« Mathematical foundations:(2) Classical first-order logic »

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation" http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Formal logics

A formal logic consists of:

- a formal or informal language (formula expressing facts)
- a model-theoretic semantics (to define the meaning of the language, that is which facts are valid)
- a deductive system (made of axioms and inference rules to formaly derive theorems, that is facts that are provable)

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005 — 3 — © P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

George Boole

David Hilbert (

Gottlob Frege

— 2 —

Questions about formal logics

The main questions about a formal logic are:

- The soundness of the deductive system: no provable formula is invalid
- The completeness of the deductive system: all valid formulæ are provable

 Jean van Heijenoort, editor. "From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931". Harvard University Press, 1967.

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

© P. Cousot. 2005

<u>Reference</u>

Booleans

We define the booleans $\mathbb{B} \stackrel{\text{def}}{=} \{\text{tt}, \text{ff}\}\$ and boolean operators by the following truth table:

Tarskian/model-theoretic semantics of the classical propositional logic

The semantics ${}^{2} S \in \mathcal{F} \mapsto (\mathcal{V} \mapsto \mathbb{B}) \mapsto \mathbb{B}$ of a propositional formula ϕ assign a meaning $S[\![\phi]\!]\rho$ to the formula for any given environment ρ^{3} :

$$\begin{split} \mathcal{S}[\![X]\!]\rho &\stackrel{\text{def}}{=} \rho(X) \\ \mathcal{S}[\![\neg\phi]\!]\rho &\stackrel{\text{def}}{=} \overline{\neg}(\mathcal{S}[\![\phi]\!]\rho) \\ \mathcal{S}[\![\phi_1 \land \phi_2]\!]\rho &\stackrel{\text{def}}{=} \mathcal{S}[\![\phi_1]\!]\rho \,\overline{\&} \, \mathcal{S}[\![\phi_2]\!]\rho \end{split}$$

² Also called an *interpretation* in logic
³ Hilbert used instead an arithmetic interpretation where 0 is true and 1 is false.
Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005 - 15 - © P. Cousot, 2005

Environment/Assignment

— 13 —

© P. Cousot. 2005

- An environment $\rho \in \mathcal{V} \mapsto \mathbb{B}$ assigns boolean values $\rho(X)$ to free propositional variables X.
- An example of assignment is $\rho = \{X \to tt, Y \to ff\}$ such that $\rho(X) = tt$, $\rho(Y) = ff$ and the value for all other propositional variables $Z \in \mathcal{V} \setminus \{X, Y\}$ is undefined

Models

 ρ is a model of ϕ (or that ρ satisfies ϕ) if and only if:

 $\mathcal{S}[\![\phi]\!]
ho = \mathsf{tt}$

which is written:

 $\rho \Vdash \phi$

¹ Also called *assignment* in logic.

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

$\begin{array}{c} \textbf{Entailment} \\ - \text{ A set } \Gamma \in \wp(\mathcal{F}) \text{ of formulae entails } \phi \text{ whenever:} \\ \forall \rho : (\forall \phi' \in \Gamma : \rho \Vdash \phi') \Longrightarrow \rho \Vdash \phi \\ \text{ which is written:} \\ \Gamma \Vdash \phi \end{array}$	Examples of tautologies $P \Rightarrow P$ $(\neg(P \Rightarrow Q)) \Rightarrow P$ $(\neg(\neg P) \Rightarrow P$ $(\neg(P \Rightarrow Q)) \Rightarrow (\neg \neg P)$ $P \Rightarrow (\neg \neg P)$ $(\neg(P \Rightarrow Q)) \Rightarrow \neg Q$ $P \Rightarrow (Q \Rightarrow P)$ $(P \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q)$ $P \Rightarrow (Q \Rightarrow Q)$ $(P \Rightarrow \neg P) \Rightarrow (\neg Q \Rightarrow \neg P)$ $(\neg P \Rightarrow P) \Rightarrow P$ $(P \Rightarrow \neg Q) \Rightarrow (Q \Rightarrow \neg P)$ $(\neg P \Rightarrow P) \Rightarrow P$ $(\neg P \Rightarrow \neg Q) \Rightarrow (Q \Rightarrow P)$ $P \Rightarrow (\neg P \Rightarrow Q)$ $(\neg P \Rightarrow \neg Q) \Rightarrow (\neg P \Rightarrow Q) \Rightarrow P)$ $(\neg(P \Rightarrow P)) \Rightarrow Q$ $(\neg(P \Rightarrow \neg Q) \Rightarrow (\neg P \Rightarrow Q) \Rightarrow P)$ $(\neg(P \Rightarrow P)) \Rightarrow Q$ $(\neg(P \Rightarrow Q)) \Rightarrow (Q \Rightarrow R)$ $P \Rightarrow (\neg(P \Rightarrow \neg P))$ $(\neg(P \Rightarrow Q)) \Rightarrow (\neg P \Rightarrow R)$ $(P \Rightarrow \neg P) \Rightarrow \neg P$ $(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow R) \Rightarrow (P \Rightarrow R))$	
Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 17 — © P. Cousot, 2005	Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 19 — © P. Cousot, 2005	
Validity- We say that ϕ is valid if and only if: $\forall \rho \in (V \mapsto \mathbb{B}) : S[\![\phi]\!] \rho = tt$	$\begin{array}{l} \textbf{Satisfiability/Unsatisfiability}\\ - \text{ A formula } \phi \in \mathcal{F} \text{ is satisfiable if and only if:}\\ \exists \rho \in (\mathbb{V} \mapsto \mathbb{B}) : \mathcal{S}\llbracket \phi \rrbracket \rho = \texttt{tt} \end{array}$	
which is written: $\vdash \phi$ (i.e. ϕ is a tautaulogy, always true)	- A formula $\phi \in \mathcal{F}$ is unsatisfiable if and only if: $\forall \rho \in (\mathbb{V} \mapsto \mathbb{B}) : \mathcal{S}\llbracket \phi \rrbracket \rho = tt$ (i.e. ϕ is a antilogy, always false)	
Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 18 — © P. Cousot, 2005	Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 20 — © P. Cousot, 2005	

Soundness of a deductive system

Provable formulae do hold:

 $\varGamma \vdash \phi \Longrightarrow \varGamma \Vdash \phi$

Proof.

The proof for propositional logic is by induction on the length of the formal proof of ϕ from Γ .

A proof of length one, can only use a formula ϕ in Γ which is assumed to hold (i.e. $S[\![\phi]\!]\rho = t$) or an axiom that does hold as shown below.

- <i>S</i> [= = =	$\begin{split} \phi \lor \phi &\Longrightarrow \phi \ \rho \\ S \llbracket \neg (\neg (\neg \phi \land \neg \phi)) \rrbracket \rho \\ \neg (\neg (\neg (\mathcal{S} \llbracket \phi \rrbracket \rho) \& \neg (\mathcal{S} \llbracket \phi \rrbracket \rho))) \\ \neg (\mathcal{S} \llbracket \phi \rrbracket \rho) \& \neg (\mathcal{S} \llbracket \phi \rrbracket \rho) \\ \neg (\mathrm{ff}) \end{split}$		def. ∨ def. S def. ¬ def. &
Pliī	Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005	— 29 —	© P. Cousot, 2005

=tt

def. ¬

- The proof is similar for the other two axioms.

A proof of length n + 1, $n \ge 1$ is an initial proof $\phi_0, \ldots, \phi_{n-1}$ of length n followed by a formula ϕ_n . By induction hypothesis, we have $S[\![\phi_i]\!]\rho = tt$, $i = 1, \ldots, n-1$.

If $\phi_n \in \Gamma$ or ϕ_n is an axiom then $\mathcal{S}[\![\phi_n]\!]\rho = \mathsf{tt}$ as shown above.

Otherwise, ϕ_n is derived by the modus ponens inference rule (MP). In that case, we have $k, 0 \leq k < n$ such that $S[\![\phi_k]\!]\rho = \text{tt}$ and $S[\![\phi_k]\!]\rho = \text{tt}$ so $(S[\![\phi_k]\!]\rho \Longrightarrow S[\![\phi_n]\!]\rho) = \text{tt}$ where the truth table of \implies is derived from the definition of \implies and that of \neg and $\overline{\land}$ as follows:

\rightarrow	ff	tt
ff	tt	tt
tt	ff	tt

Since $S[\![\phi_k]\!]\rho = t$ the truth table of \implies shows than the only possibility for $(S[\![\phi_k]\!]\rho \implies S[\![\phi_n]\!]\rho) = t$ is $S[\![\phi_n]\!]\rho = t$. \square

— 30 —

Consistency of a deductive system

Absence of contradictory proofs

 $\neg (\exists \Gamma : \Gamma \vdash \phi \land \Gamma \vdash \neg \phi)$

A sound deductive system is consistent.

Proof.

By reduction ad absurdum assume inconsistency $\exists \Gamma : \Gamma \vdash \phi \land \Gamma \vdash \neg \phi$. By soundness $\Gamma \Vdash \phi \land \Gamma \Vdash \neg \phi$ whence for all ρ such that $\forall \phi' \in \Gamma : \rho \Vdash \phi'$, we have $S[\![\phi]\!]\rho = \text{tt}$ and $S[\![\neg\phi]\!]\rho = \text{tt} = \neg S[\![\phi]\!]\rho = \neg \text{tt} = \text{ff}$ which is the desired contradiction since $\text{tt} \neq \text{ff}$. \Box

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

© P. Cousot. 2005

— 31 —

— 32 —

Negative normal form

A formula is in negative normal form iff it can be parsed by the following grammar:

$$\phi ::= \phi \lor \phi$$

$$\mid \phi \land \phi$$

$$\mid \varphi$$

$$\varphi ::= X$$

$$\mid \neg X$$

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

A formula ϕ is equivalent to its negative normal form $nnf(\phi)$ is that:

```
\vdash \phi if and only if \vdash nnf(\phi)
```

Normalization in conjunctive normal form

Any formula ϕ can be put in equivalent conjunctive normal form by applying the following transformations to $nnf(\phi)$:

 $\phi' \lor (\phi_1 \land \phi_2) \rightsquigarrow (\phi' \land \phi_1) \lor (\phi' \land \phi_2) \ (\phi_1 \lor \phi_2) \land \phi' \rightsquigarrow (\phi_1 \lor \phi') \land (\phi_2 \lor \phi')$

A formula ϕ is equivalent to its conjunctive normal form ϕ^{\wedge} in that:

 $\vdash \phi$ if and only if $\vdash \phi^{\wedge}$

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

⑦ P. Cousot, 2005

— 34 —

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

© P. Cousot, 2005

<u>Completeness</u> of a deductive system

Formulae which hold are provable:

 $\varGamma \Vdash \phi \Longrightarrow \varGamma \vdash \phi$

The very first proof for propositional logic was given by Bernays (a student of Hilbert) [2]. The better known proof is that of Post [3].

<u>Reference</u>

— 37 —

— 38 —

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

Bernay's proof can be sketched as follows. Every formula is interderivable with its conjunctive normal form. A conjuction is provable if and only if each of its conjuncts is provable. A disjunction of propositional variables or negations of proprositional variables if and only if it contains a variable and its negation, and conversely, every such disjunction is provable. So a formula is provable if and only if every conjunct in its normal form contains a variable and its negation. Now suppose that ϕ is a valid ($|\vdash \phi$) but underivable formula. Its conjunctive normal form ϕ^{\wedge} is also underivable, so it must contain a conjunct ϕ' where every variable occurs only negated or unnegated but not both. If ϕ where added as a new axiom (so that $\mid\vdash \phi$ implies soundness of the new deductive system), then ϕ^{\wedge} and ϕ' would also be derivable. By substituting X for every unnegated variable and $(\neg X)$ for every negated variable in ϕ' , we would obtain X as a derivable formula (after some simplification), and the system would be inconsistent, which is the desired contradiction.

Classical first-order logic

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

⑦ P. Cousot, 2005

Syntax of the classical first-order logic

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

C P. Cousot, 2005

© P. Cousot. 2005

© P. Cousot, 2005

— 40 —

Richard Zach. "Completeness before Post: Bernays, Hilbert, and the development of propositional logic", Bulletin of Symbolic Logic 5 (1999) 331-366.

 ^[3] Ryan Stansifer. "Completeness of Propositional Logic as a Program", Florida Institute of Technology, Melbourne, Florida, March 2001.

Lexems

The lexems are the basic constituants of the formal language.

- symbols: $(, , ,), \land, \neg, \forall, \ldots$
- constants: $a, b \dots \in C$ denote individual objects of the universe of discourse
- variables: $x, y, \ldots \in \mathcal{V}$ denote unknown but fixed ¹⁰ objects of the universe of discourse

¹⁰ Different instances of the same variable in a given scope of a formula always denote the same unkown individal object of the universe of discourse. This is not true of imperative computer programs.

Terms

Terms $t \in \mathcal{T}$ denote individual objects of the universe of discourse computed by applying fonctions to constants or variables:

$$egin{array}{ll} t ::= c & & \ & \mid & x & \ & \mid & f ackslash n(t_1, \dots, t_n) \end{array}$$

© P. Cousot, 2005

- function symbols: $f \setminus n, g \setminus n, \ldots \in \mathcal{F}^n$ denote fonctions of arity n. We let $\mathcal{F}^0 \stackrel{\text{def}}{=} \mathcal{C}$ and $\mathcal{F} = \bigcup_{n \in \mathbb{N}} F^n$. For short we write f instead of $f \setminus n$ when the arity n is understood
- relation symbols: $r \setminus n, \rho \setminus n, \ldots \in \mathbb{R}^n$ denote fonctions of arity n. We let $\mathbb{B} \stackrel{\text{def}}{=} \{ \text{tt}, \text{ff} \}$ and $\mathcal{R} = \bigcup_{n \in \mathbb{N}} \mathbb{R}^n$. For short we write r instead of $r \setminus n$ when the arity n is understood

Atomic formulæ

Atomic formulæ $A \in \mathcal{A}$ are used to state elementary facts about objects of the universe of discourse:

$$A ::= r \setminus n(t_1, \ldots, t_n)$$

Example:

-z is a variable whence a term

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

- $* \setminus 2(+ \setminus 2(x, 1), y)$ is a term
- $\leq \langle 2 ext{ is a relation symbol whence } \leq \langle 2(* \langle 2(+ \langle 2(x, 1), y), z) \rangle^{11}$ is an atomic formula

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

— 42 — © P. Cousot, 2005

¹¹ written $((x+1) * y) \le z$ in infix form

Substitution

 Substitution is a syntactic replacement of a variable by a term, may be with appropriate renaming of bound variables, so as to avoid capturing the term free variables, as in

but should be

 $ightarrow \exists x': x' = x+1$

 $\exists x : x = y + 1[y := x]$

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005 — 49 —

A substitution $\sigma \in \mathcal{V} \mapsto \mathcal{T}$ is a function from variables to terms with finite domain:

 $egin{aligned} & \operatorname{dom}(\sigma) \stackrel{ ext{def}}{=} \{x \in \mathcal{V} \mid x
eq \sigma(x)\} & ext{(finite domain)} \ & \operatorname{rng}(\sigma) \stackrel{ ext{def}}{=} \{\sigma(x) \mid x \in \operatorname{dom}(\sigma)\} & ext{(range)} \ & ext{yld}(\sigma) \stackrel{ ext{def}}{=} igcup_{\{ ext{fv}(t) \mid t \in \operatorname{rng}(\sigma)\}} & ext{(yield)} \end{aligned}$

We write σ as:

 $[x_1 \leftarrow \sigma(x_1), \dots, x_n \leftarrow \sigma(x_n)]$ where $\operatorname{dom}(\sigma) = \{x_1, \dots, x_n\}.$

Application of a substitution to a term

$$\begin{aligned} \sigma(c) \stackrel{\text{def}}{=} c \\ \sigma(y) \stackrel{\text{def}}{=} y & \text{iff } y \notin \text{dom}(\sigma) \\ \sigma(f(t_1, \dots, t_n)) \stackrel{\text{def}}{=} f(\sigma(t_1), \dots, \sigma(t_n)) \\ \sigma(r(t_1, \dots, t_n)) \stackrel{\text{def}}{=} r(\sigma(t_1), \dots, \sigma(t_n)) \\ \sigma(\neg \Phi) \stackrel{\text{def}}{=} \neg \sigma(\Phi) \\ \sigma(\Phi_1 \lor \Phi_2) \stackrel{\text{def}}{=} \sigma(\Phi_1) \lor \sigma(\Phi_2) \\ \sigma(\forall x : \Phi) \stackrel{\text{def}}{=} \forall x' : \sigma(\Phi[x := x']) & \text{where} \\ x' \notin \text{yld}(\sigma) \cup (\text{fv}(\Phi) \setminus \{x\}) \end{aligned}$$

Example of substitution in a term

$$\begin{array}{l} (\exists x : x = y + 1)[y := x] \\ = \ \exists x' : ((x = y + 1)[x := x'])[y := x] \\ = \ \exists x' : ((x)[x := x'] = (y)[x := x'] + (1)[x := x'])[y := x] \\ = \ \exists x' : (x' = y + 1)[y := x] \\ = \ \exists x' : ((x')[y := x] = (y)[y := x] + (1)[y := x]) \\ = \ \exists x' : ((x')[y := x] = (y)[y := x] + (1)[y := x]) \end{array}$$

— 50 —

© P. Cousot. 2005

Interpretation

An interpretation *I* is defined by:

- A domain of discourse D_I (or domain of interpretation)
- An interpretation $I[\![f]\!] \in D_I^m \mapsto D_I$ for each function symbol $f \in \mathcal{F}^m$, m > 0 (including constants)
- An interpretation $I[\![r]\!] \in D_I^m \mapsto \mathbb{B}$ for each relation symbol $r \in \mathcal{R}^m$, m > 0

Semantics of the first-order logic

Given an interpretation I, the semantics is:

$$egin{aligned} \mathcal{S}^{I}\llbracket t
rbracet \in (\mathcal{V}\mapsto D_{I})\mapsto D_{I} \ &\mathcal{S}^{I}\llbracket c
rbrace
ho
ho \stackrel{ ext{def}}{=} I\llbracket c
rbracet \ &\mathcal{S}^{I}\llbracket x
rbrace
ho
ho \stackrel{ ext{def}}{=}
ho (x) \ &\mathcal{S}^{I}\llbracket f(t_{1},\ldots,t_{n})
rbrace
ho \stackrel{ ext{def}}{=} I\llbracket f
rbracet (\mathcal{S}^{I}\llbracket t_{1}
rbrace
ho,\ldots,\mathcal{S}^{I}\llbracket t_{n}
rbrace
ho) \end{aligned}$$

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

— 54 — (c) P. Cousot, 2005

$$= \int_{\mathbb{R}} [r[(S_{1}^{l}[1], p[z:-v], ..., S_{1}^{l}[z_{-}]p[z:-v]) \quad by induction hypothesis since
$$= \int_{\mathbb{R}}^{l} [r(z_{1}, ..., z_{+})]p]$$
proving that $\forall \lambda : S^{l}[r(\lambda)]p = S^{l}[(\Delta p_{1}^{l})p = -S^{l}[\Delta p_{1}^{l}]p = -S^{l}[(\Delta p_{1}^{l})p = -S^{l}[(\Delta p_{1}^{l})p]p = -S$$$

$egin{array}{llllllllllllllllllllllllllllllllllll$	(i) $(\Phi \Longrightarrow \neg \neg \Phi') \Longrightarrow (\Phi \Longrightarrow \Phi')$ (tautology) (i') $(\neg \forall x : \neg \Phi \Longrightarrow \neg \neg \Phi') \Longrightarrow (\neg \forall x : \neg \Phi \Longrightarrow \Phi')$ (tautology, instance of (i)) (j) $\neg \forall x : \neg \Phi \Longrightarrow \Phi'$ ((h), (i') and (MP))
PROOF. (assuming tautologies for short)	
(a) $\forall x: \neg \Phi \Longrightarrow (\neg \Phi)[x:=t]$ (instance of (4))	
(b) $(\Phi \Longrightarrow \Phi') \Longrightarrow (\neg \Phi' \Longrightarrow \neg \Phi)$ (contraposition tautology)	
$(b') \hspace{0.2cm} (\forall x: \neg \varPhi \Longrightarrow (\neg \varPhi)[x:=t]) \Longrightarrow \neg ((\neg \varPhi)[x:=t]) \Longrightarrow \neg \forall x: \neg \varPhi \hspace{0.2cm} (\texttt{tautology},$	
(c) $\neg((\neg \Phi)[x := t]) \Longrightarrow \neg \forall x : \neg \Phi$ $(a), (b') and (MP))$	
$(c') \ \neg \neg (\varPhi[x:=t]) \Longrightarrow \neg \forall x: \neg \varPhi \qquad \qquad (\texttt{def. substitution})$	
(d) $(\neg \neg \Phi \Longrightarrow \neg \Phi') \Longrightarrow (\Phi \Longrightarrow \neg \Phi')$ (tautology)	
$(d') \hspace{0.2cm} (\neg \neg (\varPhi[x := t]) \Longrightarrow \neg \forall x : \neg \varPhi) \Longrightarrow (\varPhi[x := t] \Longrightarrow \neg \forall x : \neg \varPhi) \hspace{0.2cm} (\texttt{tautology})$	
(e) $\Phi[x := t] \Longrightarrow \neg \forall x : \neg \Phi$ ((c), (d') and (MP))	
Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 69 — © P. Cousot, 2005	Course 16.399: "Abstract interpretation", Tuesday March 8 th , 2005 — 71 — © P. Cousot, 2005

Example 2 of proof

$$\{ \varPhi \Longrightarrow \varPhi' \} dash
eg \forall x :
eg \varPhi d \Longrightarrow \varPhi' \quad ext{when } x
ot\in ext{fv}(\varPhi')$$

PROOF. (assuming tautologies for short)

(a)	$\Phi \Longrightarrow \Phi'$	{hypothesis}
(b)	$(\varPhi \Longrightarrow \varPhi') \Longrightarrow (\neg \varPhi' \Longrightarrow \neg \varPhi)$	contraposition tautology
(c)	$ eg \Phi' \Longrightarrow eg \Phi$	\langle (a), (b) and (MP) \rangle
(c')	$\neg\neg \varphi' \vee \neg \varPhi$	$\langle def. abbreviation \Longrightarrow \rangle$
(d)	$\forall x: (\neg \neg \varPhi' \vee \neg \varPhi)$	((c'), (Gen))
(e)	$\neg \neg \varPhi' \lor \forall x: \neg \varPhi$	$(d), (5), x ot\in \operatorname{fv}(\neg \neg \Phi') = \operatorname{fv}(\Phi'))$
(f)	$ eg \Phi' \Longrightarrow orall x: eg \Phi$	$\langle def. abbreviation \Longrightarrow \rangle$
(g)	$(\neg \varPhi' \Longrightarrow orall x: \neg \varPhi) \Longrightarrow (\neg orall x: \neg \varPhi \Longrightarrow \neg$	$ eg \Phi')$ (contraposition tautology)
(h)	$\neg \forall x: \neg \varPhi \Longrightarrow \neg \neg \varPhi'$	$\langle (f), (g) \text{ and } (MP) \rangle$
Plif	Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005	— 70 — © P. Cousot, 2005

Extension of the deduction system (H) for first-order logic

These theorems are often incorporated to the deductive system as an axiom

$$\varPhi[x:=t] \Longrightarrow \exists x: \varPhi$$

and a generalization rule:

$$rac{ \varPhi \Longrightarrow \varPhi' }{ (\exists x : \varPhi) \Longrightarrow \varPhi' } ext{ when } x
ot\in \operatorname{fv}(\varPhi)$$

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005 - 72 -

© P. Cousot, 2005

Logical equivalences involving quantifiers and negations $\neg \forall x : \Phi \iff \exists x : \neg Phi$ De Morgan laws $\neg \exists x : \Phi \iff \forall x : \neg \Phi$ $\neg (\forall x : \Phi \land \forall x : \Phi) \iff \forall x : (\Phi \land \Phi')$ $\neg (\exists x : \Phi \lor \forall x : \Phi) \iff \exists x : (\Phi \lor \Phi')$ $\neg (\Phi \Longrightarrow \Phi') \Longrightarrow (\exists x : \Phi \Longrightarrow \Phi')$ when $x \notin fv(\Phi')$ $\neg (\Phi \Longrightarrow \Phi') \Longrightarrow (\Phi \Longrightarrow \forall x : \Phi')$ when $x \notin fv(\Phi')$ $\neg \forall x : (\Phi \lor \Phi') \iff (\forall x : \Phi) \lor \Phi'$ when $x \notin fv(\Phi')$ $\neg \forall x : (\Phi \lor \Phi') \iff (\forall x : \Phi) \lor \Phi'$ when $x \notin fv(\Phi')$	 The Hilbert style deductive system (H) is not decidable [5]. Proofs cannot be fully automated: there is no terminating algorithm that, given a first-order formula Φ as input, returns true whenever Φ is classically valid.
$\begin{array}{cccc} - \exists x : (\varPhi \land \varPhi') & \Longleftrightarrow (\exists x : \varPhi) \land \varPhi' & \text{when } x \not\in \operatorname{fv}(\varPhi') \\ - \varPhi & \Leftrightarrow \forall x : \varPhi & \text{when } x \not\in \operatorname{fv}(\varPhi') \\ - \varPhi & \Leftrightarrow \exists x : \varPhi & \text{when } x \not\in \operatorname{fv}(\varPhi') \\ \end{array}$	 <u>Reference</u> [5] Kurt Gödel. "Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, I". Monatshefte für Mathematik und Physik 38, 173–198, 1931. Course 16.399: "Abstract interpretation", Tuesday March ^{gth}, 2005 — 75 — © P. Cousot, 2005
 Properties of the deduction system (H) for first-order logic The Hilbert style deductive system (H) is sound, consistent, compact ¹⁶ and complete [4] for the first-order-logic. 	The theory axiomatizing equality Writing = $\langle 2(A, B) \text{ as } A = B$, the theory axiomatizing equality is first-order logic plus the following axioms: $-\forall x : x = x$ reflexivity $-\forall x : \forall y : (x = y) \Longrightarrow (y = x)$ symmetry $-\forall x_1 : \forall x_n : \forall y_1 : \forall y_n : (x_1 = y_1 \land \land x_n = y_n) \Longrightarrow$ $(f(x_1,, x_n) = f(y_1,, y_n))$ Leibnitz functional congruence $-\forall x_1 : \forall x_n : \forall y_1 : \forall y_n : (x_1 = y_1 \land \land x_n = y_n) \Longrightarrow$ $(r(x_1,, x_n) = r(y_1,, y_n))$ Leibnitz relational congruence $-\forall x : \forall y : \forall z : (x = y \land y = z) \Longrightarrow (x = z)$ transitivity
 [4] Kurt Gouel. "Die vollstandigkeit der Axiome des logischen Funktionen-kalkuls", Monatsneite für Mathematik und Physik 37 (1930), 349-360. 16 Γ ⊢ Φ if and only if Γ' ⊢ Φ for a finite subset Γ' of Γ. 	

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005

— 74 — © P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday March 8th, 2005 — 76 — © P. Cousot, 2005

