« Mathematical foundations:

(4) Ordered maps and Galois connexions » Part I

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

Maps between Posets

Course 16.392: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

(Homo|iso|epi|mono|endo|auto)-morphisms

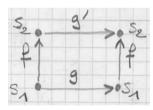
- A morphism (or homomorphism) is an application $f \in$ $S_1 \mapsto S_2$ between two sets S_1 and S_2 equipped with operations

$$g \in S_1^n \mapsto S_1$$
$$g' \in S_2^n \mapsto S_2$$

such that $\forall x_1, \ldots, x_n \in S_1$:

$$f(g(x_1,\ldots,x_n))=g'(f(x_1),\ldots,f(x_n))$$

- If n=1 then $f \circ q = q' \circ f$, diagramatically:



- an isomorphism is a bijective morphism
- an *epimorphism* is an onto/surjective morphism
- an *monomorphism* is a one-to-one/injective morphism
- an endomorphism has $S_1 = S_2$
- an automorphism is a bijective endomorphism

Course 16.393: "Abstract intermetation". Thursday March 29th, 2019

- The morphism may be relative to relations $r \subseteq S_1^n$ and $r' \subseteq S_2^n$ such that for all $\langle x_1, \ldots, x_n \rangle \in S_1^n$:

$$\langle x_1, \ldots, x_n \rangle \in r \Longrightarrow \langle f(x_1), \ldots, f(x_n) \rangle \in r'$$

- For binary relations:

$$x_1 r x_2 \Longrightarrow f(x_1) r' f(x_2)$$

Course 16,399: "Abstract interpretation", Thursday March 26th, 2009

© F. Couset, 2005

Complete (homo|iso|epi|mono|endo|auto)-morphisms

- A complete morphism (or homomorphism) is an application $f \in S_1 \mapsto S_2$ between two sets S_1 and S_2 equipped with operations

$$G \in \wp(S_1) \mapsto S_1$$

 $G' \in \wp(S_2) \mapsto S_2$

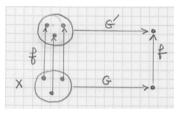
such that $\forall X \subseteq S_1$:

$$f(G(X)) = G'(f(X))$$
 where $f(X) \stackrel{\text{def}}{=} \{f(x) \mid x \in X\}$

Course 16.395: "Abstract interpretation", Thursday March 29th, 2005

@ F. Couset, 2005

- Diagrammatically:



- if f is bijective, onto, one-to-one then f is a complete iso-, epi-, mono-morphism. If $S_1 = S_2$ then f is a complete endomorphism, and a complete automorphism when f is bijective.

Monotone maps

- Let $\langle P, \leq \rangle$ and $\langle Q, \square \rangle$ be two posets. A map $f \in P \mapsto$ Q is monotone iff

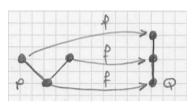
$$\forall x,y \in P : (x \leq y) \implies (f(x) \sqsubseteq f(y))$$

- Alternatives
 - order-preserving
 - isotone
 - increasing

- order morphism

- ...

- Example:



Monotony ¹ is self-dual (the dual of "monotone" is "monotone")

Alse "Menetenicity".

Course 16,395: "Abstract interpretation", Thursday March 29th, 2005

s —

© F. Couset, 2005

Antitone (decreasing) maps

– Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be two posets. A map $f \in P \mapsto Q$ is *antitone* iff

$$\forall x,y \in P : (x \leq y) \implies (f(x) \sqsubseteq f(y))$$

- Alternatives
 - order-inversing
 - decreasing

- . . .

- Self-dual notion

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

(c) F. Conset, 2005

Characterization of monotone maps using lubs

THEOREM. Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be two posets and $f \in P \mapsto Q$. If f is monotone then whenever $S \subseteq P$ and both lubs $\bigvee S$ exists in P and $\bigsqcup f(S)$ exists in Q then:

$$\bigsqcup f(S) \sqsubseteq f(\bigvee S)$$

The reciprocal is false but holds for join-semi-lattices.

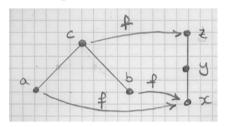
PROOF. – Assume f is monotone, $\bigvee S$ and $\sqsubseteq f(S)$ exist. Then $\forall s \in S : s \leq \bigvee S$ so by monototry $f(s) \leq f(\bigvee S)$ whence $\sqsubseteq f(S) \sqsubseteq f(\bigvee S)$ by def. lub.

- A counter-example to the reciprocal is

- Conversely, for a join-semi-lattice, if $\bigsqcup f(S) \sqsubseteq f(\bigvee S)$ whenever $\bigvee S$ and $\bigsqcup f(S)$ exist then when $x \leq y$ and $S = \{x,y\}$ we have $\bigvee S = x \vee y = y$ so $f(x) \sqcup f(y)$ exists in the join-semi-lattice and $f(x) \sqcup f(y) = \bigsqcup f(S)$ $\sqsubseteq f(\bigvee S) = f(y)$ whence $f(x) \sqcup f(y) = f(y)$ which implies $f(x) \sqsubseteq f(y)$.

11167

The inclusion can be strict, as shown by the following example



-
$$f$$
 is monotone
- $\bigsqcup f(\{a,b\}) = f(a) \bigsqcup f(b)$
= $x \bigsqcup x = x$
 $\sqsubseteq z = f(c) = f(a \lor b)$

Characterization of monotone maps using glbs

THEOREM. Let $\langle P, \leq \rangle$ and $\langle Q, \square \rangle$ be two posets and $f \in P \mapsto Q$. If f is monotone then whenever $S \subseteq P$, the glbs $\bigwedge S$ exists in P and $\prod f(S)$ exists in Q, we have:

$$\prod f(S) \equiv f(\bigwedge S) .$$

The reciprocal is false but holds for meet-semi-lattices.

PROOF. By duality.

Course 16,399: "Abstract intermetation", Thursday March 29th, 2009 © F. Couset, 2005

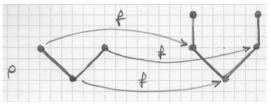
Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

Order embedding

- Let $\langle P, \leq \rangle$ and $\langle Q, \Box \rangle$ be two posets A map $f \in P \mapsto$ Q is an order embedding (written $f \in P \rightarrow Q$ or $f \in P \hookrightarrow Q$) iff

$$\forall x,y \in P : x \leq y \iff f(x) \sqsubseteq f(y)$$

- Example:



An order embedding is injective

THEOREM. Let $\langle P, \leq \rangle$ and $\langle Q, \square \rangle$ be two posets and $f \in P \hookrightarrow Q$ be an order-embedding. f is injective.

PROOF.

$$f(x)=f(y)$$

$$\implies f(x) \sqsubseteq f(y) \land f(y) \sqsubseteq f(x)$$

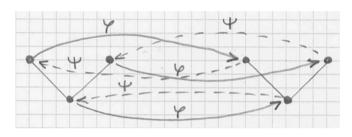
$$\implies x \leq y \land y \leq x$$

$$\implies x = y$$
 and so

$$x \neq y \Longrightarrow f(x) \neq f(y)$$

Order isomorphism

- Let $\langle P, \leq \rangle$ and $\langle Q, \square \rangle$ be posets. An order-isomorphism is an order-embedding which is onto (whence bijective).
- Example:



Course 16.393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

- Let $\langle P, \leq \rangle$ and $\langle Q, \Box \rangle$ be posets. These ordered ordered sets are therefore order-isomorphic if and only

$$\exists \varphi \in P \mapsto Q : \exists \psi \in Q \mapsto P :$$

- $-\varphi\circ\psi=1_{\mathcal{O}}^2$
- $-\psi\circ\varphi=1$ p
- φ is monotone
- ψ is monotone

Course 16,395: "Abstract interpretation", Thursday March 29th, 2005

@ F. Causet, 2005

Example of order isomorphism: boolean encoding of finite sets

THEOREM. Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set. Define

$$egin{array}{ll} arphi &: \ \wp(X) \mapsto 2^n \ arphi(S) \stackrel{ ext{def}}{=} \lambda i . \ (x_i \in S \ ext{? tt} : ext{ff}) \end{array}$$

The φ is an order-isomorphism between $\langle \wp(X), \subset \rangle$ and $\langle 2^n, \dot{\leq} \rangle$ where $\dot{\leq}$ is the componentwise ordering based on ff < ff < tt < tt.

PROOF.

$$-- x \subseteq Y$$

$$\iff \forall i \in [1, n] : x_i \in X \Longrightarrow x_i \in Y$$

$$\iff \forall i \in [1, n] : \varphi(X)_i \leq \varphi(Y)_i$$

$$\iff \varphi(X) \leq \varphi(Y) \text{ on } 2^n$$

— If $X \neq Y$ then there is a $x_i \in X$ not in Y (or inversely) so $\varphi(x)_i = \text{tt}$ and $\varphi(Y)_i = \text{ff (or inversely)}, \text{ proving that } \varphi(X) \neq \varphi(Y) \text{ hence } \varphi \text{ is in ective.}$

— Given
$$\langle b_1, \ldots, b_n \rangle \in 2^n$$
, we take $S = \{x_i \in S \mid b_i = \text{tt}\}$ so that $\varphi(S) = \langle b_1, \ldots, b_n \rangle$ proving that φ is onto.

Used to encode finite sets as bit vectors.

 $[\]frac{2}{3}$ 1s is the identity map on set S.

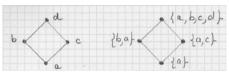
Embedding of a poset in its powerset

THEOREM. Let $\langle P, \leq \rangle$ be a poset. Then there is a set $Q \subseteq \wp(P)$ of subsets of P such that $\langle P, \leq \rangle$ is orederisomorphic to $\langle Q, \subseteq \rangle$

PROOF. – Define $Q = \{\downarrow x \mid x \in P\}$

- Define $\varphi \in P \mapsto Q$ by $\varphi(x) \stackrel{\text{def}}{=} \downarrow x$
- φ is a bijection
- $-(x \leq y) \iff (\downarrow x \subseteq \downarrow y)$

Example:



Course 16,393: "Abstract interpretation", Thursday March 29th, 2003

(c) F. Couset, 2005

- It follows that for a join preserving map and a <u>finite</u> subset $X \subseteq P$ for which $\bigvee X$ does exist:

$$f(\bigvee X) = \bigsqcup f(X)^3$$

- The dual notion is that of meet preserving map:

$$f(\bigwedge X) = \prod f(X)$$

for all finite subsets $X \subseteq P$ such that $\bigwedge X$ exists.

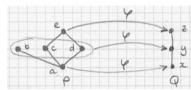
© F. Couset, 2005

Join/meet preserving maps

- let $\langle p, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be two posets. The map $f \in P \mapsto Q$ is called *join preserving* whenever if $x, y \in P$ and the lub $x \vee y$ exists in P then the lub $f(x) \sqcup f(y)$ does exist in Q and is such that:

$$f(x\vee y)=f(x)\,{\mathrel{\sqcup}}\, f(y)$$

– Example:



- $(f(c \lor d) = f(e) = z = y \bot z = f(c) \bot f(d)$
- $b \lor c$ does not exists so the is no requirement on $f(b) \vdash f(c)$

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

— (6) F. Couset, 2005

Join/meet preserving maps are monotone

THEOREM. A join or meet preserving map is monotone

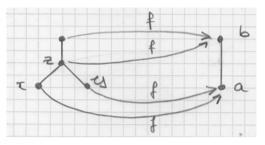
PROOF. – if $x \sqsubseteq y$ then $x \sqsubseteq y = y$ does exists. So $f(s \sqsubseteq y) = f(x)$ hence $f(x) \sqsubseteq f(y) = f(y)$ since f preserves existing, proving that $f(x) \sqsubseteq f(y)$ by def. of lubs.

 By duality a meet-preserving maps is monotone (since the dual of monotone is monotone)

 $[\]exists$ where $f(X) \stackrel{\text{\tiny def}}{=} \{ f(x) \mid x \in X \}.$

Not all monotone maps preserve lubs/glbs

Counter-example:



- f is monotone
- $f(x \lor y) = f(z) = b$
- $f(x) \sqcup f(y) = a \sqcup a = a \neq b$

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Complete join preserving maps

- Let $\langle P, < \rangle$ and $\langle Q, \square \rangle$ be two posets. The map $f \in$ $P \mapsto Q$ is a complete join preserving whenever it preserves existing lubs:

$$\forall X \subseteq P : \bigvee X \text{ exists } \Longrightarrow f(\bigvee X) = \bigsqcup f(X)$$

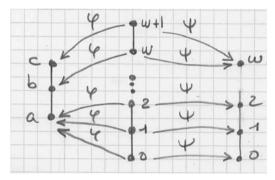
- The dual notion is that of complete meet preserving map.

$$\forall X \subseteq P : \bigwedge X \text{ exists } \Longrightarrow f(\bigwedge X) = \prod f(X)$$

Course 16.395: "Abstract interpretation", Thursday March 29th, 2005

@ F. Couset, 2005

- Example:



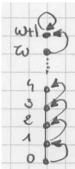
- φ is not a complete join morphism:

$$arphi(igcup\omega)=arphi(igcup\{0,1,2,\ldots\})=arphi(w)=b
eq a=igcup\{a\}=igcup\{arphi(x)\mid x\in\omega\}=igcup arphi(\omega)$$

- φ is a join morphism
- ψ is a complete join morphism

Not all finite join/meet preserving maps are complete

- Example of finite join preserving map which is not a complete join preserving map:



Continuous and co-continuous maps

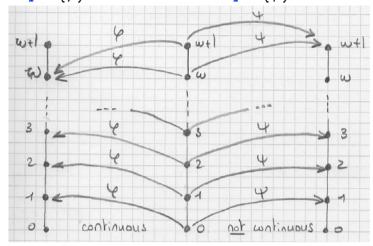
- A map $f \in P \mapsto Q$ from a poset $\langle P, \leq \rangle$ into a poset $\langle Q, \sqsubseteq \rangle$ is continuous (or upper-continuous) if an only if for all chains C of P such that $\bigvee C$ exists then | | f(C)| exists and we have $f(\backslash/C) = |f(C)|$
- Often this hypothesis is needed only for denumerable chains. f is ω -continuous iff for all increasing chains $x_0 < x_1 < \ldots < x_n < x_n$ $x_n \leq \ldots$ of P such that $\bigvee_{i \in \mathbb{N}} x_i$ exists then $\bigsqcup_{i \geq 0} f(x_i)$ exists and

$$f(\bigvee_{i\in\mathbb{N}}x_i)=igsqcup_{i\in\mathbb{N}}f(x_i)$$

Course 16,393; "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

- Example (φ) and counter-example (ψ) :



PHIF Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Continuous (or co-continuous) maps are monotone (but not the converse)

THEOREM. Let $f \in P \mapsto Q$, $\langle P, \leq \rangle$ be a poset. If f is ω continuous (preserves exists lubs of denumerable chains) then f is monotone.

PROOF. If $x \leq y$ the denumerable chain $x \leq y \leq y \leq y \leq \dots$ has a lub y, so by ω -continuity of f, $f(y) = f(\bigvee \{x,y\}) = f(x) \vee f(y)$ proving $f(x) \leq f(y)$ by def. of lubs.

- By duality, ω -co-continuous maps are monotone

- The reciprocal is not true. A monotone map may not be ω -continuous, as shown by the following counterexample:

$$- f(x) = x + 1, x \le \omega$$

 $- f(\omega + 1) = \omega + 1$

- f is monotone

- f is not continuous since

$$f(\bigcup_{n<\omega}) = f(\omega) = \omega + 1$$

 $\bigcup_{n<\omega} f(n) = \bigcup_{n<\omega} (n+1) = \bigcup \omega = \omega$

Chain conditions and continuity

THEOREM. Let $\langle P, \leq \rangle$ be a poset statisfying the ascending chain condition (ACC) and $\langle Q, \square \rangle$ be a poset. Then any monotone map $f \in P \mapsto Q$ is continuous.

PROOF. Let $(x_{\delta_1}, \delta \in \mathbb{Q})$ be an increasing chain of elements of P. By the ACC, $\exists k < \omega : \forall \delta > k : x_{\delta} = x_k$ so that $\bigvee_{\delta \in \mathbb{C}} x_{\delta} = x_k$. It follows that $f(\bigvee_{\delta\in\mathbb{C}}x_{\delta})=f(x_{k})$. Since $\forall\delta\in\mathbb{C}:x_{\delta}\leq x_{k}$ and f is monotone, we have $f(x_{\delta}) \sqsubseteq f(x_k)$ whence $\bigsqcup_{\delta \in \mathbb{C}} f(x_{\delta}) \sqsubseteq f(x_k)$. But $f(x_k) \in \{f(x_{\delta}) \mid \delta \in \mathbb{C}\}$ so $f(x_k) \sqsubseteq \bigsqcup_{\delta \in C} f(x_\delta)$ and by antisymmetry $\bigsqcup_{\delta \in C} f(x_\delta) = f(x_k)$. It follows that $\bigsqcup_{\delta \in C} f(x_{\delta}) = f(x_k) = f(\bigvee_{\delta \in C} x_{\delta})$, proving continuity.

By duality, if $\langle P, \leq \rangle$ is a poset satisfying the descending chain condition (DCC) and $\langle Q, \square \rangle$ is a poset then any monotone map $f \in P \mapsto Q$ is co-continuous.

Course 16.399: "Abstract intercretation", Thursday March 29th, 2009

@ F. Couset, 2005

Boolean lattice morphism

- Let $\langle P, \vee, \wedge \rangle$ and $\langle Q, \perp, \Gamma \rangle$ be lattices. A *lattice morphism* $f \in P \mapsto Q$ satisfies:

$$f(x \lor y) = f(x) \, {\mathrel{\sqsubseteq}} \, f(y) \ f(x \land y) = f(x) \, {\mathrel{\sqcap}} \, f(y)$$

- Let $(P, 0, 1, \vee, \wedge, -)$ and $(Q, \perp, \top, \perp, \vdash, \uparrow)$ be boolean algebras. A Boolean algebra morphism $f \in P \mapsto Q$ if and only if:
 - f is a lattice morphism
 - $f(0) = \bot$
 - $f(1) = \top$
 - f(-x) = f(x)'

Course 16.393: "Abstract interpretation", Thursday March 29th, 2005

@ F. Couset, 2005

- Terminology:

- Homomorphism: morphism

- Isomorphism: bijective morphism

- Endomorphism: P=Q

- Monomorphism: injective morphism

- Epimorphism: surjective morphism

(The conditions defining a boolean algebra morphism are not independent, see below).

On the conditions defining the Boolean lattice morphisms

THEOREM. Let $\langle P, 0, 1, \vee, \wedge, - \rangle$ and $\langle Q, \perp, \top, \perp, \Gamma, {}' \rangle$ be boolean algebras. Assume f is a lattice morphism.

(i) (a)
$$f(0) = \bot$$
 and $f(1) = \top$
 \iff (b) $f(\neg a) = (f(a))', \forall a \in P$

(ii) If
$$f(-a) = (f(a))'$$
, then

(c)
$$f(a \lor b) = f(a) \bot f(b)$$

$$\iff$$
 (d) $f(a \land b) = f(a) \sqcap f(b)$

PROOF.(i) Assume (a), then: $\underline{} = f(0) = f(a \land \neg a) = f(a) \vdash f(\neg a)$ $\overline{} = f(1) = f(a \vee \overline{}) = f(a) \sqrt{sqcup} f(\overline{})$ proving that f(-a) = (f(a))' whence (b) Assume (b), then $f(0) = f(a \wedge \neg a) = f(a) \wedge (f(a))' = 0$ $f(1) = d(a \vee \neg a) = f(a) \vee (f(a))' = 1$ proving (a)

(ii) Assume f preserves complement and oin.

$$f(a \wedge b) = f(\neg(\neg a \vee \neg b))$$

$$= (f(\neg a \vee \neg b))'$$

$$= (f(\neg a) \vdash f(\neg b))'$$

$$= ((f(a))' \vdash (f(b))')'$$

$$= f(a) \vdash f(b)$$

Course 16.393: "Abstract interpretation", Thursday March 29th, 2008

© F. Couset, 2005

Г

Notations for monotone, lub/glb preserving and (co-)continuous maps

Let $\langle P, \leq \rangle$ and $\langle Q, \Box \rangle$ be posets. We define:

- $\langle P, < \rangle \stackrel{\mathrm{m}}{\longmapsto} \langle Q, \square \rangle$ (or $P \stackrel{\mathrm{m}}{\longmapsto} Q$ if < and \square are understood) to be the set of monotone maps of P into
- $\langle P, < \rangle \stackrel{\perp}{\longmapsto} \langle Q, \square \rangle$ (or $P \stackrel{\perp}{\longmapsto} Q$ if < and \square are understood) to be the set of complete lub-preserving maps of P into Q
- $\langle P, < \rangle \stackrel{\Gamma}{\longmapsto} \langle Q, \Gamma \rangle$ (or $P \stackrel{\Gamma}{\longmapsto} Q$ if < and Γ are understood) to be the set of complete glb-preserving

© F. Couset, 2005

- $\langle P, < \rangle \xrightarrow{uc} \langle Q, \square \rangle$ (or $P \xrightarrow{uc} Q$ if < and \square are understood) to be the set of ω -upper-countinuous maps of P into Q
- $\langle P, < \rangle \stackrel{\text{lc}}{\longmapsto} \langle Q, \Box \rangle$ (or $P \stackrel{\text{lc}}{\longmapsto} Q$ if < and \Box are understood) to be the set of ω -lower-continuous maps of P into Q

We use \rightarrow for *injective* maps → for *surjective* maps >-- for bijective maps

The complete lattice of pointwise ordered maps on a complete lattice

THEOREM. Let P be a set and $\langle Q, \, \Box, \, \bot, \, \top, \, \Box, \, \Box \rangle$ be a complete lattice. Let $\dot{\sqsubseteq}$ be the pointwise ordering of maps $f \in P \mapsto L$: $f \stackrel{.}{\sqsubset} g \iff \forall x \in P : f(x) \stackrel{.}{\sqsubset}$ g(x). Then $\langle P \mapsto Q, \; \dot{\sqsubseteq}, \; \dot{\downarrow}, \; \dot{\uparrow}, \; \dot{\vdash}, \; \dot{\vdash} \rangle$ (where $\dot{\perp} \stackrel{\mathrm{def}}{=}$ $\lambda x \cdot \perp$, $\dot{\top} = \lambda x \cdot \top$, $\dot{\sqsubseteq} F \stackrel{\mathrm{def}}{=} \lambda x \cdot \bigsqcup_{f \in F} f(x)$ and $\dot{\sqcap} F \stackrel{\mathrm{def}}{=}$ $\lambda x \cdot \prod_{f \in F} f(x)$ is a complete lattice.

PROOF. $-f \sqsubseteq f$ since $\forall x \in P : f(x) \sqsubseteq f(x)$ because \sqsubseteq is reflexive

- $-f \stackrel{.}{\sqsubset} q$ and $q \stackrel{.}{\sqsubset} f$ then $\forall x \in P : f(x) \stackrel{.}{\sqsubset} q(x) \land q(x) \stackrel{.}{\sqsubset} f(x)$ so $\forall x \in P :$ f(x) = g(x) by antisymmetry, proving that f = g
- $-f \sqsubseteq q \land q \sqsubseteq h \text{ implies } \forall x \in P : f(x) \sqsubseteq q(x) \sqsubseteq h(x) \text{ so } f \sqsubseteq h \text{ proving}$ transitivity
- Let $F \subseteq P \mapsto Q$. $\forall f \in F : f(x) \in \{g(x) \mid g \in F\}$ so $f(x) \sqsubseteq \sqsubseteq \{g(x) \mid g \in F\}$ F = (| F)(x) whence $f \square | F$ proving | F to be a \square -upper bound of F.
- Let u be another upper bound of F. We have $\forall f \in F : f \sqsubseteq u \text{ so } \forall x \in P :$ $f(x) \sqsubseteq u(x)$ so $\bigsqcup_{f \in F} f(x) \sqsubseteq u(x)$ hence $(\bigsqcup F)(x) \sqsubseteq u(x)$ and $\bigsqcup F \sqsubseteq u$. It follows that | F | is the \square -least upper bound of F
- By duality, the glb is $\prod F \stackrel{\text{def}}{=} \lambda x \cdot \prod \{f(x) \mid f \in F\}$
- The infimum is $_$ since $\forall x \in P : _ \sqsubseteq f(x)$ implies $_ \sqsubseteq f$
- By duality, the supremum is $\dot{} = \lambda x$

Course 16,393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

The complete lattice of pointwise ordered monotone maps on a complete lattice

THEOREM. Let $\langle P, \leq \rangle$ be a poset and $\langle Q, \Box, \bot, \top, \Box, \Box$ ∟) be a complete lattice. The set of monotonic maps of P into Q is a complete lattice $\langle P \stackrel{\text{m}}{\longmapsto} Q, \dot{\Box}, \dot{\bot}, \dot{\uparrow}, \dot{\Gamma}, \dot{\uparrow}, \dot{\Box}, \dot{\Box$

Course 16.395: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

PROOF. – The ordering $f \sqsubseteq g \iff \forall x \in P : f(x) \sqsubseteq g(x)$ makes $\langle P \mapsto Q, \sqsubseteq \rangle$ a complete lattice

- Since $(P \stackrel{\text{m}}{\longmapsto} Q) \subseteq (P \mapsto Q)$, is follows that $(P \stackrel{\text{m}}{\longmapsto} Q, \sqsubseteq)$ is a poset
- The lub in $\langle P \mapsto Q, \sqsubseteq
 angle$ is \sqsubseteq such that $(\sqsubseteq_{i \in A} f_i)(x) = \bigsqcup_{i \in \Delta} (f_i(x))$
- Observe that $\sqsubseteq f_i$ is monotone since $x \leq y$ implies $\forall i \in \Delta : f_i(x) \sqsubseteq f_i(y)$ since $f_i \in P \xrightarrow{\text{in}} Q$ so $\forall i \in \Delta : f_i(x) \sqsubseteq \bigsqcup_{i \in \Delta} f_i(y)$ proving $(\bigsqcup_{i \in \Delta} f_i)(x) = \bigcup_{i \in \Delta} f_i(y)$ $\bigsqcup_{i\in\Delta}f_i(x)\sqsubseteq\bigsqcup_{i\in\Delta}f_i(y)=(\bigsqcup_{i\in\Delta}f_i)(y) ext{ that is } \bigsqcup_{i\in\Delta}f_i\in P\stackrel{ ext{m}}{\longmapsto}Q ext{ whenever}$ $\forall i \in \Delta : P \xrightarrow{\mathrm{m}} Q$
- It follows that $\stackrel{\cdot}{\underset{i\subset \Delta}{\sqcup}} f_i$ is also the lub in $P \stackrel{\text{m}}{\longmapsto} Q$

The complete lattice of pointwise ordered, lub-preserving maps on a complete lattice

THEOREM. Let $\langle P, <, 0, 1, \vee, \wedge \rangle$ and $\langle L, \square, \bot, \top, \square, \square \rangle$ be complete lattices. The set of complete join morphism of P into Q is a complete lattice $\langle P \stackrel{\vdash}{\longmapsto} Q, \stackrel{\vdash}{\sqsubseteq}, \stackrel{\downarrow}{\perp}, \stackrel{\uparrow}{\uparrow}, \stackrel{\sim}{\vdash},$ Ė)

PROOF. – The subset $P \stackrel{\vdash}{\longmapsto} Q$ of the poset $\langle P \stackrel{\text{in}}{\longmapsto} Q, \stackrel{\vdash}{\sqsubseteq} \rangle$ is a poset for $\stackrel{\vdash}{\sqsubseteq}$ - The lub \sqsubseteq in $\langle P \stackrel{\text{m}}{\longmapsto} Q, \sqsubseteq \rangle$ is also the lub in $P \stackrel{\iota}{\longmapsto} Q$ since $\sqsubseteq f_i \in P \stackrel{\iota}{\longmapsto} Q$ whenever $\forall i \in \Delta : f_i \in P \xrightarrow{1} Q$. Indeed $(\mid \mid f_i)(\bigvee x_j)$

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

$$= \bigsqcup_{i \in \Delta} (f_i(\bigvee x_j)) \qquad \qquad (\text{def.} \sqsubseteq)$$

$$= \bigsqcup_{i \in \Delta} \bigsqcup_{j \in \Gamma} f_i(x_j) \qquad \qquad (f_i \in P \stackrel{!}{\longmapsto} Q)$$

$$= \bigsqcup_{j \in \Gamma} \bigsqcup_{i \in \Delta} f_i(x_j) \qquad \qquad (\text{commutativity})$$

$$= \bigsqcup_{j \in \Gamma} (\bigsqcup_{i \in \Delta} f_i)(x_j) \qquad \qquad (\text{def.} \sqsubseteq)$$

– Since $P \stackrel{\iota}{\longmapsto} Q$ has lubs $\dot{\sqsubseteq}$, it also has glbs $\widetilde{\vdash}$ which may not coincide with the pointwise glb \sqcap in $\langle P \stackrel{\text{m}}{\longmapsto} Q, \sqsubseteq \rangle$, as shown by the following counterexample:

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Encoding Maps between Posets

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Claude Elwood Shannon

Randal E. Bryant

 $[1] \quad \text{R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation"}. \text{ IEEE Transactions on Com-}\\$ puters, Vol. C-35, No. 8 (August, 1986), pp. 677-691.

Course 16,395: "Abstract interpretation", Thursday March 29th, 2005

@ F. Couset, 2005

Encoding of Boolean functions by Boolean terms

Boolean terms

- Let $\langle B, 0, 1, \vee, \wedge, \rangle$ be a boolean algebra
- Let \mathcal{V} be a set of variables and $\langle x_1, \ldots, x_n \rangle \in \mathcal{V}^n$
- The boolean terms $Bt(B,\langle x_1,\ldots,x_n\rangle)$ are defined by the following grammar:

$$T ::= x_i \mid 0 \mid 1 \mid T_1 \vee T_2 \mid T_1 \wedge T_2 \mid -T_1 \mid (T_1)$$

Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

© F. Couset, 2005

The interpretation of Boolean terms

- The semantics or interpretation $S[T] \in 2^n \mapsto 2$ of $T \in Bt(B, \langle x_1, \ldots, x_n \rangle)$ is defined by

$$\begin{split} \mathcal{S}[\![x_i]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} v_i \\ \mathcal{S}[\![0]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} 0 \\ \mathcal{S}[\![1]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} 1 \\ \mathcal{S}[\![T_1 \lor T_2]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} \mathcal{S}[\![T_1]\!](v_1,\dots,v_n) \lor \mathcal{S}[\![T_2]\!](v_1,\dots,v_n) \\ \mathcal{S}[\![T_1 \land T_2]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} \mathcal{S}[\![T_1]\!](v_1,\dots,v_n) \land \mathcal{S}[\![T_2]\!](v_1,\dots,v_n) \\ \mathcal{S}[\![-T_1]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} -\mathcal{S}[\![T_1]\!](v_1,\dots,v_n) \\ \mathcal{S}[\![(T_1)]\!](v_1,\dots,v_n) &\stackrel{\text{def}}{=} \mathcal{S}[\![T_1]\!](v_1,\dots,v_n) \end{split}$$

Course 16.393: "Abstract interpretation", Thursday March 29th, 2005 @ F. Couset, 2005

Encoding of Boolean functions by Boolean terms

- The encoding of $v = \langle v_1, \ldots, v_n \rangle \in 2^n$ over variables $\langle x_1, \ldots, x_n \rangle$ is:

$$\operatorname{Te}(v)\langle x_1,\;\ldots,\;x_n
angle=(\;v_1=1\;?\;x_1\;\colon \neg x_1)\wedge\ldots\wedge \ (\;v_n=1\;?\;x_n\;\colon \neg x_n)$$

- The encoding of $f \in 2^n \mapsto 2$ over variables $\langle x_1, \ldots, x_n \rangle$ is:

$$\operatorname{Te}(f)\langle x_1,\ \ldots,\ x_n
angle = igvee \{\operatorname{Te}(v)\langle x_1,\ \ldots,\ x_n
angle\ | \ v\in 2^n \wedge f(v)=1\}$$

Theorem. For all
$$a=\langle a_1,\ldots,a_n\rangle\in 2^n$$
 and $b=\langle b_1,\ldots,b_n\rangle\in 2^n$:
$$\mathcal{S}[\![\operatorname{Te}(a)\langle x_1,\ldots,x_n\rangle]\!]b=1 \quad \text{iff} \quad b=a\\ =0 \quad \text{iff} \quad b\neq a$$

PROOF.

$$\begin{split} &\mathcal{S}[\![\operatorname{Te}(a)\langle x_1,\ldots,x_n\rangle]\!]b\\ &= (a_1=1~?~\mathcal{S}[\![x_1]\!]b~:~-\mathcal{S}[\![x_1]\!]b) \wedge \ldots \wedge (a_n=1~?~\mathcal{S}[\![x_n]\!]b~:~-\mathcal{S}[\![x_n]\!]b)\\ &= (a_1=1~?~b_1~:~-b_1) \wedge \ldots \wedge (a_n=1~?~b_n~:~-b_n)\\ &= (a_1=b_1 \wedge \ldots \wedge a_n=b_n)\\ &= a=b\\ &= \begin{cases} 1 & \text{iff} \quad a=b\\ a & \text{iff} \quad a=b\\ a & \text{iff} \quad a=b \end{cases} \end{split}$$

Course 16.393: "Abstract interpretation", Thursday March 25th, 2005

Bijection between Boolean functions and their encodings by Boolean terms

THEOREM. $2^n \mapsto 2$ and $\{\text{Te}(f)\langle x_1,\ldots,x_n\rangle \mid f \in 2^n \mapsto$ 2} are isomorphic by $\langle S, \text{Te} \rangle$.

PROOF.

—
$$S[Te(f)\langle x_1, \ldots, x_n\rangle]b$$
 where $b = \langle b_1, \ldots, b_n\rangle$

$$= \bigvee \{ \mathcal{S}[\![\operatorname{Te}(v) \langle x_1, \ldots, x_n \rangle]\!] b \mid f(v) = 1 \}$$

$$= f(b) = 1$$

$$= f(b)$$

— Let
$$T \in \{ \operatorname{Te}(f) \langle x_1, \ldots, x_n \rangle \mid f \in 2^n \mapsto 2 \}$$
. We must show that $\operatorname{Te}(\mathcal{S}[\![T]\!]) =$

T. Given
$$f \in 2^n \mapsto 2$$
, we have $\text{Te}(\mathcal{S}[\text{Te}(f)\langle x_1, \ldots, x_n\rangle]) = \text{Te}(f)$, Q.E.D.

Course 16.393: "Abstract interpretation", Thursday March 29th, 2005

Boolean terms in disjunctive normal forms

- A Boolean tern over $\{x_1, \ldots, x_n\}$ is in disjunctive normal form (DNF) iff it is in the form

$$\bigvee_{i=1}^k \bigwedge_{j=1}^n \ell_{ij}$$
 where ℓ_{ij} is x_j or $-x_j$

- Any boolean term T can be put in equivalent DNF⁴

Course 16,393: "Abstract intermetation", Thursday March 29th, 2009

- Algorithm:

- Use De Morgam's laws to reduce the term to meets and joins of literals
- Use the distributive laws, with the lattice identities to obtains a join of meets of literals
- Finally, each x_1 (or $-x_2$) should appear once and only once in each meet
 - 1. Drop any meet term containing x_i and $-x_i$ for some i = 1, ..., n
 - 2. If neither x_j nor $-x_j$ occurs in $\bigwedge x_k^{\epsilon_k}$ (where $\epsilon_k \in \{0,1\}$, $x^1 = x$,

$$x^{c} = -x$$
) then:

$$egin{array}{ll} igwedge_{k\in K} x_k^{\epsilon_k} &= (igwedge_{k\in K} x_k^{\epsilon_k}) \wedge (x_j ee -x_j) \ &= (igwedge_{k\in K} x_k^{\epsilon_k} \wedge x_j) ee (igwedge_{k\in K} x_k^{\epsilon_k} \wedge -x_j) \end{array}$$

Repeating this process for each missing variable will lead to a term in DNF

Example (conditional)

$$f(x,y,z)=(\,x\,\,\widehat{\,}\,\,y\,\,\widehat{\,}\,\,z)$$

$$= (x \wedge y) \vee (\neg x \wedge z)$$

$$= \ ((\neg x \wedge z) \wedge (y \vee \neg y)) \vee ((x \wedge y) \wedge (z \vee \neg z))$$

$$= \ (\neg x \wedge \neg y \wedge z) \vee (\neg x \wedge y \wedge z) \vee (x \wedge y \wedge \neg z) \vee (x \wedge y \wedge z)$$

in so called "disjunctive normal form".

⁴ Since $S[T] = S[Te(S[T])\langle x_1, \ldots, x_n \rangle]$ and $Te(S[T])\langle x_1, \ldots, x_n \rangle$ is in DNF. @ F. Couset, 2005

Encoding of Boolean functions by BDDs

The presentation follows: Laurent Mauborgne: "Abstract Interpretation Using Typed Decision Graphs' Science of Computer Programming, 31(1):91-112, may 1998.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Example of Shannon trees

A BDD (Binary Decision Diagram) discovered by Randal Bryant in 1986 is a compact representation of a Shannon tree of a boolean expression.

Example:

$$-f(x,y,z)=(x\wedge y)\wedge (y\wedge \neg z)\vee (z\vee \neg y)$$

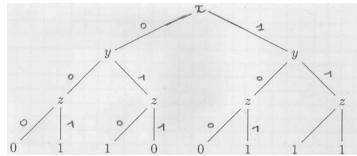
- Table representation:

x	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
\mathbf{z}	0	1	0	1	0	1	0	1
f	0	1	1	0	0	1	1	1

Course 16.395: "Abstract interpretation", Thursday March 26th, 2009

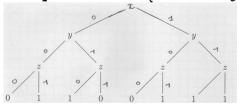
© F. Couset, 2005

- Shannon tree representation (with x < y < z)

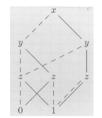


Example of Reduction of a Shannon tree into an [Ordered] Boolean Decision Diagram — [O]BDD

- Shannon tree representation (with x < y < z)



(1) Sharing: merge redundant subtrees (to get a Directed Acyclic Graph — DAG)



- ---: left (0) branch
- ____: right (1) branch
- (2) Elimination of the useless nodes (where the different possible values of the variable lead to the same result):

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

— €1 —

(c) F. Conset, 2005

Г

Shannon decomposition of Boolean functions

- Let $\langle Var, <^{\upsilon} \rangle$ be a totally strictly ordered set of variables
- Let $\operatorname{Var}_n = \{V \subseteq \operatorname{Var} \mid |V| = n\}$ be the set of n variables $\{x_1, \ldots, x_n\}$ where, by convention, $x_1 <^v \ldots <^v x_n$
- Let $B_n = \operatorname{Var}_n \times (\{0,1\}^n \mapsto \{0,1\})$ be the set of pairs $\langle \{x_1,\ldots,x_n\}, f \rangle$ denoted $f(x_1,\ldots,x_n)$ which value at point $x_1 = b_1,\ldots,x_n = b_n$ is $f(b_1,\ldots,b_n)$
- Let $V(f(x_1,\ldots,x_n))=\{x_1,\ldots,x_n\}$ where $x_1<^v\ldots<^v$ x_n

Course 16.395: "Abstract interpretation", Thursday March 25th, 2005

(c) F. Couset, 2005

- Let $B = \bigcup_{n \in \mathbb{N}} B_n$
- Shannon expansion theorem:

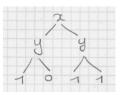
THEOREM. Let $f(x_1,\ldots,x_n)\in B_n$. $\forall i\in [1,n]: \exists!\langle f_{\bar{x}_i}, f_{x_i}\rangle^{\epsilon}\in B_{n-1}\times B_{n-1}$ such that $f(x_1,\ldots,x_n)=(\neg x_i\wedge f_{\bar{x}_i})\vee (x_i\wedge f_{x_i})$

Proof. Choose:

$$f_{\bar{x_i}}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) = f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n) f_{x_i}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) = (x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n)$$

Shannon tree

- A Shannon tree over variables $x_1 <^{\upsilon} \ldots <^{\upsilon} x_n$ is
 - if n = 0 then 1 or 0
 - if n > 0 then $\langle x_1, t_1, t_2 \rangle$ where t_1, t_2 are Shannon trees over $x_2 <^v \ldots <^v x_n$
- Example $x_1 = x <^v x_2 = y$



$$\langle x, \langle y, 1, 0 \rangle, \langle y, 1, 1 \rangle \rangle$$

Isomorphism between Shannon trees and Boolean functions

- A Shannon tree t over variables $x_1 <^v \ldots <^v x_n$ represents a Boolean function

$$f(t)(x_1,\ldots,x_n) = ext{match } t ext{ with} \ \|0\|1
ightarrow t - ext{case } n = 0 \ \|\langle x_1,\,t_1,\,t_2
angle
ightarrow (x_1 \wedge f(t_1)(x_2,\ldots,x_n) \ ee (-x_1 \wedge f(t_2)(x_2,\ldots,x_n)$$

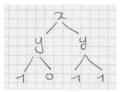
- The Shannon tree representing a Boolean function $f(x_1, \ldots, x_n)$ with $x_1 < v \dots < v x_n$ is:

Course 16,395: "Abstract interpretation", Thursday March 29th, 2009

- Example

x	0	0	1	1
y	0	1	0	1
f(x,y)	1	0	1	1

$$\langle x, \langle y, 1, 0 \rangle, \langle y, 1, 1 \rangle \rangle$$



Course 16,393: "Abstract intercretation", Thursday March 29th, 2009

© F. Couset, 2005

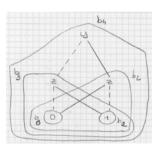
Definition of Boolean Decision Diagrams (BDD)

The BDDs are recursively defined as follows:

- -0 is a BDD
- -1 is a BDD
- if b_1 , b_2 are BDDs, $x \in Var$ is a variable then b = $\langle x, b_1, b_2 \rangle$ is a BDD (with var(b) = x, $left(b) = b_1$, $right(b) = b_2$

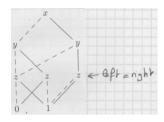
Example:

$$egin{array}{l} b_0 &= 0 \ b_1 &= 1 \ b_2 &= \langle z, \, b_1, \, b_0
angle \ b_3 &= \langle z, \, b_0, \, b_1
angle \ b_4 &= \langle y, \, b_3, \, b_2
angle \ &= \langle y, \, \langle z, \, 0, \, 1
angle, \, \langle z, \, 1, \, 0
angle
angle \end{array}$$



Ordered Boolean Decision Diagram (OBDD)

- Let $\langle Var, \langle v \rangle$ be a totally strictly ordered set of variables
- A BDD t is ordered (ordered(b) = tt) if and only if either $b \in$ $\{0,1\}$ or
 - If $left(b) \notin \{0,1\}$ then var(b) < v var(left(b))
 - If $right(b) \notin \{0,1\}$ then var(b) < v var(right(b))
 - $left(b) \neq right(b)$
- Counter-examples:



Representation of a Shannon tree by an Ordered Boolean Decision Diagram (OBDD)

- The OBDD obdd(t) representing a Shannon tree t is defined as follows

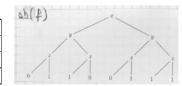
```
obdd(t) = match t with
                     \lceil \ 0 | 1 
ightarrow t
                     [\langle x, t_1, t_2 \rangle \rightarrow
                              (t_1 = t_2 ? \mathsf{obdd}(t_1) * \langle x, \mathsf{obdd}(t_1), \mathsf{obdd}(t_2) \rangle)
```

Course 16.393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

- Example:

X	0	Û	Û	Û	1	1	1	1
у	0	Û	1	1	Û	Û	1	1
y z	Û	1	0	1	0	1	0	1
f	Û	1	1	Û	Û	1	1	1



© F. Couset, 2005

- Since the OBDD encoding of a Boolean function is unique, an implementation can share identical subtrees and test equality of OBDDs by the physical equaliity of the addresses of their implementations.

Boolean functions represented by an Ordered Boolean Decision Diagram (OBDD)

- An OBDD no longer represents one function of B but rather all functions whose results are the same regardless of the assignment of additional variables absent in the BDD
- Example: If $\forall x, y, z : f(x, y, z) = g(y)$ then obdd(sh(f(x, y, z)) = obdd(sh(g(y)))For example if g(y) = -y then this OBDD is

- If this does not matter, then it is sufficient to memorize the OBDD as well as the corresponding set of variables $(\{x, y, z\})$ or $\{y\}$ in the above example.

Course 16.395: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Typed Shannon tree

- The idea of typed Shannon tree [2] came from the remark that

$$-f = (-x \wedge -f_{\overline{x}}) \vee (-x \wedge -f_x)$$

so that the Shannon trees Sh(f) and Sh(-f) of f and -f are identical except at the leaves where 0 and 1 are exchanged

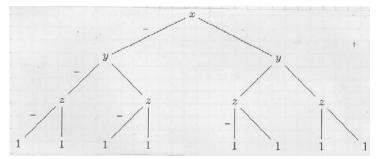
- So one can use +Sh(f) for Sh(f) and -Sh(f) for Sh(-f)with +1 = 1 and -1 = 0

[2] S.B. Akers, Binary Decision Diagrams, IEEE Transactions on computers, 1978.

Course 16,393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

- Example (+ is omitted)



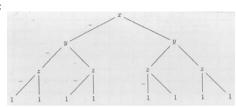
- Formally a typed Shannon tree t over $x_1 < v ... < v x_n$ is either
 - a leave 1 when n=0, or
 - a node $\langle x, \langle s_1, t_1 \rangle, \langle s_2, t_2 \rangle \rangle$ where $s_1, s_2 \in \{+, -\}$ and t_1, t_2 are typed Shannon trees over $x_1 <^v \ldots <^v x_n$

Boolean functions represented by a Typed Shannon tree

- The Boolean function bf(t) represented by a typed Shannon tree t over $x_1 <^v \ldots <^v x_n$ is
- bf(t) = match t with $[0|1 \rightarrow \lambda() \cdot t - \text{case } n = 0$ $[\langle x, \langle s_1, t_1 \rangle, \langle s_2, t_2 \rangle \rangle \rightarrow$ let $f_1(x_2,...,x_n) = bf(t_1)$ and $f_2(x_2,\ldots,x_n) = bf(t_2)$ in $\lambda x_1,\ldots,x_n$. $(x_1 \wedge \mathsf{bo}(s_1)(f_1(x_2,\ldots,x_n)))$ $\vee (-x_1 \wedge bo(s_2)(f_2(x_2, ..., x_n))$ where bo(+)(b) = b while bo(-)(b) = -b

- Example:

$$t =$$



Course 16.395: "Abstract interpretation", Thursday March 29th, 2009

Typed Shannon trees representing a Boolean function

- Let $f(x_1, \ldots, x_n) \in B_n$ be a Boolean function over the variables $x_1 <^{v} \ldots <^{v} x_n$. The typed Shannon tree encoding f is:

$$\begin{array}{l} \operatorname{tsh}(f(x_1,\ldots,x_n)) = \\ & (n=1 \, ? \, \langle x,\, (f(0) \, ? \, \langle +,\, 1\rangle \, ; \, \langle -,\, 1\rangle), \\ & (f(1) \, ? \, \langle +,\, 1\rangle \, ; \, \langle -,\, 1\rangle)\rangle \\ \text{$:$ let } \langle s_1,\, t_1\rangle = (f(0,1,\ldots,1)=1 \, ? \\ & \langle +,\, \operatorname{tsh}(\lambda x_2,\ldots,x_n \cdot f(0,x_2,\ldots,x_n))\rangle \\ & \vdots \, \langle -,\, \operatorname{tsh}(\lambda x_2,\ldots,x_n \cdot -f(0,x_2,\ldots,x_n))\rangle \\ \text{and } \langle s_2,\, t_2\rangle = (f(1,1,\ldots,1)=1 \, ? \\ & \langle +,\, \operatorname{tsh}\lambda x_2,\ldots,x_n \cdot (f(1,x_2,\ldots,x_n))\rangle \\ & \vdots \, \langle -,\, \operatorname{tsh}(\lambda x_2,\ldots,x_n \cdot -f(1,x_2,\ldots,x_n))\rangle \\ \text{in } \langle x_1,\, \langle s_1,\, t_1\rangle,\, \langle s_2,\, t_2\rangle\rangle) \end{array}$$

Course 16,393: "Abstract, intermetation", Thursday March 29th, 2005

@ F. Couset, 2005

- Examples:

-
$$tsh(\lambda y \cdot (0 = \neg y)) = \langle y, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle$$

-
$$tsh(\lambda y \cdot \neg (0 = \neg y)) = \langle y, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle$$

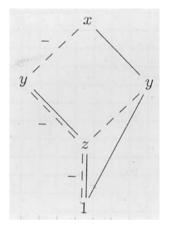
-
$$tsh(\lambda x, y \cdot (x = -y)) = \langle x, \langle +, \langle y, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle \rangle$$
, $\langle -, \langle y, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle \rangle$ which can be represented by the following TDG

x	0	0	1	1
У	0	1	0	1
f(x,y)	0	1	1	0

Encoding of a Typed Shannon tree by a Typed Decision Graph (TDG)

If t is a typed Shannon tree, the the corresponding TDG is obtained by applying the previous sharing and elimination rules:

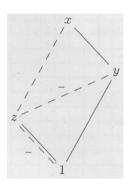
- Example 1: $f(x,y,z) = (x \wedge y) \vee (y \wedge \neg z) \vee (z \wedge \neg y)$



Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

@ **F. Couset**, 2005

- Example 2: $f(x,y,z) = (y \wedge x) \vee (x \wedge -z) \vee (z \wedge -x)$



The size of TDGs, although very sensitive to the variable order, is often reasonable but can be exponential in the number of variables.

Course 16,395: "Abstract interpretation", Thursday March 25th, 2005

© F. Couset, 2005

Boolean functions represented by a Typed Decision Graph (TDG)

The Boolean function bf(t) represented by a TDG t over variables x_1, \ldots, x_n is

$$\begin{array}{c} \mathsf{bf}(t)(x_1,\ldots,x_n) = \mathsf{match}\ t\ \mathsf{with} \\ \parallel 1 \to 1 \\ \parallel \langle x,\, \langle s_1,\, t_1\rangle,\, \langle s_2,\, t_2\rangle\rangle \to \\ (x=x_1\ ?\ \mathsf{let}\ f_1(x_2,\ldots,x_n) = \mathsf{bf}(t_1)(x_2,\ldots,x_n) \\ \quad \mathsf{and}\ f_2(x_2,\ldots,x_n) = \mathsf{bf}(t_2)(x_2,\ldots,x_n) \\ \quad \mathsf{in}\quad (x_1 \wedge \mathsf{bo}(s_1)(f_1(x_2,\ldots,x_n))) \\ \quad \vee (-x_1 \wedge \mathsf{bo}(s_2)(f_2(x_2,\ldots,x_n))) \\ \quad \text{\colon} \mathsf{bf}(t)(x_2,\ldots,x_n)) \\ \quad \mathsf{where}\ \mathsf{bo}(+)(b) = b\ \mathsf{and}\ \mathsf{bo}(-) = -b,\, b \in \{0,1\} \end{array}$$

Course 16,395: "Abstract interpretation", Thursday March 29th, 2005

Example:

$$-\operatorname{bf}(\langle y, \langle +, 1 \rangle, \langle -, 1 \rangle))(y, z)$$

$$= (y \wedge \operatorname{bo}(+)(\operatorname{bf}(1)(z))) \vee$$

$$(-y \wedge \operatorname{bo}(-)(\operatorname{bf}(1)(z)))$$

$$= (y \wedge 1) \vee (-y \wedge -1) = y$$

- bf(
$$\langle z, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle$$
) (y, z)

$$= \mathsf{bf}(\langle z, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle)(z)$$

$$= (z \wedge \operatorname{bo}(-)(\operatorname{bf}(1)(z))) \vee (-z \wedge \operatorname{bo}(+)(\operatorname{bf}(1)(z)))$$

$$=(z\wedge -1)\vee (-z\wedge 1)=-z$$

- bf(
$$\langle x, \langle +, t_1 \rangle, \langle +, t_2 \rangle \rangle$$
) (x, y, z) where $t_1 = \langle y, \langle +, 1 \rangle, \langle -, 1 \rangle \rangle$

and
$$t_2 = \langle z, \langle -, 1 \rangle, \langle +, 1 \rangle \rangle$$

$$= ((x \wedge \mathsf{bo}(+)(\mathsf{bf}(t_1)(y,z))) \vee (\neg x \wedge \mathsf{bo}(+)(\mathsf{bf}(t_2)(y,z)))$$

$$= ((x \wedge \mathsf{bf}(t_1)(y,z)) \vee (\neg x \wedge \mathsf{bf}(t_2)(y,z))$$

$$=(x \wedge y) \vee (-x \vee -z)$$

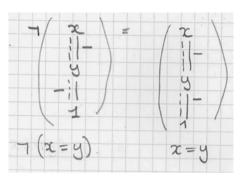
Operations on Typed Decision Graphs (TDG)

- Since the representation of a Boolean function by a TDG is unique, equality of Boolean functions can be represented by the equality (of the physical addresses) of the representations
- Negation just inverts the signs at the leaves

```
-t(x_1,\ldots,x_n) = \text{match } t \text{ with } -case \ n \geq 1
        \|\langle x_1, \langle s_1, 1 \rangle, \langle s_2, 1 \rangle\rangle \rightarrow \langle x_1, \langle -s_1, 1 \rangle, \langle -s_2, 1 \rangle\rangle
         \| \langle x_1, \langle s_1, 1 \rangle, \langle s_2, t_2 \rangle \rangle \rightarrow \langle x_1, \langle -s_1, 1 \rangle, \langle s_2, -t_2 \rangle \rangle
         \|\langle x_1, \langle s_1, t_1 \rangle, \langle s_2, 1 \rangle\rangle \rightarrow \langle x_1, \langle s_1, -t_1 \rangle, \langle -s_2, 1 \rangle\rangle
        \|\langle x_1, \langle s_1, t_1 \rangle, \langle s_2, t_2 \rangle\rangle \rightarrow \langle x_1, \langle s_1, -t_1 \rangle, \langle s_2, -t_2 \rangle\rangle
where -(+) = - and -(-) = +
```

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005



- Other operations use the Shannon decomposition (as well as memoization by a hash table to avoid identical recursive calls)

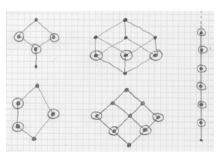
Course 16,393: "Abstract intercretation", Thursday March 29th, 2009

© F. Couset, 2005

Encoding of complete join morphisms with join irreducibles

Join irreducible elements of a poset

- Let $\langle P, \leq \rangle$ be a poset. An element $x \in P$ is join irreducible iff
 - 1. x is not the infimum of P
 - 2. if $x = a \lor b$ then x = a or x = b, for all $a, b \in P$
- Examples:



- Counter-examples:

The lattice of open subsets of \mathbb{R} (that is subsets which are unions of open intervals [a,b] has no 'oin-irreducible element.

- When the second condition is generalized to arbitrary joins $\bigvee_{i\in\Lambda} a_i$, x is called completely join-irreducible
- In a lattice the second condition 2, is equivalence to:
 - 2'. $\forall a, b \in P : (x < a \land x < b) \Longrightarrow (a \lor b < x)^{\varepsilon}$
- The meet irreducible elements are defined dually
- We let $\mathcal{J}(P)$ and $\mathcal{M}(P)$ be the set of join-irreducible and meetirreducible elements of P

Course 16.393: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

(ii) Let $a \in L$ and $T = \{x \in \mathcal{J}(L) \mid x \leq a\}$. a is an upper-bound of T. Let c be any upper bound of T. We have $a \le c$ since otherwise $a \le c$ implies $a \not\leq a \wedge c$, by (i) there exists $x \in \mathcal{J}(L)$ with $x \leq a$ and $a \not\leq a \wedge c$. Hence $x \in T$ and so $x \le c$ since c is an upper-bound of T. Thus x is a lower bound of $\{a,c\}$ and consequently $x \leq a \wedge c$, a contradiction. Hence $a \leq c$ proving that $a = \bigvee T$ in L proving that $a = \forall a \in L : \bigvee \{x \in \mathcal{J}(L) \mid x \leq a\}$.

Decomposition of elements of a lattice satisfying the descending chain condition (DCC) into join irreducibles

THEOREM. Let $\langle L, \leq, \vee \rangle$ be a lattice satisfying the DCC. $orall a \in L: igwedge \{x \in \mathcal{J}(L) \mid x \leq a\} = a$

PROOF. (i) $\forall a, b \in L : (a \lessdot b) \Longrightarrow (\exists x \in \mathcal{J}(L) : x \leq a \land x \lessdot b)$

Assume $a \leqslant b$. Let $S = \{x \in L \mid x \leq a \land x \leqslant b\}$. The set S is not empty since $a \in S$. Since L satisfies the DCC, there exists a minimal element x of S. This element is join-irreducible since $x = c \lor d$ with c < x and d < x implies. by the minimality of x that $c \notin S$ and $d \notin S$. We have $c < x \le a$ so $c \le a$ and similarly $d \le a$. Therefore $c, d \notin S$ implies $c \le b$ and $d \le b$. But then $x = c \lor d \le b$, a contradiction. Thus $x \in \mathcal{J}(L) \cap S$, which proves (i).

Course 16.393: "Abstract interpretation", Thursday March 26th, 2009

© F. Couset, 2005

Encoding of complete join morphisms on lattices satisfying the descending chain condition (DCC) by the image of join irreducibles

THEOREM. Let $\langle L, \leq, \vee \rangle$ be a lattice satisfying the DCC. Let $f \in L \stackrel{\perp}{\longmapsto} L$ be a complete join morphism. Define $g \stackrel{\text{def}}{=} f \upharpoonright \mathcal{J}(L)$, that is g coincide with f on joinirreducibles. Define $f'(a) = \bigvee \{g(x) \mid x \in \mathcal{J}(L) \land x \leq a\}$ Then f'=f.

PROOF.

$$f(a)$$
 $= f(\bigvee\{x\in\mathcal{J}(L)\mid x\leq a\})$ (L satisfies DCC)

 $⁽a \lor b < x)$ since $a \lor b = x$ implies $(x = a \lor x = b)$ since x is reducible in contradiction with $(x < a \land x < b)$. Reciprocally, if $(x = a \lor b)$ then $(x \ge a \land x \ge b)$. If $(x < a \land x < b) \Longrightarrow (a \lor b < x)$ is in contradiction with assumption $(x = a \lor b) \Longrightarrow (x = a \lor x = b)$. So either (x = a) or (x = b) holds.

$$= \bigvee \{f(x) \in \mathcal{J}(L) \mid x \leq a\}$$

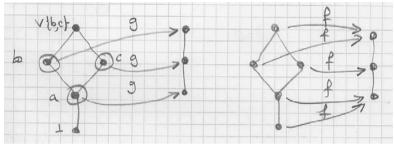
$$= \bigvee \{g(x) \in \mathcal{J}(L) \mid x \leq a\}$$

$$= f'(a)$$

$$\text{(def. } g\text{)}$$

$$\text{(def. } f'\text{)}$$

- Example:



Course 16,392: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Atoms

- Let $\langle P, <, \perp \rangle$ be a poset with an infimum \perp . An atom of p is $a \in P$ such that $\bot \prec a$ in P (i.e. $\bot < a$ and $\not\equiv b \in P : \bot < b < a$).
- The set of atoms of $\langle P, <, \perp \rangle$ is denoted $\mathcal{A}(P)$.

Course 16.393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Atoms and join irreducibles in Boolean lattices

Theorem. Let $\langle L, \leq, \perp, \vee \rangle$ be a lattice with infimum 1. Then

- (i) $\perp \prec x \in L \Longrightarrow x \in \mathcal{J}(L)$
- (ii) If L is a boolean lattice then $\mathcal{J}(L) \subseteq \mathcal{A}(L)$

PROOF.(i) Assume $_ \prec x$ and $x = a \lor b$ with a < x and b < x. Since $\underline{} < x$, we have $a = b = \underline{}$ whence $x = \underline{}$, a contradiction proving that $x \in \mathcal{J}(L)$.

(ii) Let L be a Boolean lattice and $x \in \mathcal{J}(L)$. Assume $\bot \le y < x$. We have:

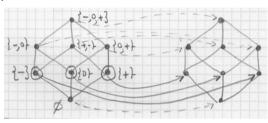
$$egin{array}{l} x &= x \lor y \ &= (x \lor y) \land (\neg y \lor y) \ &= (x \land \neg y) \lor y \end{array}$$

Since $x \in \mathcal{J}(L)$ and y < x, we must have $x = x \land \neg y$ whence $x \le \neg y$. But then $y = x \land y \le \neg y \land y = \bot$ so $y = \bot$. This proves $\bot \prec x$ so $x \in \mathcal{A}(L)$ whence $\mathcal{J}(L) \subseteq \mathcal{A}(L)$.

So in Boolean lattices it suffices to know complete join morphisms on the atoms.

Encoding of complete join morphisms on Boolean lattices satisfying the DCC by the image of atoms

- Atoms may no exist in infinite lattices (for example in (\mathbb{R}^+, \leq)). However if they exist, they can replace join irreducible to encode complete join morphisms.
- Example:



Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Theorem. Let $\langle L, \leq, \perp, \vee \rangle$ be a Boolean lattice satisfying the DCC. Let $f \in L \stackrel{\perp}{\longmapsto} L$ be a complete join morphism. Define $g \stackrel{\text{def}}{=} f \upharpoonright \mathcal{A}(L)$, that is g coincide with f on atoms. Then $f = \lambda a \ \bigvee \{g(x) \mid x \in \mathcal{A}(L) \land x \leq a\}$.

PROOF. Immediate consequence of the previous two theorems.

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

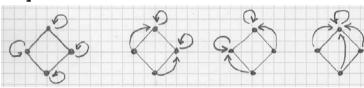
© F. Couset, 2005

Closure Operators

Kazimierz Kuratowski

Definition of an upper closure operator

- An operator on a set P is a map of P into P
- An upper closure operator ρ on a poset $\langle P, \leq \rangle$ is
 - extensive: $\forall x \in P : x < \rho(x)$
 - monotone: $\forall x, y \in P : (x \le y) \Longrightarrow (\rho(x) \le \rho(y))$
 - idempotent: $\rho(\rho(x)) = \rho(x)$
- Examples:



Course 16,303: "Abstract interpretation", Thursday March 25th, 2005

Definition of a lower closure operator

The dual notion is that of lower closure operator, which

- reductive: $\forall x \in P : \rho(x) \leq x$
- monotone
- idempotent

Hiii Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

(c) F. Couset, 2005

Example of upper closure operator: reflexive transitive closure

- Let Σ be a set and $t \subseteq (\Sigma \times \Sigma)$ be a relation on Σ
 - $t^0\stackrel{\mathrm{def}}{=} 1_{\Sigma},\, t^{n+1}\stackrel{\mathrm{def}}{=} t^n\circ t=t\circ t^n$: composition of relations
 - $-t^* \stackrel{\text{def}}{=} \bigcup_{n \in \mathbb{N}} t^n \qquad t^+ \stackrel{\text{def}}{=} \bigcup_{n > 0} t^n$
- We have
 - $t \subset t^*$

extensive

- $t \subseteq t' \Longrightarrow t^* \subseteq t'^*$

monotone

 $-(t^*)^*$

idempotent

so that * is an upper closure operator on $\langle \wp(\Sigma \times \Sigma), \subseteq \rangle$.

- Same for t^+

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

Topological closure operator

- A topological closure operator ρ on a poset $\langle P, <, \perp, \vee \rangle$ with infimum \perp and lub \vee , if any, satisfies
 - strict: $\rho(\perp) = \perp$
 - extensive: $\forall x \in P : x < \rho(x)$
 - join morphism: $\forall x, y \in P : \rho(x \vee y) = (\rho(x) \vee \rho(y))^{\epsilon}$
 - idempotent: $\rho(\rho(x)) = \rho(x)$

This is the original definition given by K. Kuratowski on $\langle g(S), \subseteq \rangle$ to characterize a unique topology on S: Let ρ be a topological closure opertor on S. Let $T = \{S \setminus A \mid A \subseteq S \land \rho(A) = A\}$. Then T is a topology on S and $\rho(A)$ is the T-closure of A for each subset A of S.

⁸ This implies that ρ is menetonic.

Morgado Theorem (on upper closure operators)

Theorem. An operator ρ on a poset $\langle P, \leq \rangle$ is an upper closure operator if and only if

$$\forall x,y \in P : x \leq \rho(y) \iff \rho(x) \leq \rho(y)$$

PROOF. – Let ρ be an upper closure operator

$$x \le
ho(y)$$
 $\Rightarrow
ho(x) \le
ho(
ho(y))$ (monotony)
 $\Rightarrow
ho(x) \le
ho(y)$ (idempotence)
 $\Rightarrow x \le
ho(x) \le
ho(y)$ (extensive)
 $\Rightarrow x \le
ho(y)$

- Conversely, let ρ satisfying the above condition.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

$(\rho \text{ is extensive})$
(proving that ρ is extensive)
(proving $ ho$ to be monotone)
$(ho ext{ is extensive})$
(by above condition with $y= ho(x)$)
$(\leq is reflexive)$
(by above condition with $x' = \rho(x)$ and $y' = x$)
(by antisymmetry)
С

Course 16.393: "Abstract interpretation", Thursday March 25th, 2009

@ F. Couset, 2005

Fixpoints of a closure operator

The set of fixpoints of an operator $f \in P \mapsto P$ on a set $P \text{ is } \{x \mid f(x) = x\}.$

THEOREM. A closure operator is uniquely defined by its fixpoints

PROOF. Let ρ_1 and ρ_2 be two upper closure operators on a poset $\langle P_1 \leq \rangle$ with identical fixpoints:

$$\forall x \in P : \rho_1(x) = x \iff \rho_2(x) = x$$

We prove that $\rho_1 = \rho_2$.

- $\forall z \in P : z \leq \rho_1(z)$ so $\rho_2(z) \leq \rho_2(\rho_1(z))$ by extensivity of ρ_1 and monotony of ρ_2
- $\rho_1(\rho_1(z)) = \rho_1(z)$ by idempotence so $\rho_2(\rho_1(z)) = \rho_1(z)$ since ρ_1 and ρ_2 have the same fixpoints.
- It follows that $ho_2(z) \leq
 ho_2(
 ho_1(z)) =
 ho_1(z)$
- Course 16.399: "Abstract intercretation", Thursday March 29th, 2009

- Exchanging the rôles of ρ_1 and ρ_2 , we get $\rho_1(z) < \rho_2(z)$ in the same way.
- By antisymmetry, we conclude that $\rho_1(z) = \rho_2(z)$
- By duality, a lower closure operator is uniquely determined by its fixpoints.

Galois Connections

Evarist Galois

Course 16,395: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

(6) F. Couset, 2005

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Definition of a Galois connection

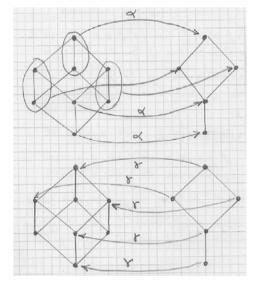
- Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be posets. A pair $\langle \alpha, \gamma \rangle$ of maps $\alpha \in P \mapsto Q$ and $\gamma \in Q \mapsto P$ is a Galois connection if and only if

$$\forall x \in P : \forall y \in Q : \alpha(x) \sqsubseteq y \iff x \leq \gamma(y)$$
 which is written:

$$\langle P, \leq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle Q, \sqsubseteq \rangle$$

- $-\alpha$ is the lower adjoint
- $-\gamma$ is the upper adjoint

- Example:



Course 16.395: "Abstract interpretation", Thursday March 25th, 2005

Example of Galois connection: bijection

Let P and Q be two sets and $b \in P \rightarrow Q$ be a one-to-one map of p onto q with inverse b^{-1} . Then

$$\langle P, = \rangle \stackrel{b^{-1}}{\longleftrightarrow} \langle Q, = \rangle$$

(where $\langle P, = \rangle$ is P ordered by equality)

PROOF.

$$b(x) = y$$

$$\iff x = b^{-1}$$

/by def. bi ection \

Course 16,393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

Example of Galois connection: functional abstraction

Let C and A be sets an $f \in C \mapsto A$. Define

$$lpha(X) \stackrel{ ext{def}}{=} \{f(x) \mid x \in X\}$$
 $\gamma(Y) \stackrel{ ext{def}}{=} \{x \mid f(x) \in Y\}$

then

$$\langle \wp(C), \subseteq \rangle \xrightarrow{\gamma} \langle \wp(A), \subseteq \rangle$$

Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

@ F. Couset, 2005

PROOF.

$$\begin{array}{ll} \alpha(X)\subseteq Y \\ \iff \{f(x)\mid x\in X\}\subseteq Y & \text{(def. α)} \\ \iff \forall x\in X: f(x)\in Y & \text{(def. \subseteq)} \\ \iff X\subseteq \{x\mid f(x)\in Y\} & \text{(def. \subseteq)} \\ \iff X\subseteq \gamma(Y) & \text{(def. γ)} \end{array}$$

- Example:

$$-C = \mathbb{Z}, A = \{-1, 0, +1\}$$

$$-f(x) = (x < 0 ? -1 | x = 0 ? 0 : +1)$$

$$-\alpha(\{0,1,2\})=\{0,+1\}$$

$$-\gamma(\{0,+1\}) = \{x \in \mathbb{Z} \mid x \geq 0\} = \mathbb{N}$$

Example of Galois connections with Pre and Post

Recall that given a set Σ and $t \subseteq \Sigma \times \Sigma$, we have defined

$$egin{aligned} \operatorname{post}[t]X & \stackrel{ ext{def}}{=} \{x' \mid \exists x \in X : \langle x, \, x'
angle \in t\} \ \operatorname{pre}[t]X & \stackrel{ ext{def}}{=} \operatorname{post}[t^{-1}]X \ &= \{x \mid \exists x' \in X : \langle x, \, x'
angle \in t\} \ & \widetilde{\operatorname{post}}[t]X & \stackrel{ ext{def}}{=} -\operatorname{post}[t](-X) \ &= \{x' \mid \forall x : \langle x, \, x'
angle \in t\} \ & \widetilde{\operatorname{pre}}[t]X & \stackrel{ ext{def}}{=} -\operatorname{pre}[t](-X) \ &= \{x \mid \forall x' : \langle x, \, x'
angle \in t \implies x' \in X\} \end{aligned}$$

We have

$$\langle \wp(\varSigma), \subseteq
angle \xrightarrow{\widetilde{\mathrm{pre}}[t]} \langle \wp(\varSigma), \subseteq
angle$$

By letting $t' = t^{-1}$, we get in the same way

$$\langle \wp(\varSigma), \subseteq \rangle \xrightarrow{\widetilde{\mathrm{post}}[t]} \langle \wp(\varSigma), \subseteq \rangle$$

Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

PROOF.

$$\operatorname{post}[t]X \subseteq Y$$

$$\iff \{x' \mid \exists x \in X : \langle x, x' \rangle \in t\} \subseteq \qquad (\operatorname{def. post})$$

$$\iff \forall x' : (\exists x \in X : \langle x, x' \rangle \in t) \Longrightarrow (x' \in Y) \qquad (\operatorname{def. } \subseteq)$$

$$\iff \forall x, x' : (x \in X : \langle x, x' \rangle \in t) \Longrightarrow (x' \in Y) \qquad (\operatorname{def. } \Longrightarrow)$$

$$\iff \forall x : (x \in X) \Longrightarrow (\forall x' : \langle x, x' \rangle \in t \Longrightarrow x' \in Y) \qquad (\operatorname{def. } \Longrightarrow)$$

$$\iff X \subseteq \{x \mid \forall x' : \langle x, x' \rangle \in t \Longrightarrow x' \in X\} \qquad (\operatorname{def. } \subseteq)$$

$$\iff X \subseteq \widetilde{\operatorname{pre}}[t]X \qquad (\operatorname{def. } \widetilde{\operatorname{pre}})$$

Course 16.392: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

Example of Galois connections induced by upper closure operators

Recall Morgado's theorem for an upper closure operator on a poset $\langle P, \leq \rangle$

$$\forall x,y \in P : x \leq \rho(y) \iff \rho(x) \leq \rho(y)$$

Let $\rho(P) = \{\rho(x) \mid x \in P\}$. This can be written as follows (with $z = \rho(y)$)

$$\forall x \in P : \forall z \in \rho(P) : x \leq 1_P(z) \iff \rho(x) \leq z$$

which by definition of a Galois connection implies that

$$\langle P, \leq \rangle \stackrel{1_P}{\longleftrightarrow} \langle \rho(P), \leq \rangle$$

Reciprocally, this implies that

Course 16,395: "Abstract intercretation", Thursday March 29th, 2009

 $\forall x \in P : \forall z \in \rho(P) : \rho(x) \leq z \iff x \leq 1_P(z)$ $\implies \forall x \in P : \forall y \in P : \rho(x) < \rho(y) \iff x < \rho(y)$ $\partial z = \rho(y)$

so that

THEOREM. ρ is an upper closure of $\langle P, \leq \rangle$ if and only if $\langle P, \leq \rangle \stackrel{1_P}{\longleftrightarrow} \langle \rho(P), \leq \rangle$

Unique adjoints

THEOREM. In a Galois connection

$$\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$$

 $\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$ one adjoint uniquely determines the other, in that

$$lpha(x) = igcap \{y \mid x \leq \gamma(y)\} \qquad \gamma(y) = igvee \{x \mid lpha(x) \sqsubseteq y\}$$

PROOF. – The set $\{y \mid \alpha(x) \sqsubseteq y\}$ has a glb which is precisely $\alpha(x)$ so $\alpha(x)$ $= \prod \{ y \mid \alpha(x) \sqsubseteq y \} = \prod \{ y \mid x \le \gamma(y) \} \text{ since } \alpha(x) \sqsubseteq y \iff x \le \gamma(y).$

- The set $\{x \mid x \leq \gamma(y)\}$ has a lub which is precisely $\gamma(y)$ so $\gamma(y) = \bigvee \{x \mid x \leq \gamma(y)\}$ $x < \gamma(y)$ = $\bigvee \{x \mid \alpha(x) \sqsubseteq y\}$ since $\alpha(x) \sqsubseteq y \iff x < \gamma(y)$.

Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

@ F. Couset, 2005

Characteristic property of Galois connections

- Let $\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$ then
 - α is monotone
 - γ is monotone
 - $-1_{\mathcal{D}} \stackrel{.}{<} \gamma \circ \alpha$
 - $-\alpha \circ \gamma \stackrel{.}{\sqsubset} 1_{\mathcal{O}}$

PROOF. - $\alpha(x) \sqsubseteq \alpha(y) \Longrightarrow x \leq \gamma \circ \alpha(x)$

- $\gamma(x) \le \gamma(y) \Longrightarrow \alpha \circ \gamma(y) \sqsubseteq y$
- $x \le y \Longrightarrow x \le \gamma \circ \alpha(x) \Longrightarrow \alpha(x) \sqsubseteq \alpha(y)$
- $x \sqsubseteq y \Longrightarrow \alpha(\gamma(x)) \sqsubseteq y \Longrightarrow \gamma(x) \le \gamma(y)$

Course 16,399: "Abstract intercretation", Thursday March 29th, 2009

@ F. Couset, 2005

 $-\alpha \circ \gamma \circ \alpha = \alpha$ and $\gamma \circ \alpha \circ \gamma = \gamma$

PROOF. $-\alpha \circ \gamma(x) \sqsubseteq x$ so $\alpha \circ \gamma \circ (y) \sqsubseteq \alpha(y)$ when $x = \alpha(y)$. $1_F \sqsubseteq \gamma \circ \alpha$ so $\alpha \sqsubseteq \alpha \circ \gamma \circ \alpha$ by monotony, concluding $\alpha \circ \gamma \circ \alpha = \alpha$ by antisymmetry.

- $-x \leq \gamma \circ \alpha(x)$ so $\gamma(y) \leq \gamma \circ \alpha \circ \gamma(y)$ for $x = \gamma(y)$ so $\alpha \circ \gamma(y) \sqsubseteq y$ so $\gamma \in \alpha \in \gamma(y) \sqsubseteq \gamma(y)$ by monotony, concluding $\gamma \in \alpha \in \gamma = \gamma$ by antisymmetry.
- $-\alpha \circ \gamma$ is a lower closure operator on $\langle P, \leq \rangle$
- $-\gamma \circ \alpha$ is a upper closure operator on $\langle Q, \Box \rangle$

Equivalent definition of a Galois connection

THEOREM.

$$\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$$

 $\iff \alpha \text{ is monotone } \land \gamma \text{ is monotone } \land$ $\alpha \circ \gamma$ is reductive $\wedge \gamma \circ \alpha$ is extensive

PROOF. – We have already proved \Longrightarrow

- Reciprocally, for all $x \in P$ and $y \in Q$

$$\alpha(x) \sqsubseteq y$$

$$\implies \gamma \circ \alpha(x) \leq \gamma(y)$$

$$\gamma = \gamma$$
 monotone)

$$\implies x \leq \gamma(y)$$

$$(\gamma \circ \alpha \text{ is extensive and transitivity})$$

$$\Longrightarrow \alpha(x) \sqsubseteq \alpha \circ \gamma(y)$$

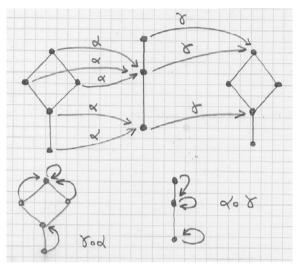
$$\alpha$$
 is monotone

@ F. Couset, 2005

$$\implies \alpha(x) \sqsubseteq y$$

$$(\alpha \circ \gamma \text{ is reductive and transitivity})$$

Example:



Course 16,393: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

The upper adjoint of a Galois connection preserves existing lubs

THEOREM. Let $\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$ be a Galois connection and $X \subseteq P$ such that its lub $\bigvee X$ does exists in P. Then $\alpha(\bigvee X)$ is the lub of $\{\alpha(x) \mid x \in X\}$ in Q, that is $\alpha(\backslash\backslash X) = |\alpha(X)|$

PROOF. $\neg \forall x \in X : x \leq \bigvee X$ by existence of the lub $\bigvee X$ so $\forall x \in X : \alpha(x) \sqsubseteq$ $\alpha(\bigvee X)$ by monotony of α proving that $\alpha(\bigvee X)$ is an upper bound of the set $\{\alpha(x) \mid x \in X\}$ in Q.

- Let y be another upper bound of $\{\alpha(x) \mid x \in X\}$ in Q.

$$\forall x \in X: \alpha(x) \sqsubseteq y \qquad \qquad \text{(def. upper bound)} \\ \Longrightarrow \forall x \in X: x \leq \gamma(y) \qquad \qquad \text{(def. Galois connection)} \\ \text{Course 16.393: "Abstract interpretation", Thursday March 29th, 2005} \\ \qquad \qquad -126 - \qquad \text{(@ F. Conset, 2005)} \\ \end{array}$$

 $\implies \bigvee X \leq \gamma(y)$?def lub\ $\Longrightarrow \alpha(\backslash /X) \sqsubseteq y$ /def. Galois connection \

proving that $\alpha(\bigvee X)$ is the least of the upper bounds of $\{\alpha(x) \mid x \in X\}$.

- If we write | Y for the lub of $Y \subseteq Q$ in $\langle Q, \square \rangle$ whenever it exists, then we have proved that α preserves existing lubs, in that $(\alpha(X) = {\alpha(x) \mid x \in X})$

If
$$\bigvee X$$
 exists in $\langle P, \leq \rangle$ then $\bigsqcup \alpha(X)$ does exists in $\langle Q, \sqsubseteq \rangle$ and $\alpha(\bigvee X) = |\alpha(X)|$.

Galois connection induced by lub preserving maps

THEOREM. Let $\alpha \in P \stackrel{\perp}{\longmapsto} Q$ be a complete join preserving map between posets $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$. Define:

$$\gamma = \lambda y \cdot igvee \{z \mid lpha(z) \sqsubseteq y\}$$

If γ is well-defined then

$$\langle P, \leq \rangle \stackrel{\gamma}{ \stackrel{}{ \hookrightarrow} } \langle Q, \sqsubseteq \rangle$$

PROOF. – Assume that for all $y \in Q$, $\bigvee \{z \mid \alpha(z) \sqsubseteq y\}$ does exist. A counter-example is

 α is the identity on $P = \omega$. Then $\omega \in \omega + 1 = Q$. $\{z \mid \alpha(z) \sqsubseteq \omega\} = \omega$ but $\bigvee \{z \mid \alpha(z) \sqsubseteq y\} = \bigvee \{0,1,2,\ldots\}$ does not exist in ω !

- The proof that $\langle \alpha, \gamma \rangle$ is a Galois connection proceeds as follows:

$$\begin{array}{l} \alpha(x)\sqsubseteq y \\ \Longrightarrow x\in\{z\mid\alpha(z)\sqsubseteq y\} \\ \Longrightarrow x\leq\bigvee\{z\mid\alpha(z)\sqsubseteq y\} \\ \Longrightarrow x\leq\gamma(y) \\ \Longrightarrow \alpha(x)\sqsubseteq\alpha(\bigvee\{z\mid\alpha(z)\sqsubseteq y\}) \\ \Longrightarrow \alpha(x)\sqsubseteq\bigsqcup\{\alpha(z)\mid\alpha(z)\sqsubseteq y\} \\ \Longrightarrow \alpha(x)\sqsubseteq\bigsqcup\{\alpha(z)\mid\alpha(z)\sqsubseteq y\} \\ \Longrightarrow \alpha(x)\sqsubseteq y \\ \end{array} \qquad \begin{array}{l} \text{(def. γ and α monotone)} \\ \text{(α preserves existing lubs)} \\ \text{(α preserves existing lubs)}$$

Similarly $^{\mathfrak{g}}$, if γ preserves glbs and $\alpha = \lambda x \cdot \bigcap \{y \mid x \leq \gamma(y)\}$ is well-defined then $\langle P, \leq \rangle \xleftarrow{\gamma} \langle Q, \sqsubseteq \rangle$.

^G More precisely, by duality, see later on page 131.

Course 16.395: "Abstract interpretation", Thursday March 25th, 2005

- 6 F. Couset, 2005

Duality principle for Galois connections

THEOREM. We have
$$\langle P, \leq \rangle \xrightarrow{\alpha} \langle Q, \sqsubseteq \rangle$$
 iff $\langle Q, \equiv \rangle \xrightarrow{\alpha} \langle P, \geq \rangle$

whence the dual of a Galois connection $\langle \alpha, \gamma \rangle$ is $\langle \gamma, \alpha \rangle$ (exchange of adjoints).

Proof.

$$egin{array}{ll} \langle P, \leq
angle & \stackrel{\gamma}{\Longleftrightarrow} \langle Q, \sqsubseteq
angle \ & \stackrel{
ightharpoonup}{\Longrightarrow} & \forall x \in P : orall y \in Q : lpha(x) \sqsubseteq y \iff x \leq \gamma(y) \ \iff & \forall y \in Q : orall x \in P : \gamma(y) \geq x \iff y \sqsubseteq lpha(x) \ & \stackrel{
ightharpoonup}{\Longrightarrow} & \langle Q, \sqsubseteq
angle & \stackrel{lpha}{\searrow} \langle P, \geq
angle \end{array}$$

Г

@ F. Couset, 2005

Examples:

- The dual of " α preserves existing lubs" is " γ preserves existing glbs"
- The dual of $\alpha(x) = \prod \{y \mid x \leq \gamma(y)\}$ is $\gamma(y) = \bigvee \{y \mid x \sqsubseteq \alpha(y)\}$ that is $\gamma(y) = \bigvee \{x \mid \alpha(x) \sqsubseteq y\}$
- The dual of $\alpha \circ \gamma \circ \alpha = \alpha$ is $\gamma \circ \alpha \circ \gamma = \gamma$

Composition of Galois connections

THEOREM. The composition of Galois connections is a Galois connection: if

$$\langle P, \leq \rangle \xrightarrow{\frac{\gamma_1}{\alpha_1}} \langle Q, \sqsubseteq \rangle \text{ and } \langle Q, \sqsubseteq \rangle \xrightarrow{\frac{\gamma_2}{\alpha_2}} \langle R, \preceq \rangle$$

then
$$\langle P, \leq \rangle \xrightarrow{\gamma_1 \circ \gamma_2} \langle R, \preceq \rangle$$

PROOF. Assume $\langle P, \leq \rangle \xrightarrow{n} \langle Q, \sqsubseteq \rangle$ and $\langle Q, \sqsubseteq \rangle \xrightarrow{n} \langle R, \preceq \rangle$ then $\forall x \in Q$ $P: \forall z \in R$:

$$\alpha_2 \circ \alpha_1(x) \preceq z$$

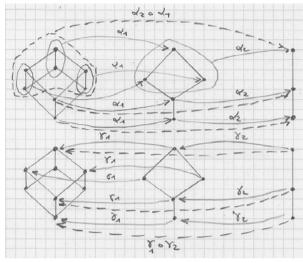
$$\iff \alpha_1(x) \sqsubseteq \gamma_2(z)$$

$$\iff x \leq \gamma_1 \circ \gamma_2(z)$$

Course 16,393; "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

- Example:



Hiii Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

(c) **F. Couset**, 2005

The original Galois correspondances do not compose

- A Galois correspondence, as originally defined by Galois ¹⁰, is a pair $\langle \alpha, \gamma \rangle$ of functions on posets (originally powersets with the subset ordering, such that

$$\langle P, \leq \rangle \xrightarrow{\alpha_1} \langle Q, \equiv \rangle.$$

$$\begin{array}{ll} (F_1 \subseteq F_2) \Rightarrow (\alpha(F_1) \supseteq \alpha(F_2)) & (G_1 \supseteq G_2) \Rightarrow (\gamma(G_1) \subseteq \gamma(G_2)) \\ F \subseteq \gamma(\alpha(F)) & \alpha(\gamma(G)) \supseteq G \end{array}$$

@ F. Couset, 2005

- So α is antitone: $x < y \Longrightarrow \alpha(x) \subseteq \alpha(y)$

- Hence when composing $\alpha_2 \circ \alpha_1$ is monotonic, hence not a Galois correspondance
- This justifies the introduction of Galois connections in [3] (by taking semi-dual Galois correspondances).

[3] F. Couset and R. Couset. Systematic design of program analysis frameworks. In :emphConference Record of the Sixth Annual ACM SIGFLAN-SIGACT Symposium on Principles of Programming Languages, pages 269-282, Sam Antonio, Texas, 1979. ACM Press, New York, U.S.A.

 $^{^{10}}$ Évariste Galois introduced such "correspondences" as the basis of his criterion for solvability of a polynomial equation of degree ≥ 5 by radicals and for the constructibility by straight-edge and compass. If \tilde{E} is a given field then let Inv $G \stackrel{\text{def}}{=} \{a \in E \mid \neg \eta \in G : \eta(a) = a\}$ for a group G of automorphisms in E. The Galois group Gal E/F of E over a subfield F is the set of automorphisms η of E such that $\eta(\alpha) = \alpha$ for every $\alpha \in F$. The maps $\alpha(F) = \text{Gal } E/F$ and $\gamma(F) = \text{Gal } E/F$ are such that:

Galois surjections (insertions)

THEOREM. If
$$\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$$
 then α is onto

$$\iff \gamma \text{ is one-to-one}$$

$$\iff lpha \circ \gamma = 1_Q$$

PROOF. – Assume that α is onto $(\forall y \in Q : \exists x \in P : \alpha(x) = y)$

- Assume
$$\gamma(x)=\gamma(y)$$
. $\exists x',y'\in P: \alpha(x')=y$ and $\alpha(y')=y$, and so
$$\gamma(\alpha(x'))=\gamma(\alpha(y'))$$
 $\Rightarrow x'\leq \gamma(\alpha(y'))$ (since $x'\leq \gamma \circ \alpha(x')$) $\Rightarrow \alpha(x)\sqsubseteq \alpha(y')$ (by def. Galois connection)

Course 16,399: "Abstract interpretation", Thursday March 26th, 2009

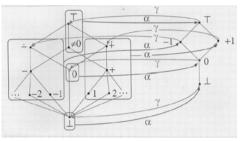
© F. Couset, 2005

$$\implies x \sqsubseteq y$$

Exchanging the rôles of x and y, we get $y \sqsubseteq x$ so x = y by antisymmetry, proving that $x \neq y \Longrightarrow \gamma(x) \neq \gamma(y)$, by composition.

- $-\alpha \circ \gamma(y) = \alpha \circ \gamma \circ \alpha(y')$ where $\alpha(y') = y$. So $\alpha \circ \gamma(y) = \alpha(y') = y$ so $\alpha \circ \gamma = 1_G$
- Assume $\alpha \circ \gamma = 1_G$. Then given $y \in Q$, we have $\alpha \circ \gamma(y) = y$ proving that $\exists x = \gamma(y) : \alpha(x) = y, \alpha \text{ is onto.}$

Example of Galois surjection:



Hiii Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

@ F. Couset, 2005

Г

Galois injections

THEOREM. By duality, if $\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$ then

$$\gamma$$
 is onto

 $\iff \alpha \text{ is one-to-one}$

$$\iff \gamma \circ \alpha = 1_{P}$$

Notations:

- $-\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle \wedge \alpha \text{ is }$ onto
- $-\langle P, \leq \rangle \xrightarrow{\varphi} \langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle P, \leq \rangle \xrightarrow{\varphi} \langle Q, \sqsubseteq \rangle \wedge \alpha \text{ is}$ one-to-one
- $-\langle P, \leq \rangle \xrightarrow{\varphi} \langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle P, \leq \rangle \xrightarrow{\varphi} \langle Q, \sqsubseteq \rangle \wedge \alpha \text{ is}$ bijective

Conjugate Galois connections in a Boolean algebra

THEOREM. Let $\langle P, \leq, 0, 1, \vee, \wedge, - \rangle$ and $\langle Q, \, \Box, \, \bot, \, \top, \, \bot, \, \Gamma, \, \neg \rangle$ be Boolean algebras and the Galois connection

 $\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$

Define the conjugates $\tilde{\alpha} \stackrel{\alpha}{=} -\alpha(-x)$ and $\tilde{\gamma} = -\gamma(-x)$. Then

$$\langle P, \geq
angle \stackrel{\widetilde{\gamma}}{ \underset{\widetilde{lpha}}{\longleftarrow}} \langle Q, \; \sqsubseteq
angle$$

PROOF.

$$\widetilde{lpha}(a) \stackrel{-}{=} y$$

Course 16.399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

$$\iff -\alpha(-x) \stackrel{-}{=} y \qquad \qquad \text{(def. $\widetilde{\alpha}$)}$$
 $\iff \alpha(-x) \stackrel{-}{=} -y \qquad \qquad \text{(Galois connection)}$
 $\iff x \geq -\gamma(-x) \qquad \qquad \text{(} \text{(Galois connection)}$
 $\iff x \geq \widetilde{\gamma}(y) \qquad \qquad \text{(def. $\widetilde{\gamma}$)}$

THEOREM. It follows that
$$\langle Q, \sqsubseteq \rangle \xrightarrow{\widetilde{\alpha}} \langle P, \leq \rangle$$

PROOF.

$$\widetilde{\gamma}(y) \leq x \iff y \sqsubseteq \widetilde{lpha}(x)$$

Course 16,399: "Abstract intermetation", Thursday March 29th, 2009

© F. Couset, 2005

Example of dual Galois connections in a Boolean algebra: Pre, Post and their duals

We have

$$\langle \wp(\Sigma), \subseteq \rangle \xrightarrow{\widetilde{\operatorname{pre}}[t]} \langle \wp(\Sigma), \subseteq \rangle$$

By conjugate/complement duality, we get

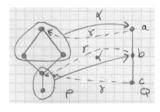
$$\langle \wp(\varSigma), \supseteq
angle \xrightarrow{\operatorname{pre}[t]} \langle \wp(\varSigma), \supseteq
angle$$

since $\widetilde{pre} = pre$, hence by order duality

$$\langle \wp(\varSigma), \subseteq \rangle \xrightarrow{\operatorname{post}[t]} \langle \wp(\varSigma), \subseteq \rangle$$

Example of reduction of a Galois connection

- Assume a Galois connection is not a surjection, for example:



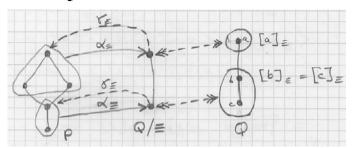
$$\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$$

- It is always possible to reduce Q by identifying elements with the same γ -image

$$x\equiv y\stackrel{\mathrm{def}}{=} \gamma(x)=\gamma(y)$$

¹¹ This is also called the dual, but this may cause confusion with lattice duality.

and to reduce Q to the quotient Q/\equiv , in which case α becomes surjective:



$$egin{aligned} &lpha_\equiv(x)=[lpha(x)]_\equiv\ &\gamma_\equiv([y]_\equiv)=\gamma(y)\ &[x]_\equiv\sqsubseteq_\equiv[y]_\equiv\stackrel{ ext{def}}{=}x\sqsubseteq y ext{ on } Q/_\equiv \end{aligned}$$

Course 16,392: "Abstract intermetation", Thursday March 29th, 2009

@ F. Couset, 2005

Reduction of a Galois connection

Theorem. If
$$\langle P, \leq \rangle \xrightarrow{\frac{\gamma}{\alpha}} \langle Q, \sqsubseteq \rangle$$
, $x \equiv y \stackrel{\text{def}}{=} \gamma(x) = \gamma(y)$, $\alpha_{\equiv}(x) = [\alpha(x)]_{\equiv} \text{ and } \gamma_{\equiv}([y]_{\equiv}) = \gamma(y)$, then $\langle P, \leq \rangle \xrightarrow{\frac{\gamma_{\equiv}}{\alpha_{\equiv}}} \langle Q/_{\equiv}, \sqsubseteq_{\equiv} \rangle$

where $[x]_{\equiv} \sqsubseteq_{\equiv} [y]_{\equiv} \stackrel{\mathrm{def}}{=} x \sqsubseteq y$ on $Q/_{\equiv}$

PROOF. $- \equiv$ is an equivalence relation. We let $[x]_{=}$ be the equivalence class of $x \in Q$ in the quotient Q/=.

- We have a Galois connection $\langle P, \leq \rangle \xrightarrow{\gamma_{\pm}} \langle Q/_{\pm}, \sqsubseteq_{\pm} \rangle$ as follows:

$$egin{aligned} & lpha(x) \sqsubseteq_{\equiv} [y]_{\equiv} \ & \iff [lpha(x)]_{\equiv} \sqsubseteq_{\equiv} [y]_{\equiv} \ & \iff lpha(x) \sqsubseteq y \end{aligned}$$
 (def. $lpha_{\equiv}(x)$)

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

$$\iff x \leq \gamma(y)$$
 (original Galois connection) $\iff x \leq \gamma_{\equiv}([y]_{\equiv})$ (def. γ_{\equiv})

- To prove that $\gamma_{=}$ is injective (which implies $\alpha_{=}$ is surjective), assume

$$\gamma_{\equiv}([x]_{\equiv}) = \gamma_{\equiv}([y]_{\equiv})$$
 $\Longrightarrow \gamma(x) = \gamma(y)$ (by def. γ_{\equiv})
 $\Longrightarrow [x]_{\equiv} \sqsubseteq_{\equiv} [y]_{\equiv}$ (by def. \equiv)
 $\Longrightarrow [x]_{\equiv} = [y]_{\equiv}$ on $Q/_{\equiv}$

Linear Sum of Galois connections

THEOREM. Let $\langle P_1, \leq_1 \rangle \xrightarrow{\gamma_1} \langle Q_1, \sqsubseteq_1 \rangle$ and $\langle P_2, \leq_2 \rangle \xrightarrow{\gamma_2}$ $\langle Q_2, \sqsubseteq_2 \rangle$ be Galois connections. Define the linear (ordinal) sums of posets $\langle P, \leq \rangle \stackrel{\text{def}}{=} \langle P_1, \leq_1 \rangle \oplus \langle P_2, \leq_2 \rangle$ and $\langle Q, \sqsubseteq \rangle \stackrel{\mathrm{def}}{=} \langle Q_1, \sqsubseteq_1 \rangle \oplus \langle Q_2, \sqsubseteq_2 \rangle$ as well as $\alpha = \alpha_1 \oplus \alpha_2$ and $\gamma = \gamma_1 \oplus \gamma_2$ as follows:

$$lpha(\langle 0,\, x
angle)\stackrel{ ext{def}}{=}\langle 0,\, lpha_1(x)
angle \qquad \gamma(\langle 0,\, x
angle)\stackrel{ ext{def}}{=}\langle 0,\, \gamma_1(x)
angle \ lpha(\langle 1,\, x
angle)\stackrel{ ext{def}}{=}\langle 1,\, lpha_2(x)
angle \qquad \gamma(\langle 1,\, x
angle)\stackrel{ ext{def}}{=}\langle 1,\, \gamma_2(x)
angle \ ext{then}$$

$$\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$$

PROOF. $\alpha(\langle i, x \rangle) \sqsubseteq \langle j, y \rangle$

(i) if i = j = 0 then

$$\iff \alpha_1 \leq_1 y$$

$$\iff x \sqsubseteq_1 \gamma_1(y)$$

$$\iff \langle 0, x \rangle \sqsubseteq \langle 0, \gamma_1(y) \rangle$$

$$\iff \langle 0, x \rangle \sqsubseteq \gamma(\langle 0, y \rangle)$$

$$\iff \langle i, x \rangle \sqsubseteq \gamma(\langle j, y \rangle)$$

(ii) if
$$i = 0, j = 1$$
 then $\langle i, x \rangle = \langle 0, x \rangle \sqsubseteq \langle 1, \gamma_2(y) \rangle = \gamma(\langle 1, y \rangle) = \gamma(\langle j, y \rangle)$

(iii) if i = j = 1 then

$$\iff \alpha_2 \leq_2 y$$

$$\iff x \sqsubseteq_2 \gamma_2(y)$$

$$\iff \langle 1, x \rangle \sqsubseteq \langle 1, \gamma_2(y) \rangle$$

Course 16.393: "Abstract interpretation", Thursday March 29th, 2009

146 —

(c) F. Couset, 2005

$$\iff \langle 1, \, x \rangle \sqsubseteq \gamma(\langle 1, \, y \rangle) \\ \iff \langle i, \, x \rangle \sqsubseteq \gamma(\langle j, \, y \rangle)$$

Course 16,395: "Abstract interpretation", Thursday March 25th, 2005

— 15C —

© F. Couset, 2005

Disjoint sum of Galois connections

THEOREM. Let $\langle P_1, \leq_1 \rangle \xrightarrow{q_1} \langle Q_1, \sqsubseteq_1 \rangle$ and $\langle P_2, \leq_2 \rangle \xrightarrow{q_2} \langle Q_2, \sqsubseteq_2 \rangle$ be Galois connections. Define the disjoint sums of posets $\langle P, \leq \rangle \stackrel{\text{def}}{=} \langle P_1, \leq_1 \rangle + \langle P_2, \leq_2 \rangle$ and $\langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle Q_1, \sqsubseteq_1 \rangle + \langle Q_2, \sqsubseteq_2 \rangle$ as well as $\alpha = \alpha_1 + \alpha_2$ and $\gamma = \gamma_1 + \gamma_2$ as follows:

$$lpha(\langle 0,\, x \rangle) \stackrel{ ext{def}}{=} \langle 0,\, lpha_1(x)
angle \qquad \gamma(\langle 0,\, x
angle) \stackrel{ ext{def}}{=} \langle 0,\, \gamma_1(x)
angle \ lpha(\langle 1,\, x
angle) \stackrel{ ext{def}}{=} \langle 1,\, lpha_2(x)
angle \qquad \gamma(\langle 1,\, x
angle) \stackrel{ ext{def}}{=} \langle 1,\, \gamma_2(x)
angle$$

then

$$\langle P, \leq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$$

Proof.

$$lpha(\langle i,\,x
angle\sqsubseteq\langle j,\,y
angle$$

$$\iff \langle i, \alpha_i(x) \rangle \sqsubseteq \langle j, y \rangle$$

$$\iff i = j \land \alpha_i(x) \leq_i y$$

$$\iff i = j \land x \leq_i \gamma_j(y)$$

$$\iff \langle i, x \rangle \leq \langle j, \gamma_j(y) \rangle$$

$$\iff \langle i, x \rangle \leq \gamma(\langle j, y \rangle)$$

Similar results hold for the smashed disjoint sum.

Product of Galois connections

Theorem. Let $\langle P_1, \leq_1 \rangle \xrightarrow{\gamma_1} \langle Q_1, \sqsubseteq_1 \rangle$ and $\langle P_2, \leq_2 \rangle \xrightarrow{\gamma_2} \langle Q_2, \sqsubseteq_2 \rangle$ be Galois connections. Define the cartesian product of posets $\langle P, \leq \rangle \stackrel{\text{def}}{=} \langle P_1, \leq_1 \rangle \times \langle P_2, \leq_2 \rangle$ and $\langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle Q_1, \sqsubseteq_1 \rangle \times \langle Q_2, \sqsubseteq_2 \rangle$ as well as $\alpha = \alpha_1 \times \alpha_2$ and $\gamma = \gamma_1 \times \gamma_2$ as follows:

$$egin{aligned} lpha(\langle x,\,y
angle) &\stackrel{ ext{def}}{=} \langle lpha_1(x),\,lpha_2(y)
angle \ \gamma(\langle x,\,y
angle) &\stackrel{ ext{def}}{=} \langle \gamma_1(x),\,\gamma_2(y)
angle \end{aligned}$$

then

$$\langle P, \leq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} \langle Q, \sqsubseteq \rangle$$

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

© F. Couset, 2005

PROOF.

$$egin{aligned} &lpha(\langle x,y
angle\sqsubseteq\langle x',y'
angle\ &\Longleftrightarrow \langlelpha_1(x),\,lpha_2(y)
angle\sqsubseteq\langle x',\,y'
angle\ &\Longleftrightarrow lpha_1(x)\sqsubseteq_1x'\wedgelpha_2(y)\sqsubseteq_1y'\ &\Longleftrightarrow x\le_1\gamma_1(x')\wedge y\le_2\gamma_1(y')\ &\Longleftrightarrow \langle x,\,y
angle\sqsubseteq\gamma(\langle x',\,y'
angle) \end{aligned}$$

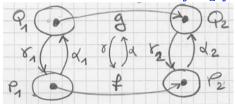
This can be generalized to $\langle P, \leq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle Q, \sqsubseteq \rangle$ implies $\langle P^n, \leq^n \rangle \stackrel{\gamma^n}{\longleftrightarrow} \langle Q^n, \sqsubseteq^n \rangle$ where $\alpha^n(\langle x_1, \ldots, x_n \rangle) = \langle \alpha(x_1), \ldots, \alpha(x_n) \rangle$ $\gamma^n(\langle y_1, \ldots, y_n \rangle) = \langle \gamma(y_1), \ldots, \gamma(y_n) \rangle$

Course 16.393: "Abstract interpretation", Thursday March 29th, 2005 — 154 — 6 F. Couset, 2005

Power of Galois connections

THEOREM. Let $\langle P_1, \leq_1 \rangle \xrightarrow{\frac{\gamma_1}{\alpha_1}} \langle Q_1, \sqsubseteq_1 \rangle$ and $\langle P_2, \leq_2 \rangle \xrightarrow{\frac{\gamma_2}{\alpha_2}} \langle Q_2, \sqsubseteq_2 \rangle$ be Galois connections and $\langle P_1 \xrightarrow{\mathbf{m}} P_2, \leq_2 \rangle$ as well as $\langle Q_1 \xrightarrow{\mathbf{m}} Q_2, \sqsubseteq_2 \rangle$ be sets of monotone maps with the pointwise ordering. Then

$$\langle P_1 \stackrel{\mathbf{m}}{\longmapsto} P_2, \stackrel{\dot{\leq}}{\leq}_2 \rangle \stackrel{\lambda g \cdot \gamma_2 \circ g \circ \alpha_1}{\underbrace{\lambda f \cdot \alpha_2 \circ f \circ \gamma_1}} \langle Q_1 \stackrel{\mathbf{m}}{\longmapsto} Q_2, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq}_2 \rangle$$



$$egin{aligned} lpha &= \lambda f \cdot lpha_2 \circ f \circ \gamma_1 \ \gamma &= \lambda g \cdot \gamma_2 \circ g \circ lpha_1 \end{aligned}$$

Course 16.395: "Abstract interpretation", Thursday March 25th, 2005

Proof.

$$\alpha(f) \sqsubseteq_{2} g$$

$$\iff \alpha_{2} \circ f \circ \gamma_{1} \sqsubseteq_{2} g \qquad \qquad (\text{def. } \alpha)$$

$$\iff \forall x : \alpha_{2}(f(\gamma_{1}(x))) \sqsubseteq_{2} g(x) \qquad \qquad (\text{def. } \sqsubseteq_{2} \text{ and } \circ)$$

$$\iff \forall x : f(\gamma_{1}(x)) \leq_{2} \gamma_{2}(g(x)) \qquad \qquad (\text{Galois connection})$$

$$\iff \forall y : f(\gamma_{1}(\alpha_{1}(y))) \leq_{2} \gamma_{2}(g(\alpha_{1}(y))) \qquad \text{(by setting } x = \alpha_{1}(y))$$

$$\iff \forall y : f(y) \leq_{2} \gamma_{2}(g(\alpha_{1}(y))) \qquad \text{(since } y \leq_{1} \gamma_{1}(\alpha_{1}(y) \text{ and } f \text{ monotone})$$

$$\iff f \leq_{2} \gamma_{2} \circ g \circ \alpha_{1} \qquad \qquad (\text{def. } \leq_{2} \text{ and } \circ)$$

$$\iff f \leq_{2} \gamma_{2} \circ g \circ \alpha_{1} \qquad \qquad (\text{def. } \gamma)$$

$$\iff f \leq_{2} \gamma_{2} \circ g \circ \alpha_{1} \qquad \qquad (\text{def. } \gamma)$$

$$\iff f \circ \gamma_{1} \leq_{2} \gamma_{2} \circ g \circ \alpha_{1} \circ \gamma_{1} \qquad \qquad (\text{def. } \leq_{2})$$

$$\iff f \circ \gamma_{1} \leq_{2} \gamma_{2} \circ g \qquad (\text{since } \alpha_{1} \circ \gamma_{1} \text{ reductive and } \gamma_{2} \text{ and } g \text{ monotone})$$

$$\iff \alpha_{2} \circ f \circ \gamma_{1} \sqsubseteq_{2} \alpha_{2} \circ \gamma_{2} \circ g \qquad (\text{since } \alpha_{2} \text{ monotone})$$

THE END

My MIT web site is http://www.mit.edu/~ccusct/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16,395: "Abstract interpretation", Thursday March 29th, 2005

@ F. Couset, 2005

Course 16,399: "Abstract interpretation", Thursday March 29th, 2009

(g) **F. Couset**, 2005