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Formal logics

A formal logic consists of:
— aformal or informal language (formula expressing facts)

— a model-theoretic semantics (to define the meaning of
the language, that is which facts are valid)

— a deductive system (made of axioms and inference
rules to formaly derive theorems, that is facts that
are provable)
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George Boole  David Hilbert Gottlob Frege

_ Reference

[1] Jean van Heijenoort, editor. “From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931".
Harvard University Press, 1967.
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Questions about formal logics

The main questions about a formal logic are:

— The soundness of the deductive system: no provable
formula is invalid

— The completeness of the deductive system: all valid
formulea are provable
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Propositional classical logic

Classical propositional logic

— X € V are variables denoting unknown true or false
facts

— The set of formule ¢ € F of the propositional logic
are defined by the following grammar:

¢ =X
| (411 ¢2)
| (—9)
— The relation “is a subformula of” is well founded, whence
can be used for structural definitions and proofs
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Example of formulae
— A is a variable whence a formula The derivation
— (—A) is a formula since A is a | tree of the for-
Syntax of the formula mula 1s:
classical propositional logic ~ (A (4)) is a formula since A
and and (—A) are formulae
- (=(A A (—A)) is a formula since A
(AN (—A)) is a formula / \
A .
A
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Abstract syntax

— In practice we avoid parentheses thanks to priorities:
- — has highest priority (evaluated first)
- A has lowest priority (evaluated second)
- A is left associative (evaluation from left to right)
For example, ~AA—-B AC stands for (mA)A(—B)AC
which stands for ((—A4) A (—=B)) AC
— The derivation tree is given by the following abstract
grammar: ¢ = X
| ¢1A P2
| ¢
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Free variables of proopositional formulae

The set FV(¢) of free variables appearing in a formula
¢ is defined by structural induction as follows:

FV(X) = {X}

FV(-¢) & FV(g)

FV(¢1 A ¢2) & FV($1) UFV(¢2)
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Propositional identities
Abbreviations (de Morgan laws)

def

$1V P2 = ~(=d1 A o)
$1 = ¢2 = =1 V ¢

¢1<:¢2d§f¢2:>¢1
b1 = ¢2 = (¢1 = o) A (¢1 = ¢o)
def

$1V o = (¢1V $2) A (1 A $2)

m
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Semantics of the
propositional classical logic

T
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Booleans

We define the booleans B & {tt, ff} and boolean opera-
tors by the following truth table:

Tarskian/model-theoretic semantics of the
classical propositional logic

The semantics* S € F — (V — B) — B of a proposi-
tional formula ¢ assign a meaning S[¢]p to the formula

&| %] ff =
for any given environment p*:
|t ff | ff
def
ff | ff | ff ff S[X]p = p(X)
def __
S[-¢leo = =(S[elp)
def o>
Slp1 A d2lp = S[g1]p & S[p2]p
2 Also called an interpretation in logic
3 Hilbert used instead an arithmetic interpretation where 0 is true and 1 is false.
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Environment /Assignment

— An environment' p € V +» B assigns boolean values
p(X) to free propositional variables X.

— An example of assignment is p = {X — t#,Y — ff}
such that p(X) = t, p(Y) = ff and the value for all
other propositional variables Z € V \ {X,Y} is unde-

fined

1 Also called assignment in logic.

m
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Models
p is a model of ¢ (or that p satisfies ¢) if and only if:
S[glp =t
which 1s written:
pl-¢

T
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Entailment

— A set I' € p(F) of formulae entails ¢ whenever:
Vo: (V¢ €T:pl-¢) = plF ¢

which is written:

Examples of tautologies

P— P (~(P=Q)=P
(~P)=P (~(P=Q)) = (—P)

P = (-—P) ~(P=Q)= Q

P— (Q = P) (P=-P)= (P=Q)
P= (Q=Q) (P= Q)= (Q= —P)
(-P=P)=P (P= Q)= (Q= —P)
P— (-P = Q) (P = Q)= (@ = P)

I'k¢ P = (P = Q) (-P = Q) = (-P = Q) = P)
(~(P=P))=Q (~(P=Q)) = (@=R)
P = (=(P = —-P)) (-(P=Q)) = (-P = R)
(P= -P)= -P (P=Q) = (Q= R)= (P= R))
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Validity Satisfiability /Unsatisfiability

— We say that ¢ is valid if and only if:
Voe (V—B):S[gp]lp=1t
which is written:

[a

(i.e. ¢ is a tautaulogy, always true)

m
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— A formula ¢ € F is satisfiable if and only if:

dpe(V—DB):S[¢lp=1t

— A formula ¢ € F is unsatisfiable if and only if:
Vpe (V—B):S[p]lp=1t

(i.e. ¢ is a antilogy, always false)

T
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Satisfiability /Validity /Unsatisfiability

Formulae
Satisfiable

Unsatisfiable

Sometimes true
Sometimes false

Always false

Valid

Always true
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Hilbert deductive system

— Axiom schemata*:

(1) ¢V o= ¢°

(2) p=¢'Vvo°

(B) (p=4¢)= (@'Vo=9¢'v¢")"
— Inference rule schema®*:

p—=¢

¢,
MP
(MP) p

modus ponens

4 4o be instanciated for all possible formulae ¢, ¢/, ¢" € F

% L. (=@ A ¢)) V )

8 ie. (=g A (-¢ A )

Tie; (g V ¢) Vv (~(8"V §) V(¢ V ¢")) where g1 V ¢y Z ~(~¢1 V ~¢2)
8

., Ve
1.€. ;
¢
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Deductive system for the
classical propositional logic

m
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Hilbert derivation

— A derivation from a set I' € p(F) of hypotheses is a finite
nonempty sequence:

¢1;¢2,~--;¢n TLZO

of formulae such that for each ¢;, 2 = 1,...,n, we have:
- ¢; is a element of I' (hypothesis)
- ¢; is an axiom
L, ..., PF
- ¢; is the conclusion of an inference rule —+— "t

that {¢3:,7¢,]:;} g {¢1)¢27"'7¢’n—1}9

such
7

9 So that the premises have already been proved.

T
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Hilbert proof

— A proof is a derivation from 0
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Hilbert provability

— ¢ € F is provable from I' € p(F) (or I' proves ¢) iff
there is a proof of ¢ from I', written:

ree¢

where the deduction system (axioms and inference rules)
are understood from the context.

- 0 ¢ is written F ¢
This is the proof-theoretic semantics of first-order logic.

-
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Example of proof

(pVo=¢) = ("¢V(pV )= ¢V 9¢)
{ [instance of (3)] (a)§

pV=—= ¢ {[instance of (1)] (b)§
—pV (V)= (¢V9) U(2), (b) and (MP)] (c)}
= (p=(pV ) = V¢ (def. = abbreviation§
o= (¢ V) { [instance of (2)] (d)§
¢V g U(c), (d) and (MP)]§

-
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Example of provability

- —|¢ AV —|—|¢
PRrOOF.
Replace ¢ by —¢ is the previous proof of ¢ V —¢.
[
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Soundness of a deductive system

Provable formulae do hold:

F'-¢=—Tl¢

Proor.
The proof for propositional logic is by induction on the length of the formal
proof of ¢ from I

A proof of length one, can only use a formula ¢ in I" which is assumed
to hold (i.e. S[¢]p = t) or an axiom that does hold as shown below.

Consistency of a deductive system

Absence of contradictory proofs

=(Ar : '+ ¢ AT+ —¢)

A sound deductive system is consistent.

Proor.

By reduction ad absurdum assume inconsistency 3" : I' - ¢ AI'  —¢. By
soundness I' IF ¢ A I' I —¢ whence for all p such that V¢ € I' : p IF ¢/, we
have S[¢]p = t and S[~P]p = tt = =S[P]p = =tt = ff which is the desired
contradiction since t # ff. [I

- Slpveé= ¢lp
= S[-(=(=¢ A =9))lp def. v
= =(5E(S[9]p)&=(S[¢]0))) def. S
= 2(S[elp)&=(Sl¢lp) def. =
= =(f) def. &
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=t def. =

— The proof is similar for the other two axioms.

A proof of length n + 1, n > 1 is an initial proof ¢,..., ¢, 1 of length
n followed by a formula ¢,. By induction hypothesis, we have S[¢:]p = tt,
1=1,...,n—1.

If ¢, € I" or ¢, is an axiom then S[¢p,]p = tt as shown above.

Otherwise, ¢, is derived by the modus ponens inference rule (MP). In
that case, we have k, 0 < k < n such that S[¢i]p = tt and S[¢r = Pn]o =t
50 (S[¢x]p = S[¢n]p) = t where the truth table of = is derived from the
definition of = and that of = and A as follows:

:>fftt‘
ff tttt‘
% fftt‘

Since S[¢k]p = t the truth table of = shows than the only possibility for
(S[delo = Sl¢nlp) = tt is S[pn]p =t. L

-
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Negative normal form

A formula is in negative normal form iff it can be parsed
by the following grammar:

=09V
| NG
|
=X
| =X

T
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Normalization in negative normal form

def

nnf(~¢) & mmf(9)

def

nnf(¢1 V ¢2) = nnf(¢1) vV nnf(¢,)
nnf(¢; A ¢p) = nnf(¢) A nnf(y)

def

nnf(~¢) = nnf(g)
nnf(¢1 V ¢2) < nnf(¢1) A nnf(4,)
nnf(¢1 A ¢») = nnf(¢1) v nnf(4,)
nnf(X) € X

mnf(X) & -X
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Conjunctive normal form

A formula is in conjunctive normal form iff it can be
parsed by the following grammar:

¢ == ¢"
¢/\ e ¢/\ A ¢/\
| ¢
¢\/ e ¢\/ vV ¢\/
| X
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A formula ¢ is equivalent to its negative normal form
nnf(¢) is that:

F¢ if and only if + nnf(¢)

m
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Normalization in conjunctive normal form

Any formula ¢ can be put in equivalent conjunctive nor-
mal form by applying the following transformations to

nnf(¢p):

¢V (d1 A p2) ~ (¢ A1) V(¢ A @)
(p1Vd2) A ~ (p1V @) A (P2 V @)

A formula ¢ is equivalent to its conjunctive normal form
¢" in that:

¢ if and only if + ¢"

T
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Completeness of a deductive system

Formulae which hold are provable:

k¢ =—TFo¢

The very first proof for propositional logic was given by
Bernays (a student of Hilbert) [2]. The better known
proof is that of Post [3].

Reference

[2] Richard Zach. “Completeness before Post: Bernays, Hilbert, and the development of propositional logic”,
Bulletin of Symbolic Logic 5 (1999) 331-366.

[3] Ryan Stansifer. “Completeness of Propositional Logic as a Program”, Florida Institute of Technology, Mel-
bourne, Florida, March 2001.
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Classical first-order logic
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Bernay’s proof can be sketched as follows. Every formula is interderivable with its conjunctive
normal form. A conjuction is provable if and only if each of its conjuncts is provable. A
disjunction of propositional variables or negations of proprositional variables if and only if it
contains a variable and its negation, and conversely, every such disjunction is provable. So a
formula is provable if and only if every conjunct in its normal form contains a variable and
its negation. Now suppose that ¢ is a valid (IF ¢) but underivable formula. Its conjunctive
normal form ¢" is also underivable, so it must contain a conjunct ¢ where every variable
occurs only negated or unnegated but not both. If ¢ where added as a new axiom (so that
Ik ¢ implies soundness of the new deductive system), then ¢" and ¢’ would also be derivable.
By substituting X for every unnegated variable and (—X) for every negated variable in ¢,
we would obtain X as a derivable formula (after some simplification), and the system would

be inconsistent, which is the desired contradiction.

m
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Syntax of the
classical first-order logic

T
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Lexems

The lexems are the basic constituants of the formal lan-

guage.

— symbols: (, ,,), A, 1, V, ...

— constants: a,b... € C denote individual objects of the
universe of discourse

— variables: z,vy,... € V denote unknown but fixed*
objects of the universe of discourse

10 Different instances of the same variable in a given scope of a formula always denote the same unkown

individal object of the universe of discourse. This is not true of imperative computer programs.
- . o
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Terms

Terms t € 7 denote individual objects of the universe of
discourse computed by applying fonctions to constants
or variables:

o= !
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— function symbols: f\n,g\n,... € F" denote fonctions

of arity n. We let 70 % ¢ and F = (J, o F™ For
short we write f instead of f\n when the arity n is

understood

— relation symbols: r\n, p\n,... € R™ denote fonctions
of arity n. We let B & {t,ff} and R = |J,, ¢y R". For
short we write r instead of r\n when the arity n is

understood

-
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Atomic formulae

Atomic formulee A € A are used to state elementary
facts about objects of the universe of discourse:

A =r\n(t1,...,tn)

Example:
— z 1s a variable whence a term
- %\2(+\2(z,1),y) is a term

— <\2is arelation symbol whence <\2(*\2(+\2(z, 1), y), 2)

is an atomic formula

11 written ((z + 1) xy) < 2 in infix form

= R
III" Course 16.399: “Abstract interpretation”, Tuesday March 8th, 2005 — 44 — c) P. Cousot, 2005

—

1



First-order formulae

The set ¢ € L of first-order formulae (of the first-order
language £) is defined by the following grammar

P = A Ac A
| Vz:& zeV
| P1V P
| P

dz : & is a shorthand for —(Vz : (—9))
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Free variables
Free variables are not bound by a quantifier:

fr(vz : &) 2 fv(®) \ {z}
fr (B V B) X fu(B1) U fv(P2)
fr(—) ¥ fv ()
fv(r\n(ty, ..., tn)) = UL, fv(t;)
fr(c) & 0
fv(z) £ {z}
f(F\n(ts, ... tn) & UL (%)
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Bound variables

Bound variables appear under the scope of a quantifier:

bv(Vz : &) & {z} Ubv()
bv($1 V $3) & bv(1) U bv(Sy)

bv(—&) & bv($)

bv(r\n(ty,...,tn)) = 0
bv(c) £ 0
bv(z) & 0

bv(f\n(ty,...,tn) = 0
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Theories
— The set of variables of a formula is var(P) o bv(P) U
fv(®)
— A closed sentence (or ground formula) is a formula &
with no free variable (so that fv(®) =0

— A theory is a set of closed sentences

T
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Substitution

— Substitution is a syntactic replacement of a variable by
a term, may be with appropriate renaming of bound
variables, so as to avoid capturing the term free vari-
ables, as in

dz:z=y+ 1y := 7]
s de:z=z+1
but should be
— 3z =z+1
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Application of a substitution to a term

o(c) e

o(y) = y iff y ¢ dom(o)
o(f(t, ..., tn) & flo(t), ..., o(tn))
o(r(ts, ..., tn) & r(o(t1),. .., o(tn))
o(=®) £ ~o()
o($1V B2) T 0(81) V o(&)

oV : ) v o(®[z :=1z]) where
z’ ¢ yld(o) U (fv(2) \ {z})
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A substitution o € V — T 1is a function from variables
to terms with finite domain:

dom(o) & {reV]z#o(z)}

rng(0) & {o(z) | z € dom(c)}  (range)

yld(o) = | J{fv(t) | t € mg(0)} (vield)
We write o as:

[z1 < o(z1),...,2Zn < o(zy)]
where dom(o) = {z1,...,zn}.

(finite domain)

m
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Example of substitution in a term

Bz:z=y+ 1y :=2|
= % (e —y+ D=2y = a
= 3 (@) =) = ()2 == 2] + (V] 1= )y == 2]
= 32 : (' =y + 1)y :=1]
= &' (@)l = 2] = W)y = 2] + (Q)[y := )
= &' (@)l = 2] = W)y = 2] + (1)[y := )
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Semantics of the
classical first-order logic
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Environment /Assignment

— An environment/assignment p € V +— Dj assigns a
value p(z) to each variable z € V

Assignment notation: if f € A+— B,a € A, be B then
fla :=b] = f' € A+ B such that:

fl(a) =10 ie. fla:=bl(a)=10
f/(:c) = f(z) whenever z # a i.e. fla:=b|(z) = f(z)
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Interpretation

An interpretation I is defined by:

— A domain of discourse D (or domain of interpreta-
tion)

— An interpretation I[f] € DT + Dy for each function
symbol f € F™, m > 0 (including constants)

— An interpretation I[r] € D7* — B for each relation
symbol 7 € R™, m >0

m
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Semantics of the first-order logic

Given an interpretation I, the semantics is:

SI[t] € (v — D;)— Dy
Selp = 11
§'lzlp = p(z)

SHft, . ta)lp = ILF1S Tl - -, ST tn]p)

T
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Sl[A] e V— D;)— B
I[r)(S [talp, - - - S [tnlp)

Sl[#] € (v — D;)—B

Sr(ty, ... ta)]p &

S -#]p & =(5'[g%]p)

ST[#1 v &3]p = S'[81]pV ST[#2]p

Stz - #)p « /\12 ST[®]plz = v]

Semantics of substitution

Assignment is the semantic counterpart of syntactic sub-
stitution:

s'lo(@)lp = S'[#]¢’
where Vz €V :p/(z) = Sio(z)]p

veDy
12 1f S C B then A S & (S C {tt}).
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It follows that for the abbreviations, we have: Lemma

def —
STe1 = #2]p = S'[#1]p = S[&2]p

S3z : #]p & V S@]plz := v]

veDy
where:
— I % V%
ff ottt ff ff &
)t |ttt
and if S C B then VS & (SN {#t} £ 0).

-
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If z & fv[t] then
Vp eV Dr: Vv € D : SIt]p = SI[t]plz = v]
PRrROOF.
— The case t = z is disallowed by z & fv[z] = {z}
- Ify # z then ¢ ¢ fvy] = {y} and S'[ylp = p(y) = plz:=|(y) =
S'lylplz := v]
- SI[[f(tl, e ;tn)]]p
= I[fI(S [t]p, - -, S"[ta]p)
= I[f](S[t]plz := v],...,S [ta] o[z := v]) by induction hypothesis since
Vi:z & fv]t]
= SIf(ty,...,tn)]olz = v]
- SI[[’)"(tl, ce ,tn)]]p
S AT A PR R P

T
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= Ir)(S'[t]plz :=v], . ..,S [ta]plz := v]) by induction hypothesis since

Vi:z & fvft]
; = Sr(ts, ..., ta)]plz := ]
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= SIr(ty,...,t)]0)
proving that VA : ST[o(A)]p = SI[A]e
= S'o(=2)]p = S'[~o(®)]p = F(S'[0(2)]p) = F(S"[2]p) = ST[~2]F'
- So(®1VP,)]p = ST [o(P1)Va(®s)]p = S [o(S1)] VS [o(P2)] p = SE[E1] 'V
ST[&5]0' = ST[, v &3]
- Slo(Vz : ®)]p
= S'vz': o(®[z :=2))]p
{where &' € yld(o) U (fv(®) \ {z})§
= S oz ) (@)
= SV (0 [0 ) 4#)]o
= N\ S'lo ¢ [z 2)(@)]pla’ =]

= /\ S'[¢] (A\y-S'[(o < [z + )(y))]plz’ := v]) {by induction hypothesis§

veDy

-
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Proof of the theorem

Proor.
By structural induction on formulae
= S'o(e)lp = S'[c]p = I[c] = S'[e] o
- S'o(z)]p = p'(z) = S'[z]¢’
- SI[[U(f(tla s rtﬂ))]]p
= S[f(o(tr), .., o(ta))]p
= I[f1(S'[o(t)]p, - ., S [o(o(tn)]p)
= I[fﬂ (Slﬂtlﬂp/) s 151[[1:71]]/),
= S'[f(t,- -, tn)]P)
proving that V¢ : S [a(t)]p = S[t]e’
- Slo(r(ty, ..., tz)]e
= Slr(a(t1),...,0(t))]p
= I[r)(S o (t)]p -, S [o(o(ta)]p)
= I[T]] (SI [[tl]]p,r s 731[[tﬂ]]p/

-
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= A SI0w (v = 2 2 S'(0 * [ « )olz' i=v] : ST[(0 ° [
2D Nlele’ = )

= N\ SToI0w-(v=2 2 STl =) ool =)

= K SNy - (y =z 2 S'[2']p[z' := v] : S'[o(y)] o[z’ := v]))
vG_DI {since ' ¢ yld(o) so that o(z’) = z'§

= A S'lelhy-(y =z 2 v:S'[y]p))
veDy
) {since
- S'elple’ =) = pla’ == v](&) = v
- 2/ ¢ yld(o) so that ' € fv]o(y)] hence, by the lemma,
Slo(y)]p[z’" :=v] = S[o(y)]p = S'[y] e’ by induction hypoth-
esis

5
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= A\ STl0w (v =22v:0(y)

veDy

A S8z := v])

veDy

= S'[vz: ¢’

13 The function [z « '] is the substitution of &' for =
14 . is function composition f <+ compg(z) £ f(g(z))

15 The conditional is (%t ?a:b) =a and (ff 2a:b) =band (a?b[c?d:e)=(a?b:(c?d:e))
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Deduction system for first-order logic (H)

— Axioms (for all instances of formulae &, &', &/, variable
z and term t):

(1) ¢ved—=¢

2 ¢=—=& Ve

B3) (@=¢&)= (¢"vé=—& Vv

(4) Vz:d— Pz :=1]

(5) (Vz:®VvP)=— &VvVz:d whenz ¢ fv(P)
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Deductive system for the
classical first-order logic

m
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1] P 3

— Inference rules (for all instances of formulae ¢, ¢’ and
variable z):

b &— &
(MP) Modus Ponens
@/

e
(Gen) —— Generalization

Vr: P

T
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Example 1 of proof

Pz :=t] = —Vz: P (ie Jz:P)
PROOF. (assuming tautologies for short)
(a) Vz:-P= (-P)[z =t
(b) (¢ = &)= (-9 = —9)

) (Vz:~P = (=P)[z :=t]) = ~((—P)[z :=t]) = —Vz : =P {tautology,
instance of (b)§
() ~((-P)z :=t]) = ~Vz: {(a), (b’) and (MP)§

() (P[z :=t]) = ~Vz: P (def. substitution]
d) (¢ = %) = (& = ¥ {tautology §
(@) (~(P[z :=t]) = —Vz:P) = ($[z :=t] = —Vz:-$) [tautology}
(e) Plz:=t]|=— Vz: 9 {(c), (d’) and (MP)§

{instance of (4)§

{contraposition tautology §
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i) (= %)= (2= %) {tautology §
@) (-Vz:-P= ~F) = (-Vz: P = &) (tautology, instance of (i)§

é]) Vz: P —= & {(h), (") and (MP)§
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Example 2 of proof

{¢ = &} vz : & = & when z ¢ fv(J)
PROOF. (assuming tautologies for short)

(a = ¢

(b) (= &) = (-9 = )
(c) &= &

(©) &'V~

(d) Vz:(——F' VvV -P)

(e) ——d' VvV P

(f) - =Vz:d

(g) (-9 = Vz:-P) = (~Vz:—-® = —-—F') [contraposition tautology}
(h) —Vz:-¢ = ¢ (), (g) and (MP)§

m
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{hypothesis|

{contraposition tautology §

{(a), (b) and (MP);

{def. abbreviation = §

{c"), (Gen)§

Ud), (5), z & fv(==P') = fv(&)§
{def. abbreviation = §

Extension of the deduction system (H) for
first-order logic

These theorems are often incorporated to the deductive
system as an axiom

$lz:=tj—=Jz: &

and a generalization rule:

/
when z ¢ fv(P)
. /
(Fz: &) — &
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Logical equivalences involving quantifiers and

negations

- Wz :9P <= dz:-Phi

- ~dz:P & Vr:P

- (Vz2:8AVz:P) < Vz:(PAP)
- (Fz:dVvVz:P) < Jz: (VP
— (= d) = Bz:9d = &)

- (= &)= (= Vz: ¥
-Vz:(¢VP) — (Vz:)vP
—Jz:(PND) = (Fz:P)NP

De Morgan laws

when z ¢ fv(&')
when z ¢ fv(&')
when z ¢ fv($')
when z ¢ fv($')

-$ —= Vz:$ when z ¢ fv($')
- P < Jz:& when z ¢ fv($')
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— The Hilbert style deductive system (H) is not decid-
able [5].

— Proofs cannot be fully automated: there is no termi-
nating algorithm that, given a first-order formula ¢ as
input, returns true whenever & is classically valid.

_ Reference

[5] Kurt Gédel. “Uber Formal Unentscheidbare Satze der Principia Mathematica und Verwandter Systeme, I”.
Monatshefte fiir Mathematik und Physik 38, 173-198, 1931.
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Properties of the deduction system (H) for
first-order logic

— The Hilbert style deductive system (H) is sound, con-
sistent, compact ** and complete [4] for the first-order-
logic.

_ Reference

[4] Kurt Godel. “Die Vollstandigkeit der Axiome des logischen Funktionen-kalkiils”, Monatshefte fiir Mathe-

matik und Physik 37 (1930), 349-360.

16 '+ ¢ if and only if I - & for a finite subset I" of I'.

m
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The theory axiomatizing equality
Writing = \2(4, B) as A = B, the theory axiomatizing equality
is first-order logic plus the following axioms:
-Vz:z==2 reflexivity
-V :Vy:(z=y) = (y =12)
—Vzy ... Vzp VY1t . VYn (1 =N ATy = Yp) =
(f(z1,...,zn) = f(y1,...,yn)) Leibnitz functional congruence

symmetry

-Vzy .. Ve Yy Yy (1 = Y1 A ATy = Yn) =

(r(z1,...,2n) =7(y1,...,Yn)) Leibnitz relational congruence
-V :Vy:Vz:(z=yAy=2)— (z=2) transitivity
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Peano arithmetic [6]

— Constant symbols: 0
— Functional symbols: s (sucessor), +, X
— Relation symbols: =, <

— Axioms:
-Ve:z=z reflexivity
-V Vy: (z=vy) = (y=12) symmetry

-V :Vy:Vz:(z=yAy=2)=— (z =2) transitivity
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-Vz:zx0=0

-V Vy:zxs(y)=(zxy)+z

- (@) =0]A(Vz : & = (P)[z :=s(z)]) = (Vz :
P) recurrence (for all instances of )

def. multiplication

_ Reference

[6] Giuseppe Peano. Arithmetices principia, nova methodo exposita. Augustae Taurinorum, Ed. Fratres Bocca,
1889. — XVI, 20 p.

-
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-Vz:Vy: (z=vy) = (s(z) = s(y)) congruence
-V Vy:Vz Vit (z=2zAt=t)—= (z+y=2+1)
-V Vy:Vz:Vt:(z=2zAt=1t)—= (zxy=2xt)
-V Vy:Vz Vit (z=2zNt=t) = (z<y=2<t)
-Vz:(z=0)V(3y:z=s(y)) every natural but 0 is
a successor
- Vz : (s(z) =0)
-Vz:Vy: (s(z) =s(y)) = (z =vy) s is injective so
every nonzero natural has a unique predecessor
-Vz:z+0=z def. addition
-Vz:Vy:s+s(y) =s(z+y)

0 i1s not a successor

-
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Non standard integers

This axiomatization formalizes natural numbers but does
not exclude “non standard models” of the form:

.2t 1ol 1t 2!
Excluded by the second-order logic induction axiom *':

VP :(P(0)A (Vz: P(z) = P(s(z)))) = Vz : P

17 The difference is that there is a denumerable infinity of instances of ¢ while there can be a non-denumerable
infinity of Ps, see G.S.Boolos and R.C.Jeffrey, “Computability and Logic”, Cambridge University Press, 1974,
1980, 1989, Section 17, pp.193-195.
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THE END

My MIT web site is http://www.mit.edu/~ cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.
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