« Mathematical foundations:
(1) Naïve set theory »

Patrick Cousot

Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
cousot@mit.edu
www.mit.edu/~cousot
Course 16.399: "Abstract interpretation"
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Set theory

- In naïve set theory everything is a set, including the empty set \emptyset; So any collection of objects can be regarded as a single entity (i.e. a set)
- A set is a collection of elements which are sets (but sets in sets in sets ... cannot go for ever);
- In practice one consider a universe of objects (which are not sets and called atoms) out of which are built sets of objects, set of sets of objects, etc.

Georg F. Cantor

- Reference
[1] Cantor, G., 1932, "Gesammelte Abhandlungen mathematischen und philosohischen Inhalts", E. Zermelo, Ed. Berlin: Springer-Verlag.
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, $20054 \nless \triangleleft-3-\mid$ ■ $-\triangleright ゆ$ © P. Cousot, 2005

Sets

Membership

$-a \in x$ means that the object a belongs to/is an element of the set x
$-a \notin x$ means that the object a does not belong to/is not an element of the set x :

$$
(a \notin x) \stackrel{\text { def }}{=} \neg(a \in x)
$$

Logical symbols

If P, Q, \ldots are logical statements about sets, then we use the following abbreviations:

- $P \wedge Q$ abbreviates " P and Q "
$-\neg P$ abbreviates "not P "
$-\forall x: P$ abbreviates "forall x, P "

Additional notations are as follows:

$$
\begin{aligned}
& P \vee Q \stackrel{\text { def }}{=} \neg((\neg P) \wedge(\neg Q)) \quad \text { " } P \text { or } Q \text { " } \\
& P \Longrightarrow Q \stackrel{\text { def }}{=}(\neg P) \vee Q \quad \text { " } P \text { implies } Q \text { " } \\
& P \Longleftrightarrow Q \stackrel{\text { def }}{=}(P \Longrightarrow Q) \wedge(Q \Longrightarrow P) \quad \text { " } P \text { iff }{ }^{1} Q \text { " } \\
& P \vee Q \stackrel{\text { def }}{=}(P \vee Q) \wedge \neg(P \wedge Q) \quad \text { " } P \text { exclusive or } Q \text { " } \\
& \exists x: P \stackrel{\text { def }}{=} \neg(\forall x:(\neg P)) \quad \text { "there exists } x \\
& \text { such that } P \text { " } \\
& \exists a \in S: P \stackrel{\text { def }}{=} \exists a: a \in S \wedge P \\
& \exists a_{1}, a_{2}, \ldots, a_{n} \in S: P \stackrel{\text { def }}{=} \exists a_{1} \in S: \exists a_{2}, \ldots, a_{n} \in S: P \\
& \forall a \in S: P \stackrel{\text { def }}{=} \forall a:(a \in S) \Longrightarrow P \\
& \frac{\forall a_{1}, a_{2}, \ldots, a_{n} \in S: P \stackrel{\text { def }}{=} \forall a_{1} \in S: \forall a_{2}, \ldots, a_{n} \in S: P \text { and only if }}{=}
\end{aligned}
$$

Comparison of sets

$x \subseteq y \stackrel{\text { def }}{=} \forall a:(a \in x \Longrightarrow a \in y) \quad$ inclusion
$x \supseteq y \stackrel{\text { def }}{=} y \subseteq x$
superset
$x=y \underset{\text { def }}{=}(x \subseteq y) \wedge(y \subseteq x) \quad$ equality
$x \neq y \stackrel{\text { def }}{=} \neg(x=y) \quad$ inequality
$x \subset y \stackrel{\text { def }}{=}(x \subseteq y) \wedge(x \neq y) \quad$ strict inclusion
$x \supset y \stackrel{\text { def }}{=}(x \supseteq y) \wedge(x \neq y) \quad$ strict superset

Operations on sets

$$
\begin{aligned}
& (z=x \cup y) \stackrel{\text { def }}{=} \forall a:(a \in z) \Leftrightarrow(a \in x \vee a \in y) \text { union } \\
& (z=x \cap y) \stackrel{\text { def }}{=} \forall a:(a \in z) \Leftrightarrow(a \in x \wedge a \in y) \text { intersection } \\
& (z=x \backslash y) \stackrel{\text { def }}{=} \forall a:(a \in z) \Leftrightarrow(a \in x \wedge a \notin y) \text { difference }
\end{aligned}
$$

Partial order

\subseteq is a partial order in that:

$$
\begin{array}{cl}
x \subseteq x & \text { reflexivity } \\
(x \subseteq y \wedge y \subseteq x) \Longrightarrow(x=y) & \text { antisymetry } \\
(x \subseteq y) \wedge(y \subseteq z) \Longrightarrow(x \subseteq z) & \text { transitivity }
\end{array}
$$

\subset is a strict partial order in that:

$$
\begin{array}{ll}
& \neg(x \subset x) \\
(x \subset y) \wedge(y \subset z) \Longrightarrow(x \subset z) & \text { irrreflexivity } \\
\text { transitivity }
\end{array}
$$

Set theoretic laws
Intuition provided by Venn diagrams but better proved formally from the definitions.

$$
\begin{aligned}
x \cup x & =x \\
x \cap x & =x \\
x & \subseteq x \cup y \\
x \cap y & \subseteq x \\
x \cup y & =y \cup x \\
x \cap y & =y \cap x
\end{aligned}
$$

$$
x \subseteq x \cup y \quad \text { upper bound }
$$

lower bound
commutativity

$$
(x \subseteq z) \wedge(y \subseteq z) \Longrightarrow(x \cup y) \subseteq z \quad \operatorname{lub}^{2}
$$

$$
(z \subseteq x) \wedge(z \subseteq y) \Longrightarrow z \subseteq(x \cap y) \quad \mathrm{glb}^{3}
$$

${ }^{2}$ lub: least upper bound.
3 glb : greatest lower bound

$$
\begin{array}{rll}
x \cup(y \cup z) & =(x \cup y) \cup z & \text { associativity } \\
x \cap(y \cap z) & =(x \cap y) \cup z & \\
x \cup(y \cap z) & =(x \cup y) \cap(x \cup z) & \text { distributivity } \\
x \cap(y \cup z) & =(x \cap y) \cup(x \cap z) & \\
x \subseteq y & \Longleftrightarrow(x \cup y)=y & \\
& (x \cap y)=x & x \backslash(x \cap y) \\
x \backslash y & =x \backslash(z \backslash x) & =x \\
x \subseteq y & \Longleftrightarrow(z \backslash y) \subseteq(z \backslash x) \\
x \backslash(z \backslash x) & = & \\
x \backslash(x \cup y) & =(z \backslash x) \cap(z \backslash y) \\
z \backslash(x \cap y) & = & (z \backslash x) \cup(z \backslash y)
\end{array}
$$

Empty set

$-\forall a:(a \notin \emptyset)$
Definition of the empty set

- The emptyset is unique ${ }^{4}$.
- Emptyset laws:

$$
\begin{aligned}
x \backslash \emptyset & =x & \emptyset \subseteq x \\
x \backslash x & =\emptyset & x \cup \emptyset=x \\
x \cap(y \backslash x) & =\emptyset & x \cap \emptyset=\emptyset
\end{aligned}
$$

Operations on set

Notations for sets

- Definitions in extension:
- \emptyset
$-\{a\}$
- $\{a, b\}$
$-\left\{a_{1}, \ldots, a_{n}\right\}$
$-\left\{a_{1}, \ldots, a_{n}, \ldots\right\}$
Empty set
Singleton
Doubleton ($a \neq b$)
Finite set
Infinite set
- Definition in comprehension:
- $\{a \mid P(a)\} \quad$ Examples: $x \cup y=\{a \mid a \in x \vee a \in y\}$
$x \cap y=\{a \mid a \in x \wedge a \in y\}$
$x \backslash y=\{a \mid a \in x \wedge a \notin y\}$

Pairs
$-\langle a, b\rangle \stackrel{\text { def }}{=}\{\{a\},\{a, b\}\}$
$-\langle a, b\rangle_{1}=a$
$-\langle a, b\rangle_{2}=b$

- x_{0}, x_{1} undefined for non-pairs

[^0]
Tuples

$-\left\langle a_{1}, \ldots, a_{n+1}\right\rangle \stackrel{\text { def }}{=}\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle, a_{n+1}\right\rangle \quad$ tuple
$-\left\langle a_{1}, \ldots, a_{n}\right\rangle_{i} \stackrel{\text { def }}{=} a_{i} \quad i=1, \ldots, n$ projection

- Law:
$\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \Leftrightarrow a_{1}=a_{1}^{\prime} \wedge \ldots \wedge a_{n}=a_{n}^{\prime}$

```
\(-\wp(x) \stackrel{\text { def }}{=}\{y \mid y \subseteq x\}\)
powerset
- \(\bigcup y \stackrel{\text { def }}{=}\{a \mid \exists x \in y: a \in x\}\)
- \(\bigcap y \xlongequal{\text { def }}\{a \mid \forall x \in y: a \in x\}\)
Union
Intersection
- Laws:
\begin{tabular}{rlrl}
\(x \cup y\) & \(=\bigcup\{x, y\}\) & & \(\bigcap\{x\}\) \\
\(x \cap y\) & \(=\bigcap\{x, y\}\) & & \\
\(\bigcup \emptyset \emptyset\) & \(=\emptyset\) & \\
\(\bigcup\{x\}\) & \(=x\) & & \(\bigcap \emptyset=\{a \mid\) true \(\}\)
\end{tabular}\(\quad\) Universe
```


Families (indexed set of sets)
$-x=\left\{y_{i} \mid i \in I\right\} \quad I$ indexing set for the elements of x
$-\bigcup_{i \in I} y_{i} \stackrel{\text { def }}{=} \cup x$

$$
=\left\{a \mid \exists i \in I: a \in y_{i}\right\}
$$

$-\bigcap_{i \in I} y_{i} \stackrel{\text { def }}{=} \cap x$

$$
=\left\{a \mid \forall i \in I: a \in y_{i}\right\}
$$

- Laws:

$$
\begin{aligned}
& \forall i \in I:\left(x_{i} \subseteq y\right) \Longrightarrow\left(\bigcup_{i \in I} x_{i} \subseteq y\right) \\
& \forall i \in I:\left(y \subseteq x_{i}\right) \Longrightarrow\left(y \subseteq \bigcap_{i \in I} x_{i}\right)
\end{aligned}
$$

$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\nless \triangleleft-20-\mid$ ■ $-\triangleright ゆ$ © P. Cousot, 2005

$$
\begin{aligned}
\bigcup_{i \in I}\left(x_{i} \cup y_{i}\right) & =\left(\bigcup_{i \in I} x_{i}\right) \cup\left(\bigcup_{i \in I} y_{i}\right) \\
\bigcap_{i \in I}\left(x_{i} \cap y_{i}\right) & =\left(\bigcap_{i \in I} x_{i}\right) \cap\left(\bigcap_{i \in I} y_{i}\right) \\
\bigcup_{i \in I}\left(x_{i} \cap y\right) & =\left(\bigcup_{i \in I}\left(x_{i}\right) \cap y\right. \\
\bigcap_{i \in I}\left(x_{i} \cup y\right) & =\left(\bigcap_{i \in I}\left(x_{i}\right) \cup y\right. \\
z \backslash \bigcup_{i \in I} x_{i} & =\bigcup_{i \in I}\left(z \backslash x_{i}\right) \\
z \backslash \bigcap_{i \in I} x_{i} & =\bigcap_{i \in I}\left(z \backslash x_{i}\right)
\end{aligned}
$$

Illiil Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 〔 $\varangle \triangleleft-21-\mid \llbracket-\triangleright ゅ$ © P．Cousot， 2005

Relations

$-r \subseteq x$
$-r \subseteq x \times y$
$-r \subseteq x_{1} \times \ldots \times x_{n}$

Relations

－Graphical x ：

$\boldsymbol{\| l i l}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-23-1$ ■ $-\triangleright ゆ$（C）Cousot， 2005

Notations for relations

－If $r \subseteq x_{1} \times \ldots \times x_{n}$ then we use the notation：

$$
r\left(a_{1}, \ldots, a_{n}\right) \stackrel{\text { def }}{=}\left\langle a_{1}, \ldots, a_{n}\right\rangle \in r
$$

－In the specific case of binary relation，we also use：

$$
\begin{aligned}
a r b & \stackrel{\text { def }}{=}\langle a, b\rangle \in r \quad \text { example: } 5 \leq 7 \\
a \xrightarrow{r} b & \stackrel{\text { def }}{=}\langle a, b\rangle \in r
\end{aligned}
$$

Properties of binary relations

Let $r \subseteq x \times x$ be a binary relation on the set x
$-\forall a \in x:(a r a)$
reflexive
$-\forall a, b \in x:(a r b) \Longleftrightarrow(b r a) \quad$ symmetric
$-\forall a, b \in x:(a r b \wedge a \neq b) \Longrightarrow \neg(b r a)$ antisymmetric
$-\forall a, b \in x:(a \neq b) \Longrightarrow(a r b \vee b r a) \quad$ connected
$-\forall a, b, c \in x:(a r b) \wedge(b r c) \Longrightarrow(a r c) \quad$ transitive

$$
\boldsymbol{\|} \boldsymbol{i \boldsymbol { I }} \text { Course 16.399: "Abstract interpretation", Tuesday March 1st, } 2005 \measuredangle \nleftarrow \triangleleft-25-\| \text { ■ }-\triangleright ゆ \text { P. Cousot, } 2005
$$

Operations on relations

$-\emptyset$
empty relation
$-1_{x} \stackrel{\text { def }}{=}\{\langle a, a\rangle \mid a \in x\}$
identity
$-r^{-1} \stackrel{\text { def }}{=}\{\langle b, a\rangle \mid\langle a, b\rangle \in r\} \quad$ inverse
$-r_{1} \circ r_{2} \stackrel{\text { def }}{=}\left\{\langle a, c\rangle \mid \exists b:\langle a, b\rangle \in r_{1} \wedge\langle b, c\rangle \in r_{2}\right\}$ composition
－set operations $r_{1} \cup r_{2}, r_{1} \cap r_{2}, r_{1} \backslash r_{2}$

Reflexive transitive closure

Reflexive transitive closure of a relation
Let r be a relation on x ：

Let r be a relation on x ：	
$-r^{0} \stackrel{\text { def }}{=} 1_{x}$	powers
$-r^{n+1} \stackrel{\text { def }}{=} r^{n} \circ r\left(=r \circ r^{n}\right)$	
$-r^{\star} \stackrel{\text { def }}{=} \bigcup_{n \in \mathbb{N}} r^{n}$	reflexive transitive closure
$-r^{+} \stackrel{\text { def }}{=} \bigcup_{n \in \mathbb{N} \backslash\{0\}} r^{n}$	strict transitive closure
so $r^{\star}=r^{+} \cup 1_{x}$	

Example of relation

The reflexive transitive closure of the example relation

Equational definition of the reflexive transitive closure
$-t^{\star}=1_{x} \cup t \circ t^{\star}$
Proof．

$$
\begin{align*}
& t^{\star} \\
= & \bigcup_{n \in \mathbb{N}} t^{n} \\
= & t^{0} \cup \bigcup_{n \in \mathbb{N} \backslash\{0\}} t^{n}
\end{align*}
$$

2isolating $t^{0} \mathrm{~S}$
$\boldsymbol{\| l i l}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-31-\mid$ ■ $-\triangleright ゆ$（C）Cousot， 2005

$$
\begin{array}{lr}
=\mathbf{1}_{x} \cup \bigcup_{k \in \mathbb{N}} t^{k+1} & \text { 2def. } t^{0} \text { and } k+1=n \varsigma \\
=\mathbf{1}_{x} \cup \bigcup_{k \in \mathbb{N}} t \circ t^{k} & \text { 2def. power } \int \\
=\mathbf{1}_{x} \cup t \circ\left(\bigcup_{k \in \mathbb{N}} t^{k}\right) & \text { 2def. } \circ\} \\
=\mathbf{1}_{x} \cup t \circ t^{\star} & \text { 2def. } t^{\star} \int
\end{array}
$$

－If $r=1_{x} \cup t \circ r$ then $t^{\star} \subseteq r$
PROOF．－$t^{0}=1_{x} \subseteq 1_{x} \cup t \circ r=r$ so $t^{0} \subseteq r$
－if $t^{n} \subseteq r$ then $t^{n+1}=t \circ t^{n} \neq \subseteq t \circ r \subseteq 1_{x} \cup t \circ r=r$ so $t^{n+1} \subseteq r$
－By recurrence，$\forall n \in \mathbb{N}:\left(t^{n} \subseteq r\right)$
－$t^{\star}=\bigcup_{n \in \mathbb{N}} t^{n} \subseteq r$
\square

Equivalences and partitions

｜lili Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-33-\mid \boldsymbol{\square}-\triangleright ゆ$ P．Cousot， 2005
－If follows that r^{\star} is the \subseteq－least solution of the equation：

$$
X=1_{x} \cup t \circ X^{7}
$$

－This least solution is unique．
Proof．－let r_{1} and r_{2} be two solutions to $X=1_{x} \cup t \circ$ X
－$r_{1} \subseteq r_{2}$ since r_{1} is the least solution
－$r_{2} \subseteq r_{1}$ since r_{2} is the least solution
－$r_{1}=r_{2}$ by antisymmetry．
\square

[^1]｜l｜il Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\measuredangle \triangleleft-35-\mid$－- ゆ © P．Cousot， 2005

Equivalence relation

－A binary relation r on a set x is an equivalence relation iff it is reflexive，symmetric and transitive
－Examples：＝equality，$\equiv[n]$ equivalence modulo $n>0$
$-[a]_{r} \stackrel{\text { def }}{=}\{b \in x \mid a r b\} \quad$ equivalence class
－Examples：$[a]_{=}=\{a\},[a]_{\equiv[n]}=\{a+k \times n \mid k \in \mathbb{N}\}$
$-x / r \stackrel{\text { def }}{=}\left\{[a]_{r} \mid a \in x\right\} \quad$ quotient of x byr
－Examples：$x /==\{\{a\} \mid a \in x\}^{8}$ ，
$x / \equiv[n]=\left\{[0]_{\equiv[n]}, \ldots,[n-1]_{\equiv[n]}\right\}^{9}$

[^2]
Partition

- P is a partition of x iff P is a family of disjoint sets covering x :
- $\forall y \in P:(y \neq \emptyset)$
- $\forall y, z \in P:(y \neq z) \Longrightarrow(y \cap z=\emptyset)$
$-x=\bigcup P$

$\boldsymbol{\| l i l}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\varangle \triangleleft-37-\mid \boldsymbol{\square}-\triangleright ゆ$ P. Cousot, 2005

Correspondence between partitions and equivalences

- If P is a partition of x then

$$
\{\langle a, b\rangle \mid \exists y \in P: a \in y \wedge b \in y\}
$$

is an equivalence relation

- Inversely, if r is an equivalence relation on x, then $\left\{[a]_{r} \mid a \in x\right\}$
is a partition of x.

Partial order relation

- A relation r on a set x is a partial order if and only if it is reflexive, antisymmetric and transitive.

Examples of partial order relations

$-\leq$ on \mathbb{N}
$-\leq$ on \mathbb{Z}
$-\subseteq$ on $\wp(x)$
$-\langle a, b\rangle \leq_{2}\langle c, d\rangle \stackrel{\text { def }}{=}(a \leq c) \wedge(b \leq d) \quad$ componentwise/cartesian ordering
$-\langle a, b\rangle \leq_{\ell}\langle c, d\rangle \stackrel{\text { def }}{=}(a \leq c \wedge a \neq c) \vee(a=c \wedge b \leq d)$ lexicographic ordering
$-a_{1} \ldots a_{n} \leq_{a} b_{1} \ldots b_{m} \stackrel{\text { def }}{=} \exists k:(0 \leq k \leq n) \wedge(k \leq$ $m) \wedge\left(a_{1}=b_{1} \wedge \ldots a_{k-1}=b_{k-1}\right) \wedge\left(a_{k} \leq b_{k}\right)$ alphabetic ordering

[^3]
Notations for partial order relations

- Partial order relations are often denoted in infix form by symbols such as $\leq, \sqsubseteq, \subseteq, \preceq, \ldots$, meaning:

$$
\leq=\{\langle a, b\rangle \mid a \leq b\}
$$

- The inverse is written $\geq, \sqsupseteq, \supseteq, \succeq, \ldots$, meaning:

$$
\geq=\leq^{-1}=\{\langle b, a\rangle \mid a \leq b\}
$$

- The negation is written $\not \subset, \not \subset, \not \subset, \npreceq, \ldots$, meaning:

$$
\not \subset=\{\langle a, b\rangle \mid \neg(a \leq b)\}
$$

- The strict ordering is denoted $<, \sqsubset, \subset, \prec, \ldots$, meaning:

$$
<=\{\langle a, b\rangle \mid a \leq b \wedge a \neq b\}
$$

Posets

- A partially ordered set (poset for short) is a pair $\langle x, \leq\rangle$ where:
- x is a set
- \leq ia a partial order relation on x
- if $\langle x, \leq\rangle$ is a poset and $y \subseteq x$ then $\langle y, \leq\rangle$ is also a poset.
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\varangle \triangleleft-43-\mid \boldsymbol{\square}-\triangleright ゆ$ P. Cousot, 2005

Hasse diagram

- The Hasse diagram of a poset $\langle x, \leq\rangle$ is a graph with - vertices x
$-\operatorname{arcs}\langle a, b\rangle$ whenever $a \leq b$ and $\neg(\exists c \in x: a<c<b)$
- the arc $\langle a, b\rangle$ is oriented bottom up, that is drawn with vertex a below vertex b whenever $a \leq b$
- Example: $\forall i \in \mathbb{Z}: \perp \sqsubseteq \perp \sqsubseteq i \sqsubseteq i \sqsubseteq \top \sqsubseteq \top$ is
represented as:

Encoding \mathbb{N} with sets

In set theory，natural numbers are encoded as follows：
$-\emptyset$
$-\{\emptyset\} \quad 1=\{0\}$
$-\{\emptyset,\{\emptyset\}\} \quad 2=\{0,1\}$
－．．．
$-S n=n \cup\{n\} \quad n+1=\{0,1, \ldots, n\}$
－．．．
$-w=\{0,1, \ldots, n, \ldots\}=\mathbb{N}$
first infinite ordinal
The ordering is
$-n<m \stackrel{\text { def }}{=} n \in m$ so that $0<1<2<3<\ldots<n<\ldots<\omega$
$-n \leq m \stackrel{\text { def }}{=}(n<m) \vee(n=m)$

Domain and range of a relation

Let r be a $n+1$－ary relation on a set x ．
$\begin{array}{lr}-\operatorname{dom}(r) \stackrel{\text { def }}{=}\{a \mid \exists b:\langle a, b\rangle \in r\} & \text { domain } \\ -\operatorname{rng}(r) \stackrel{\text { def }}{=}\{b \mid \exists b:\langle a, b\rangle \in r\} \quad \text { range／codomain }\end{array}$

Functions

Functions

－An n－ary function on a set x is an $(n+1)$－ary relation r on x such that for every $a \in \operatorname{dom}(r)$ there is at most one $b \in \operatorname{rng}(r)$ such that $\langle a, b\rangle \in r$ ：

$$
(\langle a, b\rangle \in r \wedge\langle a, c\rangle \in r) \Longrightarrow(b=c)
$$

－Fonctional notation：
One writes $r\left(a_{1}, \ldots, a_{n}\right)=b$ for $\left\langle a_{1}, \ldots, a_{n}, b\right\rangle \in r$

Partial and total functions

$-x \mapsto y$ is the set of（total）functions f such that $\operatorname{dom}(f)=x$ and $\operatorname{rng}(f) \subseteq y$
$-x \mapsto y$ is the set of（partial）functions f such that $\operatorname{dom}(f) \subseteq x$ and $\operatorname{rng}(f) \subseteq y$ ．So $f(z)$ is undefined whenever $z \in x \backslash \operatorname{dom}(f)$ ．

Operations on functions

－$f=\lambda a \cdot k \stackrel{\text { def }}{=}\{\langle a, k\rangle \mid a \in \operatorname{dom}(f)\}^{11}$ constant function
$-1_{x} \stackrel{\text { def }}{=}\{\langle a, a\rangle \mid a \in x\} \quad$ identity function
$-f \circ g \stackrel{\text { def }}{=} \lambda a \cdot f(g(a)) \quad$ function composition
－$f \upharpoonright u \stackrel{\text { def }}{=} f \cap(u \times \operatorname{rng}(f)) \quad$ function restriction
$-f^{-1} \stackrel{\text { def }}{=}\{\langle f(a), a\rangle \mid a \in \operatorname{dom}(f)\} \quad$ function inverse ${ }^{12}$
${ }^{11}$ where $k \in \operatorname{rng}(f)$ ．
12 a relation but in general not a function

Notations for functions

The function f such that：
$-\operatorname{dom}(f)=x, \operatorname{rng}(f) \subseteq y$ i．e．$f \in x \mapsto y$
$-\forall a \in x:\langle a, e(a)\rangle \in f^{10}$
is denoted as：
－$f(a)=e$ or $f(a: x)=e$
functional notation
－$f=\lambda a \cdot e$ or $f=\lambda a: x \cdot e$ Church＇s lambda notation
－$f: a \in x \mapsto e$
－$\{a \rightarrow b, c \rightarrow d, e \rightarrow f\}$ denotes the function $g=\{\langle a, b\rangle$ ， $\langle c, d\rangle,\langle e, f\rangle\}$ such that $g(a)=b, g(c)=d, g(e)=f$ ， $\operatorname{dom}(g)=\{a, c, e\}$ and $\operatorname{rng}(g)=\{b, d, f\}$.

[^4]

Properties of functions

Injective/one-to-one function

- A function $f \in x \mapsto y$ is injective/one-to-one if different elements have different images:

$$
\begin{aligned}
& \forall a, b \in x: a \neq b \Longrightarrow f(a) \neq f(b) \\
\Longleftrightarrow & \forall a, b \in x: f(a)=f(b) \Longrightarrow a=b
\end{aligned}
$$

- The following situation is excluded:

- Notation: $f \in x \mapsto y, f \in x \mapsto y$

Surjective/onto function

- A function $f \in x \mapsto y$ is surjective/onto function if all elements of its range are images of some element of their domain:

$$
\forall b \in y: \exists a \in x: f(a)=b
$$

- The following situation is excluded:

- Notation: $f \in x \mapsto y, f \in x \mapsto y$
|l|i| Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\triangleleft \triangleleft-54-$ $-\triangleright ゆ$ © P. Cousot, 2005

Bijective function

- A function is bijective iff it is both injective and surjective
- Notation: $f \in x \longmapsto y$
- A bijective function is a bijection, also called an isomorphism
- Two sets x and y are isomorphic iff there exists an isomorphism $i \in x \longmapsto y$

Inverse of bijective functions

- If $f \in x \longmapsto y$ is bijective then its inverse is the function f^{-1} defined by:

$$
f^{-1}=\{\langle b, a\rangle \mid\langle a, b\rangle \in f\}
$$

thus:

- $f^{-1} \in y \mapsto x$
- $f^{-1} \circ f=1_{x}$
$-f \circ{ }^{-1}=1_{y}$

Cartesian product (revisited)

- Given a family $\left\{x_{i} \mid i \in I\right\}$ of sets, the cartesian product of the family $\left\{x_{i} \mid i \in I\right\}$ is defined as:

$$
\prod_{i \in I} x_{i} \stackrel{\text { def }}{=}\left\{f \mid f \in I \mapsto \bigcup_{i \in I} x_{i} \wedge \forall i \in I: f(i) \in x_{i}\right\}
$$

- If $\forall i \in I: x_{i}=x$ then we write:

$$
x^{I} \text { or } I \mapsto x \text { instead of } \prod_{i \in I} x_{i}
$$

- For example $x^{n}=\underbrace{x \times \ldots \times x}_{n \text { times }}$

Sequences

Characteristic functions of subsets

- The powerset $\wp(x)$ of a set x is isomorphic to $x \mapsto \mathbb{B}$ where the set of booleans is $\mathbb{B}=\{$ true, false $\}$ or $\{\mathrm{ff}, \mathrm{tt}\}$ or $\{0,1\}$ or $\{N O, Y E S\}$.
- The isomorphism is called the characteristic function: $c \in \wp(x) \longmapsto(x \mapsto \mathbb{B})$

$$
\begin{array}{ll}
c(y) \stackrel{\text { def }}{=} \lambda a \in x \cdot a \in y & \text { where } y \subseteq x \\
c^{-1}(y)=\lambda f \in x \mapsto \mathbb{B} \cdot\{a \in x \mid f(a)=\mathbb{t}\} &
\end{array}
$$

- Useful to implement subsets of a finite set by bit vectors

Finite sequences

Given a set x :
$-x \overrightarrow{0} \stackrel{\text { def }}{=}\{\vec{\epsilon}\}$ where $\vec{\epsilon} \in \emptyset \mapsto x$ is the empty sequence of length 0
$-x^{\vec{n}} \stackrel{\text { def }}{=}\{0, \ldots, n-1\} \mapsto x$, finite sequences σ of length $|\sigma|=n$. The i-th element of $\sigma \in x^{\vec{n}}$ is $\sigma(i)$ abbreviated σ_{i} so $\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{n-1}$
$-x^{\vec{*}} \stackrel{\text { def }}{=} \bigcup_{n \in \mathbb{N}} x^{\vec{n}} \quad$ finite sequences
$-x^{+} \stackrel{\text { def }}{=} \bigcup_{n \in \mathbb{N} \backslash\{0\}} x^{\vec{n}} \quad$ finite nonempty sequences
$\boldsymbol{\| l i l}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\varangle \triangleleft-60-\mid$ ■ $-\triangleright ゆ$ (C) Cousot, 2005

Infinite sequences

$-x^{\vec{\omega}} \stackrel{\text { def }}{=} \mathbb{N} \mapsto x$ infinite sequences σ of length $|\sigma|=\omega$ where $\forall i \in \mathbb{N}: i<\omega$
$-x^{\vec{\alpha}} \stackrel{\text { def }}{=} x^{\star} \cup x^{\vec{\omega}} \quad$ infinitary sequences
$-x^{\vec{\infty}} \stackrel{\text { def }}{=} x^{\overrightarrow{+}} \cup x^{\vec{\omega}} \quad$ nonempty infinitary sequences
－The i－th element of $\sigma \in x^{\vec{\infty}}$ is $\sigma(i)$ abbreviated σ_{i} so $\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{n}, \ldots$

Junction \frown
$-\vec{\epsilon} \frown \sigma$ and $\sigma \frown \vec{\epsilon}$ are undefined
$-\sigma \frown \sigma^{\prime} \stackrel{\text { def }}{=} \sigma$ whenever $\sigma \in x^{\vec{\omega}}$
$-\sigma_{0} \ldots \sigma_{n-1} \frown \sigma^{\prime}=\sigma_{0} \ldots \sigma_{n-2} \sigma^{\prime}$ is defined only if $\sigma_{n-1}=\sigma_{0}^{\prime}$
$-x \frown y \stackrel{\text { def }}{=}\left\{\sigma \frown \sigma^{\prime} \mid \sigma \in x \wedge \sigma^{\prime} \in y \wedge \sigma \frown \sigma^{\prime}\right.$ is well－defined $\}$

Operations on sequences

Concatenation ：
$-\vec{\epsilon} \cdot \sigma \stackrel{\text { def }}{=} \sigma \cdot \vec{\epsilon} \stackrel{\text { def }}{=} \sigma$
$-\sigma \cdot \sigma^{\prime} \stackrel{\text { def }}{=} \sigma$ whenever $\sigma \in x^{\vec{\omega}}$
$-\sigma_{0} \ldots \sigma_{n-1} \cdot \sigma^{\prime}=\sigma_{0} \ldots \sigma_{n-1} \sigma^{\prime}$
$-\sigma \cdot \sigma^{\prime}$ is often denoted $\sigma \sigma^{\prime}$
$-x \cdot y \stackrel{\text { def }}{=}\left\{\sigma \sigma^{\prime} \mid \sigma \in x \wedge \sigma^{\prime} \in y\right\}$

Set transformers

\odot

｜llif Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-64-\int-\triangleright ゆ ゝ$ P．Cousot， 2005

Image (postimage) of a set by a function/relation

- Let $r \subseteq x \times y$ and $z \subseteq x$.
- The image (or postimage) of z by r is:

$$
r[z] \xlongequal{\text { deff }}\{b \mid \exists a \in z:\langle a, b\rangle \in r\}
$$

(which is also written post $[r] z$ or even $r(z)$)

- For $f \in x \mapsto y$ and $z \subseteq x$, we have:

Preimage of a set by a function/relation

- Let $r \subseteq x \times y$ and $z \subseteq y$. The inverse image (or preimage) of z by r is:

$$
\begin{aligned}
r^{-1}[z] \text { def } & =\{a \mid \exists b \in z:\langle a, b\rangle \in r\} \\
& =\left\{a \mid \exists b \in z:\langle b, a\rangle \in r^{-1}\right\}=\operatorname{post}\left[r^{-1}\right] z
\end{aligned}
$$

(which is also written pre $[r] z$ or even $r^{-1}(z)$)

- For $f \in x \mapsto y$ and $z \subseteq u$, we have:

Dual image of a set by a function/relation

- Let $r \subseteq x \times y$ and $z \subseteq x$.

$$
\begin{array}{rlrl}
\widetilde{\operatorname{post}[r] z} & =\neg \operatorname{post}[r](\neg z) & \text { 2informally }{ }^{\prime} & \\
& =y \backslash \operatorname{post}[r](x \backslash z) & \text { (formally }{ }^{\text {S }} \\
& =\neg\{b \mid \exists a \in(\neg z):\langle a, b\rangle \in r\} & \\
& =\neg\{b \mid \exists a: a \notin z \wedge\langle a, b\rangle \in r\} & \\
& =\{b \mid \forall a: a \in z \vee\langle a, b\rangle \notin r\} & \\
& =\{b \mid \forall a:(\langle a, b\rangle \in r) \Longrightarrow(a \in z)\} &
\end{array}
$$

It is impossible to reach $\widetilde{\operatorname{post}}(r) z$ from x by following r without starting from z

Dual preimage of a set by a function/relation

- Let $r \subseteq x \times y$ and $z \subseteq y$.

$$
\begin{aligned}
\widetilde{\operatorname{pre}}[r] z & =\neg \operatorname{pre}[r](\neg z) \\
& =x \backslash \operatorname{pre}[r](y \backslash z) \\
& =\neg\{a \mid \exists b \in(\neg z):\langle a, b\rangle \in r\} \\
& =\neg\{a \mid \exists b: b \notin z \wedge\langle a, b\rangle \in r\} \\
& =\{a \mid \forall b: b \in z \vee\langle a, b\rangle \notin r\} \\
& =\{a \mid \forall b:(\langle a, b\rangle \in r) \Longrightarrow(b \in z)\}
\end{aligned}
$$

¿informally 5
(formally)

Starting from $\widetilde{\operatorname{pre}}(r) z$ from x and following r, it is impossible to arrive outside z (or one must reach z)

$$
\begin{array}{r}
-\operatorname{pre}[r](x)=\operatorname{post}\left[r^{-1}\right](x) \\
\operatorname{post}[r](x)=\operatorname{pre}\left[r^{-1}\right](x) \\
\widetilde{\operatorname{pr}}[r](x)=\widetilde{\operatorname{post}}\left[r^{-1}\right](x) \\
\widetilde{\operatorname{post}}[r](x)=\widetilde{\operatorname{pre}}\left[r^{-1}\right](x)
\end{array}
$$

- Notice that if $f \in x \longmapsto y$ is bijective with inverse f^{-1} then the two possible interpretations of $f^{-1}[z]$ as $f^{-1}[z]=\operatorname{pre}[f](z)$ and $f^{-1}[z]=\operatorname{post}\left[f^{-1}\right] z$ do coincide since $\operatorname{pre}[f](z)=\operatorname{post}\left[f^{-1}\right] z$.

Induction

Characteristic property of wosets

$-\langle x, \leq\rangle$ is a woset iff there is no infinite strictly decreasing sequence $a \in \mathbb{N} \mapsto x$ (that is such that $a_{0}>a_{1}>$ $a_{2}>\ldots$. .

Well-founded relation, woset

- Let $\langle x, \leq\rangle$ be a poset, and let $y \subseteq x$. An element a of y is a minimal element of y iff $\neg(\exists b \in y: b<a)^{13}$
- A poset $\langle x, \leq\rangle$ is well-founded iff every nonempty subset of x has a minimal element
- A woset $\langle x, \leq\rangle$ is a poset $\langle x, \leq\rangle$ such that the partial ordering relation \leq is well-founded
- Example: $\langle\mathbb{N}, \leq\rangle$, counter-example: $\langle\mathbb{Z}, \leq\rangle^{14}$

[^5]
Proof.

1) If $\langle x, \leq\rangle$ is not well-founded, their exists $y \subseteq x$ which is nonempty and has no minimal element. So let $a_{0} \in y$. Since a_{0} is not minimal, we can find $a_{1} \in y$ such that $a_{1}<a_{0}$. If we have built $a_{0}>\ldots>a_{n}$ in y then a_{n} is not minimal, so we can find $a_{n+1} \in y$ such that $a_{n+1}<a_{n}$. So proceeding inductively, we can build an infinite strictly decreasing sequence $a_{0}>\ldots>a_{n}>\ldots$ in y.

By contraposition ${ }^{15}$, if $\langle x, \leq\rangle$ has no infinite strictly decreasing sequence $a_{0}>\ldots>a_{n}>\ldots$ then $\langle x, \leq\rangle$ is a woset
2) Reciprocally, if x has an infinite strictly decreasing sequence $a_{0}>a_{1}>a_{2}>$ $\ldots>a_{n}>\ldots$ then $y=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$ has no minimal element.

By contraposition, if $x\langle x, \leq\rangle$ is a woset then $\langle x, \leq\rangle$ has no infinite strictly decreasing sequence $a_{0}>\ldots>a_{n}>\ldots$.

[^6]

Proof by induction on a woset

If $\langle x, \leq\rangle$ is a woset, and $P \subseteq x$. One wants to prove $x \subseteq P$ (that is property P holds for all elements of x).

If one can prove property P for any element a of x by assuming that P holds for strictly smaller elements (which requires a direct proof for minimal elements) then P holds for all elements of x.

Formally:

$$
\forall a \in x:(\forall b:(b<a) \Longrightarrow(b \in P)) \Longrightarrow a \in P
$$

$$
\forall a \in x: a \in P
$$

16 The rule $\frac{P_{1}, \ldots, P_{n}}{c}$ with premiss P_{1}, \ldots, P_{n} and conclusion c is a common notation for $\left(\bigwedge_{i=1}^{n} P_{i}\right) \Longrightarrow c$.

Proof by recurrence

For $\langle\mathbb{N}, \leq\rangle$, the structural induction principle becomes (writing $P(n)$ for $n \in P$ that is " n has property P "):

$$
\begin{gather*}
\forall n \in \mathbb{N}:(\forall k:(k<n) \Longrightarrow P(k)) \Longrightarrow P(n) \tag{1}\\
\forall n \in \mathbb{N}: P(n)
\end{gather*}
$$

We can distinguish the case of 0^{17} :

$$
\begin{equation*}
\frac{P(0), \forall n \in \mathbb{N} \backslash\{0\}:(\forall k<n: P(k)) \Longrightarrow P(n)}{\forall n \in \mathbb{N}: P(n)} \tag{2}
\end{equation*}
$$

$\overline{17}$ and abbreviate $\forall k:(k<n) \Longrightarrow Q$ by $\forall k<n: Q$.
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\varangle \triangleleft-79-\|$ - - ゆ (C) Cousot, 2005

This is equivalent to the more classical:

$$
\begin{equation*}
\frac{P(0), \forall n \in \mathbb{N}: P(n) \Longrightarrow P(n+1)}{\forall n \in \mathbb{N}: P(n)} \tag{3}
\end{equation*}
$$

Proof. A proof done with (3) can also be done with (2) since $\forall n \in \mathbb{N} \backslash\{0\}:(\forall k<n: P(k)) \Longrightarrow P(n)$ implies $\forall n \in \mathbb{N}: P(n) \Longrightarrow P(n+1))$. Reciprocally, if a proof has been done by (2), then by redefining $P^{\prime}(n)=(\forall k<$ $n: P(k))$ we can prove by (3) that $\forall n \in \mathbb{N}: P^{\prime}(n)$ which implies the conclusion of (2), namely $\forall n \in \mathbb{N}: P(n)$.
\square

Example of recursive/structural definitions

 $h(n, k)=n * k$ can be recursively defined on \mathbb{N} as:$$
\begin{aligned}
& h(0, k)=0 \\
& h(n, k)=k+h(n-1, k) \quad \text { when } n>0
\end{aligned}
$$

This can be written as

$$
h(n, k)=f\left(n, k, h \upharpoonright\left\{\left\langle n^{\prime}, k\right\rangle \mid n^{\prime}<n\right\}\right)
$$

where

$$
\begin{aligned}
& f(0, k, g)=0 \\
& f(n, k, g)=k+g(n-1, k) \quad \text { when } n>0
\end{aligned}
$$

Recursive/Structural Definitions

Let $\langle x, \leq\rangle$ be a woset, y be a set, and $f \in(x \times y \times((x \times y) \mapsto y)) \mapsto y$. Define

$$
g(a, b) \stackrel{\text { def }}{=} f\left(a, b, g \upharpoonright\left\{\left\langle a^{\prime}, b\right\rangle \mid a^{\prime}<a\right\}\right)
$$

then $g \in(x \times y) \mapsto y$ is well-defined and unique.

Proof.
(1) Define $\leq^{2} \stackrel{\text { def }}{=}\left\{\left\langle\left\langle a^{\prime}, b\right\rangle,\langle a, b\rangle\right\rangle \mid a^{\prime} \leq a\right\}$. Then $\left\langle x \times y, \leq^{2}\right\rangle$ is a woset since otherwise the existence of $\left.\left\langle a_{0}, b_{0}\right\rangle\right\rangle^{2}$ $\left.\left\langle a_{1}, b_{1}\right\rangle\right\rangle^{2} \ldots$ would imply $b_{0}=b_{1}=\ldots$ so $\left\langle a_{0}, b\right\rangle \geq^{2}$ $\left\langle a_{1}, b\right\rangle$ and $\left\langle a_{0}, b\right\rangle \neq\left\langle a_{1}, b\right\rangle, \ldots$ implies $a_{0}>a_{1}>\ldots$ in contradiction with the hyposthesis that $\langle x, \leq\rangle$ is a woset.

```
|||| Course 16.399: "Abstract interpretation", Tuesday March 1st, 20054<\triangleleft-83-||-Dゆ\ © P. Cousot, 2005
```

(2) Assuming that $g\left(a^{\prime}, b^{\prime}\right)$ is well-defined for all $\left\langle a^{\prime}, b^{\prime}\right\rangle<^{2}$ $\langle a, b\rangle$ that is, by definition of \leq^{2}, iff $b=b^{\prime}$ and $a^{\prime}<a$ then $g \upharpoonright\left\{\left\langle a^{\prime}, b\right\rangle \mid a^{\prime}<a\right\}$ is well defined. It follows that $g(a, b)=f\left(a, b, g \upharpoonright\left\{\left\langle a^{\prime}, b\right\rangle \mid a^{\prime}<a\right\}\right)$ is well-defined by hypothesis that f is a total function. By structural induction, we have proved $g \in(x \times y) \mapsto y$ is well-defined for all $\langle a, b\rangle \in x \times y$.
(3) If g^{\prime} also satisfies the definition and $g^{\prime}\left(a^{\prime}, b^{\prime}\right)=g(a, b)$ for all $\left\langle a^{\prime}, b^{\prime}\right\rangle<^{2}\langle a, b\rangle$ by induction hypothesis, then obviously $g \upharpoonright\left\{\left\langle a^{\prime}, b\right\rangle \mid a^{\prime}<a\right\}=g^{\prime} \upharpoonright\left\{\left\langle a^{\prime}, b\right\rangle \mid a^{\prime}<a\right\}$ so $g(a, b)=g^{\prime}(a, b)$ proving $g^{\prime}=g$ by structural induction. \square

Cardinals

Equipotence

－Two sets x and y are equipotent of and only if there exists a bijection $b \in x \mapsto y^{20}$
－Examples：
－The set of even integers is equipotent to the set \mathbb{Z} of integers（by $b(n)=$ 2n）
－The set of odd integers is equipotent to the set \mathbb{Z} of integers（by $b(n)=$ $2 n+1$ ）
－The set of integers \mathbb{Z} is equipotent to the set \mathbb{N} of natural numbers，by

$$
\begin{array}{ll}
b(n) \stackrel{\text { def }}{\text { de }} 2 n-1 & \text { if } n>0 \\
b(n) \stackrel{\text { def }}{=}-2 n & \text { if } n<0 \\
b(0) \stackrel{\text { def }}{=} 0 &
\end{array}
$$

20 The intuition is that＂x and y have the same number of elements＂．

Intuition on ordinals and cardinals

－The ordinals $1^{\text {st }}, 2^{\text {nd }}, 1^{\text {rd }}, \ldots$ and cardinals $1,2,3, \ldots$ elements do coincide for natural numbers
－This is not otherwise the case．
－For example if we consider the sets $\{0,1,2, \ldots\}$ and $\{0,1,2, \ldots,+\infty\}$ ordered by $0<1<2<\ldots<+\infty$ ， they are equipotent（by $b(+\infty)=0$ and $b(n)=n+1$ otherwise）hence have same cardinality ${ }^{18}$ but the $\infty^{\text {th }}$ element does not exists in $\{0,1,2, \ldots\}$ so the two sets are different as ordinals ${ }^{19}$ ．

[^7]
Properties of Equipotence

－Equipotence is an equivalence relation denoted \equiv_{c}
－A set x is denumerable（also said countable）iff $x \equiv_{c} \mathbb{N}$ （otherwise uncountable）
－A set x is finite iff $\exists n \in \mathbb{N}: x \equiv_{c}\{i \mid i<n\}$（otherwise infinite）
－Example： \mathbb{Z} is denumerable and infinite

Cardinality

－The cardinality $|x|$（also written $\operatorname{Card}(x))$ of a set x is

$$
|x| \stackrel{\text { def }}{=}[x]_{\equiv_{c}}
$$

i．e．，intuitively，a representative of the class of all sets with＂the same number of elements＂
$-|\mathbb{N}| \stackrel{\text { def }}{=} \aleph_{0}{ }^{21}$

[^8]
The set of all real numbers is uncountable

Proof．（Cantor）Assume that \mathbb{R} is countable，i．e．，is the range of some infinite sequence $r(n), n \in \mathbb{N}$ ．We show that some $r \in \mathbb{R}$ is missing in that enumeration．
Let $a_{0}^{(n)} . a_{1}^{(n)} a_{2}^{(n)} a_{3}^{(n)} \ldots$ be the decimal expansion of $r(n)$ ．
Let $b_{n}=1$ if $a_{n}^{(n)}=0$ and otherwise $b_{n}=0$ ．Let r be the real number whose decimal expansion is $0 . b_{1} b_{2} b_{3} \ldots$ ．． We have $b_{n} \neq a_{n}^{(n)}$ ，hence $\forall n \in \mathbb{N}: r \neq r(n)$ ，for all $n=$ $1,2,3, \ldots$ ，a contradiction．
\square
｜llii Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-90-$－ $\mathbf{-}$－ゆゆ © P．Cousot， 2005

The set of all sets of naturals is uncountable $|\wp(\mathbb{N})|>|\mathbb{N}|$
Proof．The function $f \in \mathbb{N} \mapsto \wp(\mathbb{N})$ defined by $f(n)=$ $\{n\}$ is injective，so $|\mathbb{N}| \leq|\wp(\mathbb{N})|$ ．
Let $s \in \mathbb{N} \mapsto \mathbb{N}$ be a sequence $s_{n}, n \in \mathbb{N}$ of naturals．We show that some $S \in \wp(\mathbb{N})$ is missing in that enumeration． Define the set $S=\left\{n \in \mathbb{N} \mid n \notin s_{n}\right\}$ ．If $n \in s_{n}$ then $n \notin S$ and if $n \notin s_{n}$ then $n \in S$ ．So $\forall n: S \neq s_{n}$ ．This shows that there is no surjective mapping of \mathbb{N} onto $\wp(\mathbb{N})$ ， whence $|\wp(\mathbb{N})|>|\mathbb{N}|$ ．
\square

Operations on cardinals

－Cardinal addition $\mathfrak{m}+\mathfrak{n}=|A \cup B|$ where $\mathfrak{m}=\mid A]$ ， $\mathfrak{n}=|B|$ and $A \cap B=\emptyset^{22}$
－Cardinal multiplication $\mathfrak{m} \times \mathfrak{n}=|A \times B|$ where $\mathfrak{m}=\mid A]$ and $\mathfrak{n}=|B|$
－Cardinal exponentiation $\mathfrak{m}^{\mathfrak{n}}=|B \mapsto A|$ where $\left.\mathfrak{m}=\mid A\right]$ and $\mathfrak{n}=|B|$
－For example， $2^{\mathfrak{n}}=|\wp(A)|$ where $2=|\mathbb{B}|$ and $\left.\mathfrak{m}=\mid A\right]^{23}$

[^9]
Ordering on cardinals

－We write $\mathfrak{m} \leq \mathfrak{n}$ where $\mathfrak{m}=\mid A]$ and $\mathfrak{n}=|B|$ iff there exists an injective function of A into B^{24}
－A cardinal \mathfrak{m} is finite iff $\mathfrak{m}<\aleph_{0}$ ，otherwise it is infinite
${ }^{24}$ Again this definition is independant of the choice of A and B ．
$\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-93-\mid \boldsymbol{\square}-\triangleright ゆ$ P．Cousot， 2005

Ordinals

Order－preserving maps

－Given two posets $\langle x, \leq\rangle$ and $\langle y, \preceq\rangle$ ，a map $f \in x \mapsto y$ which is order－preserving（also called monotone，iso－ tone，．．．）if and only if：

$$
\forall a, b \in x:(a \leq b) \Longrightarrow(f(a) \leq f(b))
$$

－Example：$\lambda x \in \mathbb{Z} \cdot x+1$
－Counter－example：$\lambda x \in \mathbb{Z} .|x|^{25}$

[^10]
Order－isomorphism

－Two posets $\langle x, \leq\rangle\langle y, \preceq\rangle$ are order－isomorphic iff there exists an order－preserving bijection $b \in x \mapsto y$
－Notation：$\langle x, \leq\rangle \equiv_{o}\langle y, \preceq\rangle$
$-\equiv{ }_{o}$ is an equivalence relation on wosets ${ }^{26}$ ．

[^11]

Ordinals

－The equivalence classes $[\langle x, \leq\rangle]_{\equiv_{o}}$ for wosets $\langle x, \leq\rangle$ are called the ordinals．$[\langle x, \leq\rangle]_{\equiv_{o}}$ is called the rank （also called order－type）of the woset $\langle x, \leq\rangle$
－We let \mathbb{O} be the class ${ }^{27}$ of all ordinals
－On \mathbb{O} which is the quotient of wosets by \equiv_{o}, \equiv_{o} and $=$ do coincide（so we use $=$ ）
－the rank of $\{0,1, \ldots, n-1\}$ with ordering $0<1<2<\ldots$ is written n so $0 \stackrel{\text { def }}{=}[\langle\emptyset, \emptyset\rangle]_{\equiv_{0}}$
－the rank of \mathbb{N} is writen ω so $\omega \stackrel{\text { def }}{=}[\langle\mathbb{N}, \leq\rangle]_{\equiv 。}$
27 It is a class but not a set because sets are not large enough to contain all ordinals．
$\boldsymbol{\| l i l}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-97-\mid \boldsymbol{\square}-\triangleright ゆ$ P．Cousot， 2005

Wosets and ordinals

－The rank of $\langle\{\beta \mid \beta<\alpha\}, \leq\rangle$ is α so $\alpha \equiv_{o}\{\beta \mid \beta<\alpha\}$ that is $\alpha=\{\beta \mid \beta<\alpha\}$
－it follows that every woset is order－isomorphic to the woset of all ordinals less than some given ordinal α ：

$$
[\langle x, \leq\rangle]_{\equiv_{o}} \equiv_{o} \alpha \equiv_{o}\{\beta \mid \beta<\alpha\}
$$

－It follows that for any woset $\langle x, \preceq\rangle$ there is an ordinal α and an indexing $x_{\gamma}, \gamma \in\{\beta \mid \beta<\alpha\}$ such that $\langle x, \leq\rangle$ is order－isomorphic to $\left\langle\left\{x_{\beta} \mid \beta<\alpha\right\}, \leq^{\prime}\right\rangle$ and $x_{\gamma} \leq^{\prime} x_{\delta}$ iff $\gamma<\delta$
－Otherwise stated，every woset is order isomorphic to an ordinal

－A well－founded set is ismorphic to an ordinal through an order－preserving bijection，for example：

－This is the reason why ordinals are used in Manna－ Pnueli proof rule for while－loops instead of arbitrary wosets in Floyd＇s method．

[^12]
Operations on ordinals

- The addition of $\alpha=[\langle x, \leq\rangle]_{\equiv_{o}}$ and $\beta=[\langle y, \preceq\rangle]_{\equiv_{o}}$ where $x \cap y=\emptyset$ is $\alpha+\beta=[\langle x \cup y, \sqsubseteq\rangle]_{\equiv_{o}}$ with

$$
\begin{aligned}
a \sqsubseteq b \quad \text { iff } & (a, b \in x \wedge a \leq b) \\
& \vee(a \in x \wedge b \in y) \\
& \vee(a, b \in y \wedge a \preceq y)
\end{aligned}
$$

- Intuition

- Addition is not commutative: $\omega=1+\omega \neq \omega+1$

- The multiplication of $\alpha=[\langle x, \leq\rangle]_{\equiv_{o}}$ and $\beta=[\langle y, \preceq\rangle]_{\equiv_{o}}$ where $x \cap y=\emptyset$ is $\alpha \times \beta=\left[\left\langle x \times y, \leq_{\ell}\right\rangle\right]_{\equiv_{o}}{ }^{29}$.
- Intuition:

[^13]\|ili Course 16.399: "Abstract interpretation", Tuesday March 1st, 2005 《 $\varangle \triangleleft-102-1$ - $-\triangleright ゆ$ © P. Cousot, 2005

Successor and limit ordinal

- A successor ordinal is $\alpha \in \mathbb{O}$ such that

$$
\begin{aligned}
\exists \beta: \alpha & =\beta+1 \\
\Longleftrightarrow \exists \beta: \alpha & =\beta \cup\{\beta\}
\end{aligned}
$$

Otherwise it's a limit ordinal ${ }^{30}$.

- 0 is the first limit ordinal. ω is the first infinite limit ordinal.
- Intuition: $\bullet=$ successor ordinal, $■=$ limit ordinal

[^14]
Induction principal for ordinals

- As a special case of structural induction, we get:

$$
P(0)
$$

$$
\forall \beta: P(\beta) \Longrightarrow P(\beta+1)
$$

$$
(\forall \beta<\lambda: P(\beta)) \Longrightarrow P(\lambda) \text { for all limit ordinals } \lambda
$$

$$
\forall \alpha: P(\alpha)
$$

Properties of limit ordinals

- The successor $\alpha+1$ (also written $\mathcal{S} \alpha$) of α satisfies

$$
\alpha+1
$$

$=\{\beta \mid \beta<\alpha+1\}$
$=\{\beta \mid \beta<\alpha\} \cup\{\alpha\}$
$=\alpha \cup\{\alpha\}$

Properties of limit ordinals

- A limit ordinal λ is such that if $\gamma<\lambda$ then

$$
\exists \beta: \gamma<\beta<\lambda
$$

- This is not true of $\eta<\eta+1$ whence of successor ordinals

Properties of limit ordinals (Cont'd)

Assume that λ is a limit ordinal, then:

$$
\begin{aligned}
& \lambda \\
= & \{\gamma \mid \gamma<\lambda\} \\
= & \{\gamma \mid \gamma<\beta<\lambda\} \\
= & \bigcup\{\{\gamma \mid \gamma<\beta\} \mid \beta<\lambda\} \\
= & \bigcup\{\beta \mid \beta<\lambda\} \\
= & \bigcup_{\beta<\lambda} \beta \\
& \quad \text { Is is a limit ordinal }\} \\
&
\end{aligned}
$$

Ordinals are well-ordered by \in

- If $\alpha<\beta$ then $\beta=\{\gamma \mid \gamma<\beta\}$ so $\alpha \in \beta$
- Reciprocally, if $\alpha \in \beta$ then $\beta=\{\gamma \mid \gamma<\beta\}$ implies $\alpha \in\{\gamma \mid \gamma<\beta\}$ so $\alpha<\beta$
- we conclude that $\alpha<\beta \Longleftrightarrow \alpha \in \beta$

Ordinals are well-ordered by " \subseteq "
$\alpha<\beta$
$\Longleftrightarrow \quad \forall \gamma:(\gamma<\alpha) \Longrightarrow(\gamma<\beta)$
$\Longleftrightarrow \quad \forall \gamma:(\gamma \in \alpha) \Longrightarrow(\gamma \in \beta)$
\Longleftrightarrow
$\alpha \subseteq \beta$
So ordinals are ϵ-transitive in that $\forall \alpha \in \beta:(\alpha \subseteq \beta)$. Every member of an ordinal is \in-transitive.

Proof by transfinite induction on ordinals

$$
\begin{aligned}
& P(0) \\
& \forall \beta: P(\beta) \Longrightarrow P(\beta+1) \\
& \forall \lambda \operatorname{limit} \text { ordinal }:(\forall \beta<\lambda: P(\beta)) \Longrightarrow P(\lambda) \\
& \forall \alpha: P(\alpha)
\end{aligned}
$$

Transfinite inductive definitions on ordinals
$-g(0)=a$
$-g(\beta+1)=f(\beta, g(\beta))$
$-g(\lambda)=h(\lambda, g \upharpoonright \lambda)$ when λ is a limit ordinal is well defined and unique.

More generaly, transfinite inductive definitions on α have the form:
$-f \in(\alpha \times y \times((\alpha \times y) \mapsto y) \mapsto y)$
$-d(\beta, b) \stackrel{\text { def }}{=} f(\beta, b, g \upharpoonright\{\langle\gamma, b\rangle \mid \gamma<\beta\})$
and $g \in(\alpha \times y) \mapsto y$ is well-defined and unique.

Totally ordered set

- A total order (or "totally ordered set", or "linearly ordered set") is a partial order $\langle x, \leq\rangle$ such that any two elements are comparable:

$$
\forall a, b \in x:(a \leq b) \vee(b \leq a)
$$

Ordinal number (rank) of a well ordered set

- Let $\langle x, \leq\rangle$ be a well ordered set. We define the rank $\rho \in x \mapsto(\mathbb{O}$ as follows:
- $\rho(a)=0$ iff a the minimal element of x
- $\rho(a)=\bigcup_{b<a} \rho(b)$
- $\rho(x)=\bigcup_{a \in x} \rho(a)$

Burali-Forti Paradox

Assume \mathbb{O} is a set. We have seen that:

1. Every well ordered set has a unique rank;
2. Every segment of ordinals (i.e., any set of ordinals arranged in natural order which contains all the predecessors of each of its elements) has a rank which is greater than any ordinal in the segment, and
3. The set \mathbb{O} of all ordinals in natural order is well ordered.

Then by statements (3) and (1), \mathbb{O} has a rank, which is an ordinal β. Since β is in \mathbb{O}, it follows that $\beta<\beta$ by (2), which is a contradiction.
So the class \mathbb{O} of ordinals is not a set ${ }^{31}$.

[^15]

Axiomatizations

Two main Axiomatizations of naïve set theory:

- Zermalo/Fraenkel
- Bernays/Gödel
that lead to a rigourous treatment of the notion of set/class avoiding seeming paradoxes.

Bibliography on set theory

- Keith Devlin
"The Joy of Sets, Fundamental of Contemporary Set Theory". $2^{\text {nd }}$ edition. Undergraduate texts in mathematics. SpringerVerlag, 1993.
- Yannis N. Moschovakis
"Notes on Set Theory". Undergraduate texts in mathematics. Springer-Verlag, 1993.
- J. Donald Monk
"Introduction to set theory". McGraw-Hill Book Compagny. International series in pure and applied mathematics. 1969.
- Karel Hrbacek and Thomas Jech
"Introduction to Set Theory", Third Edition, Marcel Dekker, Inc., New York 1999.
|l|il Course 16.399: "Abstract interpretation", Tuesday March 18t, 2005 《 $\varangle \triangleleft-119-\mid \mathbf{- D ゆ}$ © P. Cousot, 2005

Paul I. Bernays

Adolf A. Fraenkel

Ernst Zermelo

THE END

My MIT web site is http://www.mit.edu/~ cousot/
The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

THE END, THANK YOU

©

My MIT web site is http://www.mit.edu/ ~ cousot/
The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

[^0]:
 Formally, if $\bigcup\langle a, b\rangle=\bigcap\langle a, b\rangle$ then $a=b$ whence $\langle a, b\rangle_{2} \stackrel{\text { def }}{=} \bigcup \bigcup\langle a, b\rangle=\bigcup \bigcup\{\{b\}\}=\bigcup\{b\}=b$. Otherwise $\bigcup\langle a, b\rangle \neq \bigcap\langle a, b\rangle$ that is $a \neq b$, in which case $\langle a, b\rangle_{2} \stackrel{\text { det }}{=} \cup(\bigcup\langle a, b\rangle \backslash \cap\langle a, b\rangle)=\bigcup(\bigcup\{\{a\},\{a, b\}\} \backslash$ $\bigcap\{\{a\},\{a, b\}\})=\bigcup(\bigcup\{a, b\} \backslash\{a\})=\bigcup\{b\}=b$.

[^1]: ${ }^{7}$ So called \subseteq－least fixpoint of $F(X)=\mathbf{1}_{x} \cup t \circ X$ ，written $\mid f \rho^{\complement} F$ ．

[^2]: ${ }^{8}$ which is isomorphic to x through $a \mapsto\{a\}$
 which is isomorphic to $\{0, \ldots, n-1\}$ through $a \mapsto[a]_{\equiv[n]}$ ．

[^3]:

[^4]: $\overline{10} e(a)$ is an expression depending upon variable $a \in x$ which result is in y

[^5]: 13 where as usual $a<b \stackrel{\text { def }}{=} a \leq b \wedge a \neq b$.
 $14 \mathbb{Z} \subseteq \mathbb{Z}$ has no minimal element since $\forall a \in \mathbb{Z}: \exists b \in \mathbb{Z}: b<a$

[^6]: $\overline{15} \neg P \Longrightarrow \neg Q$ iff $P \Longrightarrow Q$

[^7]: 18 hence are equivalent when used as quantities for mesuring the＂size＂／number of elements of sets．
 19 hence are different when used as positions for ranking elements of a set．
 Ilii
 Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 【 $\oiint \triangleleft-86-\mid \llbracket-\triangleright ゆ ゝ$ P．Cousot， 2005

[^8]: $21 \aleph$ is the hebrew aleph letter
 $\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{i l}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-89-\mid \boldsymbol{\square}-\triangleright ゆ$ P．Cousot， 2005

[^9]: 22 All these definitions are independant of the choice of A and B ．
 ${ }^{23}$ Using the characteristic function of subsets of A into the booleans $\mathbb{B}=\{\mathrm{tt}$ ，ff $\}$ ．This explains the notation 2^{A} for $\wp(A)$

[^10]: 25 Here $|x|$ is the absolute value of x ．
 $\boldsymbol{\|} \boldsymbol{\|} \boldsymbol{\|}$ Course 16．399：＂Abstract interpretation＂，Tuesday March 1st， 2005 《 $\varangle \triangleleft-95-\mid \boldsymbol{\square}-\triangleright ゆ$ P．Cousot， 2005

[^11]: ${ }^{26}$ Not true on posets sincee symmetry is lacking

[^12]: $\overline{28}$ This definition does not depend upon the particular choice of $\langle x, \leq\rangle$ and $\langle y, \preceq\rangle$

[^13]:

[^14]: 30 A limit ordinal λ is such that $\forall \alpha<\lambda: \exists \beta: \alpha<\beta<\lambda$ and so for a successor ordinal $\eta, \exists \alpha<\eta: \forall \beta$ $\neg(\alpha<\beta<\eta)$

[^15]: ${ }^{31}$ It's an ordinal $\mathbb{O} \in \mathbb{O}$.

