
« Mathematical foundations:
(2) Classical first-order logic »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 1 — ľ P. Cousot, 2005

George Boole David Hilbert Gottlob Frege

Reference

[1] Jean van Heijenoort, editor. “From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931”.
Harvard University Press, 1967.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 2 — ľ P. Cousot, 2005

Formal logics

A formal logic consists of:

– a formal or informal language (formula expressing facts)

– a model-theoretic semantics (to define the meaning of
the language, that is which facts are valid)

– a deductive system (made of axioms and inference
rules to formaly derive theorems, that is facts that
are provable)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 3 — ľ P. Cousot, 2005

Questions about formal logics

The main questions about a formal logic are:

– The soundness of the deductive system: no provable
formula is invalid

– The completeness of the deductive system: all valid
formulæ are provable

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 4 — ľ P. Cousot, 2005

Propositional classical logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 5 — ľ P. Cousot, 2005

Syntax of the
classical propositional logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 6 — ľ P. Cousot, 2005

Classical propositional logic

– X 2 V are variables denoting unknown true or false
facts

– The set of formulæ ffi 2 F of the propositional logic
are defined by the following grammar:

ffi ::= X
j (ffi1 ^ ffi2)
j (:ffi)

– The relation “is a subformula of” is well founded, whence
can be used for structural definitions and proofs

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 7 — ľ P. Cousot, 2005

Example of formulæ
– A is a variable whence a formula

– (:A) is a formula since A is a
formula

– (A ^ (:A)) is a formula since A
and and (:A) are formulae

– (:(A ^ (:A)) is a formula since
(A ^ (:A)) is a formula

The derivation
tree of the for-
mula is:

�

�

:

:

^

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 8 — ľ P. Cousot, 2005

Abstract syntax

– In practice we avoid parentheses thanks to priorities:

- : has highest priority (evaluated first)

- ^ has lowest priority (evaluated second)

- ^ is left associative (evaluation from left to right)

For example, :A^:B ^C stands for (:A)^ (:B)^C
which stands for ((:A) ^ (:B)) ^ C

– The derivation tree is given by the following abstract
grammar: ffi ::= X

j ffi1 ^ ffi2
j :ffi

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 9 — ľ P. Cousot, 2005

Propositional identities

Abbreviations (de Morgan laws)

ffi1 _ ffi2
def
= :(:ffi1 ^ :ffi2)

ffi1 =) ffi2
def
= :ffi1 _ ffi2

ffi1(= ffi2
def
= ffi2 =) ffi1

ffi1 () ffi2
def
= (ffi1 =) ffi2) ^ (ffi1(= ffi2)

ffi1 _ ffi2
def
= (ffi1 _ ffi2) ^ :(ffi1 ^ ffi2)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 10 — ľ P. Cousot, 2005

Free variables of proopositional formulae

The set FV(ffi) of free variables appearing in a formula
ffi is defined by structural induction as follows:

FV(X)
def
= fXg

FV(:ffi)
def
= FV(ffi)

FV(ffi1 ^ ffi2)
def
= FV(ffi1) [FV(ffi2)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 11 — ľ P. Cousot, 2005

Semantics of the
propositional classical logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 12 — ľ P. Cousot, 2005

Booleans

We define the booleans B
def
= ftt; ¸g and boolean opera-

tors by the following truth table:

& tt ¸

tt tt ¸

¸ ¸ ¸

:

tt ¸

¸ tt

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 13 — ľ P. Cousot, 2005

Environment/Assignment

– An environment 1  2 V n7! B assigns boolean values
(X) to free propositional variables X.

– An example of assignment is  = fX ! tt; Y ! ¸g
such that (X) = tt, (Y) = ¸ and the value for all
other propositional variables Z 2 V n fX; Y g is unde-
fined

1 Also called assignment in logic.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 14 — ľ P. Cousot, 2005

Tarskian/model-theoretic semantics of the
classical propositional logic

The semantics 2 S 2 F 7! (V 7! B) 7! B of a proposi-
tional formula ffi assign a meaning S�ffi� to the formula
for any given environment  3:

S�X�
def
= (X)

S�:ffi�
def
= :(S�ffi�)

S�ffi1 ^ ffi2�
def
= S�ffi1�& S�ffi2�

2 Also called an interpretation in logic
3 Hilbert used instead an arithmetic interpretation where 0 is true and 1 is false.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 15 — ľ P. Cousot, 2005

Models

 is a model of ffi (or that  satisfies ffi) if and only if:

S�ffi� = tt

which is written:

 ‚ ffi

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 16 — ľ P. Cousot, 2005

Entailment

– A set ` 2 }(F) of formulae entails ffi whenever:

8 : (8ffi0 2 ` :  ‚ ffi0) =)  ‚ ffi

which is written:

` ‚ ffi

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 17 — ľ P. Cousot, 2005

Validity

– We say that ffi is valid if and only if:

8 2 (V 7! B) : S�ffi� = tt

which is written:

‚ ffi

(i.e. ffi is a tautaulogy, always true)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 18 — ľ P. Cousot, 2005

Examples of tautologies
P =) P

(::P) =) P

P =) (::P)

P =) (Q =) P)

P =) (Q =) Q)

(:P =) P) =) P

P =) (:P =) Q)

:P =) (P =) Q)

(:(P =) P)) =) Q

P =) (:(P =) :P))

(P =) :P) =) :P

(:(P =) Q)) =) P

(:(P =) Q)) =) (::P)

(:(P =) Q)) =) :Q

(P =) :P) =) (P =) Q)

(P =) Q) =) (:Q =) :P)

(P =) :Q) =) (Q =) :P)

(:P =) :Q) =) (Q =) P)

(:P =) :Q) =) (:P =) Q) =) P)

(:(P =) Q)) =) (Q =) R)

(:(P =) Q)) =) (:P =) R)

(P =) Q) =) ((Q =) R) =) (P =) R))

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 19 — ľ P. Cousot, 2005

Satisfiability/Unsatisfiability

– A formula ffi 2 F is satisfiable if and only if:

9 2 (V 7! B) : S�ffi� = tt

– A formula ffi 2 F is unsatisfiable if and only if:

8 2 (V 7! B) : S�ffi� = tt

(i.e. ffi is a antilogy, always false)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 20 — ľ P. Cousot, 2005

Satisfiability/Validity/Unsatisfiability

��������

	�
��
����� ����
��
�����

�����

	���
�����
����
	���
�����
����

�������
���

�������
����

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 21 — ľ P. Cousot, 2005

Deductive system for the
classical propositional logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 22 — ľ P. Cousot, 2005

Hilbert deductive system

– Axiom schemata 4:
(1) ffi _ ffi =) ffi 5

(2) ffi =) ffi0 _ ffi 6

(3) (ffi =) ffi0) =) (ffi00 _ ffi =) ffi0 _ ffi00) 7

– Inference rule schema 4:

(MP)
ffi; ffi =) ffi0

ffi0
8 modus ponens

4 to be instanciated for all possible formulae ffi; ffi0; ffi00 2 F
5 i.e. :(:(:ffi ^ :ffi)) _ ffi)
6 i.e. :(::ffi ^ ::(:ffi ^ :ffi0))
7 i.e; :(:ffi _ ffi0) _ (:(ffi00 _ ffi) _ (ffi0 _ ffi00)) where ffi1 _ ffi2

def

= :(:ffi1 _ :ffi2)

8 i.e.
ffi; :ffi _ ffi0

ffi0

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 23 — ľ P. Cousot, 2005

Hilbert derivation

– A derivation from a set ` 2 }(F) of hypotheses is a finite
nonempty sequence:

ffi1; ffi2; : : : ; ffin n – 0

of formulae such that for each ffii, i = 1; : : : ; n, we have:
- ffii is a element of ` (hypothesis)

- ffii is an axiom

- ffii is the conclusion of an inference rule
ffi1i ; : : : ; ffi

k
i

ffii
such

that fffi1i ; : : : ; ffi
k
i g „ fffi1; ffi2; : : : ; ffin`1g

9

9 So that the premises have already been proved.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 24 — ľ P. Cousot, 2005

Hilbert proof

– A proof is a derivation from ;

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 25 — ľ P. Cousot, 2005

Example of proof

(ffi _ ffi =) ffi) =) (:ffi _ (ffi _ ffi) =) ffi _ :ffi)

�[instance of (3)] (a)�

ffi _ ffi =) ffi �[instance of (1)] (b)�

:ffi _ (ffi _ ffi) =) (ffi _ :ffi) �[(a), (b) and (MP)] (c)�

= (ffi =) (ffi _ ffi)) =) ffi _ :ffi �def. =) abbreviation�

ffi =) (ffi _ ffi) �[instance of (2)] (d)�

ffi _ :ffi �[(c), (d) and (MP)]�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 26 — ľ P. Cousot, 2005

Hilbert provability

– ffi 2 F is provable from ` 2 }(F) (or ` proves ffi) iff
there is a proof of ffi from ` , written:

` ‘ ffi

where the deduction system (axioms and inference rules)
are understood from the context.

– ; ‘ ffi is written ‘ ffi

This is the proof-theoretic semantics of first-order logic.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 27 — ľ P. Cousot, 2005

Example of provability

‘ :ffi _ ::ffi

Proof.

Replace ffi by :ffi is the previous proof of ffi _ :ffi.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 28 — ľ P. Cousot, 2005

Soundness of a deductive system

Provable formulae do hold:

` ‘ ffi =) ` ‚ ffi

Proof.

The proof for propositional logic is by induction on the length of the formal
proof of ffi from ` .

A proof of length one, can only use a formula ffi in ` which is assumed
to hold (i.e. S�ffi� = tt) or an axiom that does hold as shown below.

– S�ffi _ ffi =) ffi�
= S�:(:(:ffi ^ :ffi))� def. _
= :(:(:(S�ffi�)&:(S�ffi�))) def. S
= :(S�ffi�)&:(S�ffi�) def. :
= :(¸) def. &

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 29 — ľ P. Cousot, 2005

= tt def. :
– The proof is similar for the other two axioms.

A proof of length n + 1, n – 1 is an initial proof ffi0; : : : ; ffin`1 of length
n followed by a formula ffin. By induction hypothesis, we have S�ffii� = tt,
i = 1; : : : ; n` 1.

If ffin 2 ` or ffin is an axiom then S�ffin� = tt as shown above.
Otherwise, ffin is derived by the modus ponens inference rule (MP). In

that case, we have k, 0 » k < n such that S�ffik� = tt and S�ffik =) ffin� = tt
so (S�ffik� =) S�ffin�) = tt where the truth table of =) is derived from the
definition of =) and that of : and ^ as follows:

=) ¸ tt

¸ tt tt

tt ¸ tt

Since S�ffik� = tt the truth table of =) shows than the only possibility for
(S�ffik� =) S�ffin�) = tt is S�ffin� = tt.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 30 — ľ P. Cousot, 2005

Consistency of a deductive system

Absence of contradictory proofs

:(9` : ` ‘ ffi ^ ` ‘ :ffi)

A sound deductive system is consistent.
Proof.

By reduction ad absurdum assume inconsistency 9` : ` ‘ ffi ^ ` ‘ :ffi. By
soundness ` ‚ ffi ^ ` ‚ :ffi whence for all  such that 8ffi0 2 ` :  ‚ ffi0, we
have S�ffi� = tt and S�:ffi� = tt = :S�ffi� = :tt = ¸ which is the desired
contradiction since tt 6= ¸.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 31 — ľ P. Cousot, 2005

Negative normal form

A formula is in negative normal form iff it can be parsed
by the following grammar:

ffi ::= ffi _ ffi

j ffi ^ ffi

j ’

’ ::= X

j :X

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 32 — ľ P. Cousot, 2005

Normalization in negative normal form

nnf(:ffi)
def
= nnf(ffi)

nnf(ffi1 _ ffi2)
def
= nnf(ffi1) _ nnf(ffi2)

nnf(ffi1 ^ ffi2)
def
= nnf(ffi1) ^ nnf(ffi2)

nnf(:ffi)
def
= nnf(ffi)

nnf(ffi1 _ ffi2)
def
= nnf(ffi1) ^ nnf(ffi2)

nnf(ffi1 ^ ffi2)
def
= nnf(ffi1) _ nnf(ffi2)

nnf(X)
def
= X

nnf(X)
def
= :X

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 33 — ľ P. Cousot, 2005

A formula ffi is equivalent to its negative normal form
nnf(ffi) is that:

‘ ffi if and only if ‘ nnf(ffi)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 34 — ľ P. Cousot, 2005

Conjunctive normal form
A formula is in conjunctive normal form iff it can be
parsed by the following grammar:

ffi ::= ffi^

ffi^ ::= ffi^ ^ ffi^

j ffi_

ffi_ ::= ffi_ _ ffi_

j ’

’ ::= X

j :X

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 35 — ľ P. Cousot, 2005

Normalization in conjunctive normal form

Any formula ffi can be put in equivalent conjunctive nor-
mal form by applying the following transformations to
nnf(ffi):

ffi0 _ (ffi1 ^ ffi2) � (ffi0 ^ ffi1) _ (ffi
0 ^ ffi2)

(ffi1 _ ffi2) ^ ffi
0
� (ffi1 _ ffi

0) ^ (ffi2 _ ffi
0)

A formula ffi is equivalent to its conjunctive normal form
ffi^ in that:

‘ ffi if and only if ‘ ffi^

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 36 — ľ P. Cousot, 2005

Completeness of a deductive system

Formulae which hold are provable:

` ‚ ffi =) ` ‘ ffi

The very first proof for propositional logic was given by
Bernays (a student of Hilbert) [2]. The better known
proof is that of Post [3].
Reference

[2] Richard Zach. “Completeness before Post: Bernays, Hilbert, and the development of propositional logic”,
Bulletin of Symbolic Logic 5 (1999) 331–366.

[3] Ryan Stansifer. “Completeness of Propositional Logic as a Program”, Florida Institute of Technology, Mel-
bourne, Florida, March 2001.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 37 — ľ P. Cousot, 2005

Bernay’s proof can be sketched as follows. Every formula is interderivable with its conjunctive

normal form. A conjuction is provable if and only if each of its conjuncts is provable. A

disjunction of propositional variables or negations of proprositional variables if and only if it

contains a variable and its negation, and conversely, every such disjunction is provable. So a

formula is provable if and only if every conjunct in its normal form contains a variable and

its negation. Now suppose that ffi is a valid (‚ ffi) but underivable formula. Its conjunctive

normal form ffi^ is also underivable, so it must contain a conjunct ffi0 where every variable

occurs only negated or unnegated but not both. If ffi where added as a new axiom (so that

‚ ffi implies soundness of the new deductive system), then ffi^ and ffi0 would also be derivable.

By substituting X for every unnegated variable and (:X) for every negated variable in ffi0,

we would obtain X as a derivable formula (after some simplification), and the system would

be inconsistent, which is the desired contradiction.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 38 — ľ P. Cousot, 2005

Classical first-order logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 39 — ľ P. Cousot, 2005

Syntax of the
classical first-order logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 40 — ľ P. Cousot, 2005

Lexems

The lexems are the basic constituants of the formal lan-
guage.

– symbols: (, ,,), ^, :, 8, . . .

– constants: a; b : : : 2 C denote individual objects of the
universe of discourse

– variables: x; y; : : : 2 V denote unknown but fixed 10

objects of the universe of discourse

10 Different instances of the same variable in a given scope of a formula always denote the same unkown
individal object of the universe of discourse. This is not true of imperative computer programs.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 41 — ľ P. Cousot, 2005

– function symbols: fnn; gnn; : : : 2 Fn denote fonctions

of arity n. We let F0
def
= C and F =

S
n2NF

n. For
short we write f instead of fnn when the arity n is
understood

– relation symbols: rnn; nn; : : : 2 Rn denote fonctions

of arity n. We let B
def
= ftt; ¸g and R =

S
n2NR

n. For
short we write r instead of rnn when the arity n is
understood

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 42 — ľ P. Cousot, 2005

Terms

Terms t 2 T denote individual objects of the universe of
discourse computed by applying fonctions to constants
or variables:

t ::= c

j x

j fnn(t1; : : : ; tn)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 43 — ľ P. Cousot, 2005

Atomic formulæ

Atomic formulæ A 2 A are used to state elementary
facts about objects of the universe of discourse:

A ::= rnn(t1; : : : ; tn)

Example:

– z is a variable whence a term

– ˜n2(+n2(x; 1); y) is a term

– »n2 is a relation symbol whence»n2(˜n2(+n2(x; 1); y); z) 11

is an atomic formula

11 written ((x+ 1) ˜ y) » z in infix form

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 44 — ľ P. Cousot, 2005

First-order formulae

The set ˘ 2 L of first-order formulae (of the first-order
language L) is defined by the following grammar

˘ ::= A A 2 A

j 8x : ˘ x 2 V

j ˘1 _ ˘2

j :˘

9x : ˘ is a shorthand for :(8x : (:˘))

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 45 — ľ P. Cousot, 2005

Bound variables

Bound variables appear under the scope of a quantifier:

bv(8x : ˘)
def
= fxg [bv(˘)

bv(˘1 _ ˘2)
def
= bv(˘1) [bv(˘2)

bv(:˘)
def
= bv(˘)

bv(rnn(t1; : : : ; tn))
def
= ;

bv(c)
def
= ;

bv(x)
def
= ;

bv(fnn(t1; : : : ; tn)
def
= ;

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 46 — ľ P. Cousot, 2005

Free variables
Free variables are not bound by a quantifier:

fv(8x : ˘)
def
= fv(˘) n fxg

fv(˘1 _ ˘2)
def
= fv(˘1) [fv(˘2)

fv(:˘)
def
= fv(˘)

fv(rnn(t1; : : : ; tn))
def
=
Sn
i=1 fv(ti)

fv(c)
def
= ;

fv(x)
def
= fxg

fv(fnn(t1; : : : ; tn)
def
=
Sn
i=1 fv(ti)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 47 — ľ P. Cousot, 2005

Theories

– The set of variables of a formula is var(˘)
def
= bv(˘) [

fv(˘)

– A closed sentence (or ground formula) is a formula ˘
with no free variable (so that fv(˘) = ;

– A theory is a set of closed sentences

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 48 — ľ P. Cousot, 2005

Substitution

– Substitution is a syntactic replacement of a variable by
a term, may be with appropriate renaming of bound
variables, so as to avoid capturing the term free vari-
ables, as in

9x : x = y + 1[y := x]

6! 9x : x = x+ 1

but should be

! 9x0 : x0 = x+ 1

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 49 — ľ P. Cousot, 2005

A substitution ff 2 V 7! T is a function from variables
to terms with finite domain:

dom(ff)
def
= fx 2 V j x 6= ff(x)g (finite domain)

rng(ff)
def
= fff(x) j x 2 dom(ff)g (range)

yld(ff)
def
=
[
ffv(t) j t 2 rng(ff)g (yield)

We write ff as:
[x1 ff(x1); : : : ; xn ff(xn)]

where dom(ff) = fx1; : : : ; xng.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 50 — ľ P. Cousot, 2005

Application of a substitution to a term

ff(c)
def
= c

ff(y)
def
= y iff y 62 dom(ff)

ff(f(t1; : : : ; tn))
def
= f(ff(t1); : : : ; ff(tn))

ff(r(t1; : : : ; tn))
def
= r(ff(t1); : : : ; ff(tn))

ff(:˘)
def
= :ff(˘)

ff(˘1 _ ˘2)
def
= ff(˘1) _ ff(˘2)

ff(8x : ˘)
def
= 8x0 : ff(˘[x := x0]) where

x0 62 yld(ff) [(fv(˘) n fxg)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 51 — ľ P. Cousot, 2005

Example of substitution in a term

(9x : x = y + 1)[y := x]

= 9x0 : ((x = y + 1)[x := x0])[y := x]

= 9x0 : ((x)[x := x0] = (y)[x := x0] + (1)[x := x0])[y := x]

= 9x0 : (x0 = y + 1)[y := x]

= 9x0 : ((x0)[y := x] = (y)[y := x] + (1)[y := x])

= 9x0 : ((x0)[y := x] = (y)[y := x] + (1)[y := x])

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 52 — ľ P. Cousot, 2005

Semantics of the
classical first-order logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 53 — ľ P. Cousot, 2005

Interpretation

An interpretation I is defined by:

– A domain of discourse DI (or domain of interpreta-
tion)

– An interpretation I�f� 2 DmI 7! DI for each function
symbol f 2 Fm, m – 0 (including constants)

– An interpretation I�r� 2 DmI 7! B for each relation
symbol r 2 Rm, m – 0

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 54 — ľ P. Cousot, 2005

Environment/Assignment

– An environment/assignment  2 V 7! DI assigns a
value (x) to each variable x 2 V

Assignment notation: if f 2 A 7! B, a 2 A, b 2 B then
f [a := b] = f 0 2 A 7! B such that:

f 0(a) = b i.e. f [a := b](a) = b

f 0(x) = f(x) whenever x 6= a i.e. f [a := b](x) = f(x)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 55 — ľ P. Cousot, 2005

Semantics of the first-order logic

Given an interpretation I, the semantics is:

SI�t� 2 (V 7! DI) 7! DI

SI�c�
def
= I�c�

SI�x�
def
= (x)

SI�f(t1; : : : ; tn)�
def
= I�f�(SI�t1�; : : : ;S

I�tn�)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 56 — ľ P. Cousot, 2005

SI�A� 2 (V 7! DI) 7! B

SI�r(t1; : : : ; tn)�
def
= I�r�(SI�t1�; : : : ;S

I�tn�)

SI�˘� 2 (V 7! DI) 7! B

SI�:˘�
def
= :(SI�g˘�)

SI�˘1 _ ˘2�
def
= SI�˘1� _ S

I�˘2�

SI�8x : ˘�
def
=
^

12

v2DI

SI�˘�[x := v]

12 If S „ B then
V
S
def

= (S „ fttg).

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 57 — ľ P. Cousot, 2005

It follows that for the abbreviations, we have:

SI�˘1 =) ˘2�
def
= SI�˘1� =) S

I�˘2�

SI�9x : ˘�
def
=
_

v2DI

SI�˘�[x := v]

where:
=) ¸ tt

¸ tt tt

tt ¸ tt

_ ¸ tt

¸ ¸ tt

tt tt tt

and if S „ B then
W
S
def
= (S \ fttg 6= ;).

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 58 — ľ P. Cousot, 2005

Semantics of substitution

Assignment is the semantic counterpart of syntactic sub-
stitution:

SI�ff(˘)� = SI�˘�0

where 8x 2 V : 0(x) = SI�ff(x)�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 59 — ľ P. Cousot, 2005

Lemma

If x 62 fv�t� then
8 2 V 7! DI : 8v 2 DI : S

I�t� = SI�t�[x := v]
Proof.

– The case t = x is disallowed by x 62 fv�x� = fxg

– If y 6= x then x 62 fv�y� = fyg and SI�y� = (y) = [x := v](y) =
SI�y�[x := v]

– SI�f(t1; : : : ; tn)�
= I�f�(SI�t1�; : : : ;SI�tn�)
= I�f�(SI�t1�[x := v]; : : : ;SI�tn�[x := v]) by induction hypothesis since
8i : x 62 fv�ti�
= SI�f(t1; : : : ; tn)�[x := v]

– SI�r(t1; : : : ; tn)�
= I�r�(SI�t1�; : : : ;SI�tn�)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 60 — ľ P. Cousot, 2005

= I�r�(SI�t1�[x := v]; : : : ;SI�tn�[x := v]) by induction hypothesis since
8i : x 62 fv�ti�
= SI�r(t1; : : : ; tn)�[x := v]

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 61 — ľ P. Cousot, 2005

Proof of the theorem

Proof.

By structural induction on formulae

– SI�ff(c)� = SI�c� = I�c� = SI�c�0

– SI�ff(x)� = 0(x) = SI�x�0

– SI�ff(f(t1; : : : ; tn))�
= SI�f(ff(t1); : : : ; ff(tn))�
= I�f�(SI�ff(t1)�; : : : ;SI�ff(ff(tn)�)
= I�f�(SI�t1�0; : : : ;SI�tn�0

= SI�f(t1; : : : ; tn)�0)

proving that 8t : SI�ff(t)� = SI�t�0

– SI�ff(r(t1; : : : ; tn))�
= SI�r(ff(t1); : : : ; ff(tn))�
= I�r�(SI�ff(t1)�; : : : ;SI�ff(ff(tn)�)
= I�r�(SI�t1�0; : : : ;SI�tn�0

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 62 — ľ P. Cousot, 2005

= SI�r(t1; : : : ; tn)�0)

proving that 8A : SI�ff(A)� = SI�A�0

– SI�ff(:˘)� = SI�:ff(˘)� = :(SI�ff(˘)�) = :(SI�˘�0) = SI�:˘�0

– SI�ff(˘1_˘2)�= SI�ff(˘1)_ff(˘2)�= SI�ff(˘1)�_SI�ff(˘2)�= SI�˘1�0_
SI�˘2�

0 = SI�˘1 _ ˘2�0

– SI�ff(8x : ˘)�

= SI�8x0 : ff(˘[x := x0])�

�where x0 62 yld(ff) [(fv(˘) n fxg)�

= SI�8x0 : ff([x x0] 13(˘))�

= SI�8x0 : (ff ‹ [x x0]) 14(˘))�

=
^

v2DI

SI�(ff ‹ [x x0])(˘))�[x0 := v]

=
^

v2DI

SI�ffi�
`
–y .SI�(ff ‹ [x x0])(y))�[x0 := v]

´
�by induction hypothesis�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 63 — ľ P. Cousot, 2005

=
^

v2DI

SI�ffi�(–y . (y = x ? SI�(ff ‹ [x x0])(y))�[x0 := v] : SI�(ff ‹ [x

x0])(y))�[x0 := v]) 15)

=
^

v2DI

SI�ffi�(–y . (y = x ? SI�ff(x0)�[x0 := v] : SI�ff(y)�[x0 := v]))

=
^

v2DI

SI�ffi�(–y . (y = x ? SI�x0�[x0 := v] : SI�ff(y)�[x0 := v]))

�since x0 62 yld(ff) so that ff(x0) = x0�

=
^

v2DI

SI�ffi�(–y . (y = x ? v : SI�y�0))

�since

- SI�x0�[x0 := v] = [x0 := v](x0) = v

- x0 62 yld(ff) so that x0 2 fv�ff(y)� hence, by the lemma,
SI�ff(y)�[x0 := v] = SI�ff(y)� = SI�y�0 by induction hypoth-
esis

�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 64 — ľ P. Cousot, 2005

=
^

v2DI

SI�ffi�(–y . (y = x ? v : 0(y)))

=
^

v2DI

SI�ffi�(0[x := v])

= SI�8x : ffi�0

13 The function [x x0] is the substitution of x0 for x
14 ‹ is function composition f ¨ compg(x)

def

= f(g(x))
15 The conditional is (tt ? a : b) = a and (¸ ? a : b) = b and (a ? b Ü c ? d : e) = (a ? b : (c ? d : e))

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 65 — ľ P. Cousot, 2005

Deductive system for the
classical first-order logic

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 66 — ľ P. Cousot, 2005

Deduction system for first-order logic (H)

– Axioms (for all instances of formulae ˘, ˘0, ˘0, variable
x and term t):

(1) ˘ _ ˘ =) ˘

(2) ˘ =) ˘0 _ ˘

(3) (˘ =) ˘0) =) (˘00 _ ˘ =) ˘0 _ ˘00)

(4) 8x : ˘ =) ˘[x := t]

(5) (8x : ˘ _ ˘0) =) ˘ _ 8x : ˘0 when x 62 fv(˘)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 67 — ľ P. Cousot, 2005

– Inference rules (for all instances of formulae ˘, ˘0 and
variable x):

(MP)
˘; ˘ =) ˘0

˘0
Modus Ponens

(Gen)
˘

8x : ˘
Generalization

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 68 — ľ P. Cousot, 2005

Example 1 of proof

˘[x := t] =) :8x : :˘ (i.e. 9x : ˘)
Proof. (assuming tautologies for short)

(a) 8x : :˘ =) (:˘)[x := t] �instance of (4)�

(b) (˘ =) ˘0) =) (:˘0 =) :˘) �contraposition tautology�

(b’) (8x : :˘ =) (:˘)[x := t]) =) :((:˘)[x := t]) =) :8x : :˘ �tautology,
instance of (b)�

(c) :((:˘)[x := t]) =) :8x : :˘ �(a), (b’) and (MP)�

(c’) ::(˘[x := t]) =) :8x : :˘ �def. substitution�

(d) (::˘ =) :˘0) =) (˘ =) :˘0) �tautology�

(d’) (::(˘[x := t]) =) :8x : :˘) =) (˘[x := t] =) :8x : :˘) �tautology�

(e) ˘[x := t] =) :8x : :˘ �(c), (d’) and (MP)�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 69 — ľ P. Cousot, 2005

Example 2 of proof

f˘ =) ˘0g ‘ :8x : :˘ =) ˘0 when x 62 fv(˘0)

Proof. (assuming tautologies for short)

(a) ˘ =) ˘0 �hypothesis�

(b) (˘ =) ˘0) =) (:˘0 =) :˘) �contraposition tautology�

(c) :˘0 =) :˘ �(a), (b) and (MP)�

(c’) ::˘0 _ :˘ �def. abbreviation =)�

(d) 8x : (::˘0 _ :˘) �(c’), (Gen)�

(e) ::˘0 _ 8x : :˘ �(d), (5), x 62 fv(::˘0) = fv(˘0)�

(f) :˘0 =) 8x : :˘ �def. abbreviation =)�

(g) (:˘0 =) 8x : :˘) =) (:8x : :˘ =) ::˘0) �contraposition tautology�

(h) :8x : :˘ =) ::˘0 �(f), (g) and (MP)�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 70 — ľ P. Cousot, 2005

(i) (˘ =) ::˘0) =) (˘ =) ˘0) �tautology�

(i’) (:8x : :˘ =) ::˘0) =) (:8x : :˘ =) ˘0) �tautology, instance of (i)�

(j) :8x : :˘ =) ˘0 �(h), (i’) and (MP)�

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 71 — ľ P. Cousot, 2005

Extension of the deduction system (H) for
first-order logic

These theorems are often incorporated to the deductive
system as an axiom

˘[x := t] =) 9x : ˘

and a generalization rule:

˘ =) ˘0

(9x : ˘) =) ˘0
when x 62 fv(˘)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 72 — ľ P. Cousot, 2005

Logical equivalences involving quantifiers and
negations

– :8x : ˘ () 9x : :Phi De Morgan laws
– :9x : ˘ () 8x : :˘

– (8x : ˘ ^ 8x : ˘) () 8x : (˘ ^ ˘0)

– (9x : ˘ _ 8x : ˘) () 9x : (˘ _ ˘0)

– (˘ =) ˘0) =) (9x : ˘ =) ˘0) when x 62 fv(˘0)
– (˘ =) ˘0) =) (˘ =) 8x : ˘0) when x 62 fv(˘0)
– 8x : (˘ _ ˘0) () (8x : ˘) _ ˘0 when x 62 fv(˘0)

– 9x : (˘ ^ ˘0) () (9x : ˘) ^ ˘0 when x 62 fv(˘0)
– ˘ () 8x : ˘ when x 62 fv(˘0)
– ˘ () 9x : ˘ when x 62 fv(˘0)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 73 — ľ P. Cousot, 2005

Properties of the deduction system (H) for
first-order logic

– The Hilbert style deductive system (H) is sound, con-
sistent, compact 16 and complete [4] for the first-order-
logic.

Reference

[4] Kurt Gödel. “Die Vollständigkeit der Axiome des logischen Funktionen-kalküls”, Monatshefte für Mathe-
matik und Physik 37 (1930), 349-360.

16 ` ‘ ˘ if and only if ` 0 ‘ ˘ for a finite subset ` 0 of ` .

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 74 — ľ P. Cousot, 2005

– The Hilbert style deductive system (H) is not decid-
able [5].

– Proofs cannot be fully automated: there is no termi-
nating algorithm that, given a first-order formula ˘ as
input, returns true whenever ˘ is classically valid.

Reference

[5] Kurt Gödel. “Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, I”.
Monatshefte für Mathematik und Physik 38, 173–198, 1931.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 75 — ľ P. Cousot, 2005

The theory axiomatizing equality
Writing = n2(A;B) as A = B, the theory axiomatizing equality
is first-order logic plus the following axioms:
– 8x : x = x reflexivity
– 8x : 8y : (x = y) =) (y = x) symmetry
– 8x1 : : : : 8xn : 8y1 : : : : 8yn : (x1 = y1 ^ : : : ^ xn = yn) =)
(f(x1; : : : ; xn) = f(y1; : : : ; yn)) Leibnitz functional congruence
– 8x1 : : : : 8xn : 8y1 : : : : 8yn : (x1 = y1 ^ : : : ^ xn = yn) =)
(r(x1; : : : ; xn) = r(y1; : : : ; yn)) Leibnitz relational congruence
– 8x : 8y : 8z : (x = y ^ y = z) =) (x = z) transitivity

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 76 — ľ P. Cousot, 2005

Peano arithmetic [6]

– Constant symbols: 0

– Functional symbols: s (sucessor), +, ˆ

– Relation symbols: =, »

– Axioms:
- 8x : x = x reflexivity
- 8x : 8y : (x = y) =) (y = x) symmetry
- 8x : 8y : 8z : (x = y ^ y = z) =) (x = z) transitivity

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 77 — ľ P. Cousot, 2005

- 8x : 8y : (x = y) =) (s(x) = s(y)) congruence
- 8x : 8y : 8z : 8t : (x = z ^ t = t) =) (x+ y = z + t)
- 8x : 8y : 8z : 8t : (x = z ^ t = t) =) (xˆ y = z ˆ t)
- 8x : 8y : 8z : 8t : (x = z ^ t = t) =) (x » y = z » t)
- 8x : (x = 0) _ (9y : x = s(y)) every natural but 0 is
a successor
- 8x : :(s(x) = 0) 0 is not a successor
- 8x : 8y : (s(x) = s(y)) =) (x = y) s is injective so
every nonzero natural has a unique predecessor
- 8x : x+ 0 = x def. addition
- 8x : 8y : s+ s(y) = s(x+ y)

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 78 — ľ P. Cousot, 2005

- 8x : xˆ 0 = 0 def. multiplication
- 8x : 8y : xˆ s(y) = (xˆ y) + x
- ((˘)[x := 0] ^ (8x : ˘ =) (˘)[x := s(x)]) =) (8x :
˘) recurrence (for all instances of ˘)

Reference

[6] Giuseppe Peano. Arithmetices principia, nova methodo exposita. Augustae Taurinorum, Ed. Fratres Bocca,
1889. – XVI, 20 p.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 79 — ľ P. Cousot, 2005

Non standard integers

This axiomatization formalizes natural numbers but does
not exclude “non standard models” of the form:

0 1 2 3`20 `10 00 10 20 . . . `21 `11 01 11 21

. . . `22 `12 02 12 22

Excluded by the second-order logic induction axiom 17:

8P : (P (0) ^ (8x : P (x) =) P (s(x)))) =) 8x : P

17 The difference is that there is a denumerable infinity of instances of ˘ while there can be a non-denumerable
infinity of P s, see G.S.Boolos and R.C.Jeffrey, “Computability and Logic”, Cambridge University Press, 1974,
1980, 1989, Section 17, pp.193-195.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 80 — ľ P. Cousot, 2005

THE END

My MIT web site is http://www.mit.edu/~cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 81 — ľ P. Cousot, 2005

