g(a,bd)

for all (a/, ¥’) <2 (a, b) by induction hypothesis, then
obviously g [ {{(a’, ) |a’ <a} =¢' [ {{(d/, b) | ' < a} s0
g(a,b) = ¢'(a,b) proving g’ = g by structural induction.
]

-
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Cardinals

« C
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Elquipotence

— Two sets = and y are equipotent of and only if there
exists a bijection b e z »» y*
— Examples:
- The set of even integers is equipotent to the set Z of integers (by b(n) =
2n)
- The set of odd integers is equipotent to the set Z of integers (by b(n) =
2n+1)
- The set of integers Z is equipotent to the set N of natural numbers, by

b(n) € 2n—1 ifn>0
b(n) € —2n ifn<O

def

b(0) % 0

20 The intuition is that “z and y have the same number of elements”.
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Intuition on ordinals and cardinals

— The ordinals 15¢, 22d 174 and cardinals 1, 2, 3, ...
elements do coincide for natural numbers

— This is not otherwise the case.

— For example if we consider the sets {0,1,2,...} and
{0,1,2,...,400} ordered by 0 < 1 < 2 < ... < 400,
they are equipotent (by b(4+00) = 0 and b(n) =n +1
otherwise) hence have same cardinality ** but the coth
element does not exists in {0,1,2,...} so the two sets
are different as ordinals .

18 phence are equivalent when used as quantities for mesuring the “size”/number of elements of sets.
19 hence are different when used as positions for ranking elements of a set.

=
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Properties of Equipotence

— Equipotence is an equivalence relation denoted =,

— A set z is denumerable (also said countable) iff z = N
(otherwise uncountable)

— Aset zis finiteiff In € N:z = {¢ | 1 < n} (otherwise
infinite)

— Example: 7Z is denumerable and infinite

T
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Cardinality
— The cardinality |z| (also written Card(z)) of a set z is

| = [2]

i.e., intuitively, a representative of the class of all sets

with “the same number of elements”

- [N = %o

21 W is the hebrew aleph letter.
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The set of all sets of naturals is uncountable

e(N)| > [N|

Proor. The function f € N — p(N) defined by f(n) =
{n} is injective, so |N| < |p(N)|.

Let s € N — N be a sequence sp,n € N of naturals.We
show that some S € p(N) is missing in that enumeration.
Define the set S = {n € N | n &€ s,}. If n € s, then
n¢gSandifn ¢ s, thenn € S. SoVn: S # s,. This
shows that there is no surjective mapping of N onto p(N),
whence |p(N)| > |N|.

]
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The set of all real numbers is uncountable

ProoF. (Cantor) Assume that R is countable, i.e., is the
range of some infinite sequence r(n), n € N. We show
that some r € R is missing in that enumeration.

IRONONONG

.aj 'ay “as ’...bethe decimal expansion of r(n).

Let by, = 1 if a%n) = 0 and otherwise b, = 0. Let r be
the real number whose decimal expansion is 0.b1bgb3. . ..

We have by, # a%”), hence Vn € N:r # r(n), for all n =
1, 2, 3, ..., a contradiction.

[
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Operations on cardinals

— Cardinal addition m + n = |A U B| where m = |4],
n=|Bland ANB =0?

— Cardinal multiplication m x n = |A x B| where m = | A]
and n = | B|

— Cardinal exponentiation m" = |B — A| where m = |A]
and n = |B|

— For example, 2" = |p(A)| where 2 = |B| and m = |A4] *

22 All these definitions are independant of the choice of A and B.
23 Using the characteristic function of subsets of A into the booleans B = {tt, ff}. This explains the notation
24 for p(A).

-
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Ordering on cardinals

— We write m < n where m = |A] and n = |B| iff there
exists an injective function of A into B*

— A cardinal m is finite iff m < R, otherwise it is infinite

24 Again this definition is independant of the choice of A and B.
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Order-preserving maps

— Given two posets (z, <) and (y, <X),amap f €z y
which is order-preserving (also called monotone, iso-
tone, ...) if and only if:

Va,bez:(a<b)= (f(a) < f(b))

— Example: \e € Z.z + 1
— Counter-example: Az € Z . |z|*

25 Here |z| is the absolute value of z.

IMiT Course 16.399: “Abstract interpretation”, Tuesday March 15F, 2005 « <& <I — 95 — | Ml — [> > B> (©) P. Cousot, 2005

Ordinals

« C
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Order-isomorphism

— Two posets (z, <) (y, <) are order-isomorphic iff there
exists an order-preserving bijection b € = »» y

— Notation: (z, <) =, (y, <)
— =, is an equivalence relation on wosets *.

28 Not true on posets sincee symmetry is lacking.
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Ordinals

— The equivalence classes [(z, <)|=, for wosets (z, <)
are called the ordinals. [(z, <)]=, is called the rank
(also called order-type) of the woset (z, <)

— We let O be the class?” of all ordinals

— On O which is the quotient of wosets by =,, =, and
= do coincide (so we use =)

— the rank of {0,1,...,n — 1} with ordering
0<1<2<...iswritten n so 0% [(9, 0))=,

— the rank of N is writen w so w & [(N, =,

27 It is a class but not a set because sets are not large enough to contain all ordinals.
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Wosets and ordinals

— Therank of ({B|B < a}, <)isasoa=,{0 |06 < a}
that is a = {8 | B < o}

— it follows that every woset is order-isomorphic to the
woset of all ordinals less than some given ordinal a:
[z, )=, =0a=o{B|B <a}

— It follows that for any woset (z, <) there is an ordinal
a and an indexing zy,7 € {8 | B < a} such that
(z, <) is order-isomorphic to ({zg |8 < a}, <') and
zy < zsiffy <6

— Otherwise stated, every woset is order isomorphic to
an ordinal
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Ordering on ordinals

— We have § < nwheneverd = [(z, <)]=,, 7= [(y, 2)]|=,
and there exists an order-preserving injection 2 € z »—
y 28

— Example: 0 <1 <2< ... <w

— An ordinal § is finite if 6 < w and otherwise infinite

28 This definition does not depend upon the particular choice of (z, <) and (y, <)

-
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— A well-founded set is ismorphic to an ordinal through
an order-preserving bijection, for example:

-

— This is the reason why ordinals are used in Manna-
Pnueli proof rule for while-loops instead of arbitrary
wosets in Floyd’s method.

-
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Operations on ordinals
— The addition of o = [(z, <)|=, and B = [(y, 2)]=,
wherezNy=0isa+ 0 = [(zUy, C)|=, with

alb iff (a,bezNa<bd)
V(a€EzAbEY)
V(a,beyna=<y)
— Intuition - 38
oot LT
- T
a4+

— Addition is not commutative: w =14+ w #w+1
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Successor and limit ordinal

— A successor ordinal is a € O such that
d6:a=0+1
— JB:a=pU{B}

Otherwise it’s a limit ordinal *.

— 0 is the first limit ordinal. w is the first infinite limit
ordinal.

— Intuition: e = successor ordinal, m = limit ordinal

H o & & *--- H o o ¢ -~ B o o ¢ ‘r--

30 A limit ordinal A is such that Vo < A : 3B : o < B < X and so for a successor ordinal 7, Ja < 7 : V@ :
(e < B <m).
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— The multiplication of a = [(z, <)]=,and 8 = [(y, X)]=
wherezNy=0isax B = [(z Xy, <p)l=,*.

[¢]

— Intuition: 5
o

29 Recall that <, is the lexicographic ordering: (a, b) <, (@', ¥) iff (a < a’) V ((a = a’) A (b < V).

=
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Induction principal for ordinals

— As a special case of structural induction, we get:
P(0),
VB : P(B) = P(B+1),
(VB < X: P(B)) = P(X) for all limit ordinals A

Vo : P(a)

T
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Properties of limit ordinals
— The successor o + 1 (also written Sa) of o satisfies
a—+1
= {BlB<a+1}

= {616 <a}u{a}
= aU{a}
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Properties of limit ordinals (Cont’d)

Assume that A is a limit ordinal, then:

A

= {vlv <A}

= {y|7<B <A} (A is a limit ordinal§
= (J{{r1v<BYIB <A}

= | JBI1B<X} (since B = {7 |7 <B}S

:U,@

B<A
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Properties of limit ordinals

— A limit ordinal A is such that if v < A then
BBy <B <A
— This is not true of » < n + 1 whence of successor
ordinals
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Ordinals are well-ordered by €

-Ifa<fBthenB={y|y<B}soacp

— Reciprocally, if o € B then 8 = {v | 7 < B} implies
ac{y|ry<B}soa<p

— we conclude that a < 8 <— a €f

T
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Ordinals are well-ordered by “C”

a<pf
Vy:(y<a)= (y<B)
Vy:(y € a) = (7 €B)
aCp

So ordinals are &-transitive in that Voo € B : (a C ).
Every member of an ordinal is €-transitive.

[
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Transfinite inductive definitions on ordinals

-9(0)=a

- 9(B+1)=71(B,9(8))

- g(A) =h(N, g A) when X is alimit ordinal
is well defined and unique.
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Proof by transfinite induction on ordinals

P(0),
VB : P(B) = P(B+1),
VA limit ordinal : (V8 < A : P(8)) = P(})

Vo : P(a)
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More generaly, transfinite inductive definitions on o have
the form:

—fe(axyx((axy)—y)—vy)

- d(B,0) = f(B,b,9 I {{7, b) [ v <B})

and g € (a x y) — vy is well-defined and unique.
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Totally ordered set

— A total order (or “totally ordered set”, or “linearly or-
dered set”) is a partial order (z, <) such that any two

elements are comparable:
Va,bez:(a<b)V(b<a)
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Ordinal number (rank) of a well ordered set

— Let (z, <) be a well ordered set. We define the rank
p €z — O as follows:

- p(a) = 0 iff a the minimal element of z
- p(a) = Up<q p(0)
- p(z) = UaGa: p(a)
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Well ordered set

— A well ordered set is a well-founded total order.
— totally ordered set is well ordered.

— The set of integers Z, which has no least element, is
an example of a set that is not well ordered.
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Burali-Forti Paradox

Assume O is a set. We have seen that:
1. Every well ordered set has a unique rank;

2. Every segment of ordinals (i.e., any set of ordinals arranged
in natural order which contains all the predecessors of each
of its elements) has a rank which is greater than any ordinal
in the segment, and

3. The set O of all ordinals in natural order is well ordered.

Then by statements (3) and (1), O has a rank, which is an ordinal
B. Since B is in O, it follows that 8 < @ by (2), which is a
contradiction.

So the class O of ordinals is not a set*.

31 It’s an ordinal O € Q.
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Axiomatizations
Two main Axiomatizations of naive set theory:
— Zermalo/Fraenkel
— Bernays/Gddel

that lead to a rigourous treatment of the notion of set/class
avoiding seeming paradoxes.
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THE END

-

My MIT web site is http://www.mit.edu/~cousot/
The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.
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THE END, THANK YOU

«

My MIT web site is http://www.mit.edu/~ cousot/
The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Iir Course 16.390: “Abstract interpretation”, Tuesday March 15t, 2005 4 <& <] — 120 — | B — [> [ B ©) P. Cousot, 2005




