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Maps between Posets

(Homol|iso|epi|mono|endo|auto)-morphisms

— A morphism (or homomorphism) is an application f €
S1 +— Sy between two sets 51 and Sy equipped with
operations

g c f;? S
g’EE.SE — o

such that Vzq,...,z, € S1:

flo(zs, ..., 2a)) = d'(f(z1), ..., f(zn))
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If n=1then fcg=g¢ ¢ f, diagramatically:

an isomorphisn? 1s a bijective morphism

an epimorphism is an onto/surjective morphism
— an monomorphism is a one-to-one/injective morphism

— an endomorphism has 51 — 5o

an automorphism 1s a bijective endomorphism
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— The morphism may be relative to relations » C ST and
v’ C ST such that for all (zy, ..., @n) € ST:

{1, ..., 2n) €7 == {f(z1), ..., flzn)) €7

— For binary relations:

z17 22 = f(z1) 7 f(z2)
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Complete (homol|iso|epi|mono|endo|auto)-morphisms

— A complete morphism (or homomorphism) is an ap-
plication f € S; — Sy between two sets S; and 55
equipped with operations

G € p(S1) > S1
G € p(S2) — Sy

such that VX C Sy:

def

F(G(X)) = G'(F(X)) where f(X)= {f(z) |z € X}
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— Diagrammatically:

— if f 1s bijective, onto, one-to-one then f 1s a complete
1so-, epi-, mono-morphism. 1f S; = 53 then f 1s a com-
plete endomorphism, and a complete aufomorphism
when f 1s bijective.
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Monotone maps

— Let (P, <} and (@, C) be two posets. Amap f € P+
(J 18 monotone iff

Vo,y € P:(z<y) = (f(=)C f(v))

— Alternatives
- order-preserving
- 1sotone

- Increasing
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- arder morphism

— Example:

— Monotony ' is self-dual (the dual of “monotone” is “mono-
tone™)

1 Al “Menctepicity™.
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Antitone (decreasing) maps

— Let (P, <) and (@, C) be two posets. Amap f € P+
(J 1s antitone iff

vz,ye P:(z<y) = (flz) = F(y))

— Alternatives
- order-inversing

- decreasing

— Self-dual notion
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Characterization of monotone maps using lubs

THEOREM. Let (P, <) and (@, C} be two posets and
f € P Q. If fis monotone then whenever § C P and
both lubs \/ S exists in P and | | f(S) exists in Q then:

| |fT s/ 9

The reciprocal 1s false but holds for join-semi-lattices.

Proof. — Assume f is monotone, \/ & and | f(5) exist. Then¥s € 5:5 <
V/ § so by monaototny f(s) < f(V 5) whence | f(S)1C f(V S5) by def. lub.
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— A counter-example to the reciprocal is

r“ _

— Conversely, for a join-semi-lattice, if | | f(S) C f(\V/ S)
whenever \/ S and | | f(S) exist then when z < y and
S ={z,y} wehave \/S =z vy =yso flz)L f(y)
exists in the join-semi-lattice and f(z)L f(y) = || f(S)
C f(VS) = f(y) whence f(z)L f(y) = f(y) which

implies f(z) C f(¥).

TH
I I“ Ceurse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 1z — o F. Couset, 200%




The inclusion can be strict, as shown by the following
example

— f is monotone

- Uf({e,8}) = fla)L f(8)

=zrlLr==zx

Cz=f(c)=flaVvb)
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Characterization of monotone maps using glbs

THEOREM. Let (P, <} and (@, C} be two posets and
f e Pw— Q. If fis monotone then whenever § C P, the
glbs A S exists in P and [ | f(S) exists in @, we have:

[ Z F(AS) -

The reciprocal is false but holds for meet-semi-lattices.

|

ProofF. By duality. C
i .
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Order embedding

— Let (P, <} and (@, C) be two posets A map f € P
@ is an order embedding (written f € P — Q or
fePyQ)iff

Ve,ye Pz <y < f(z)C fly)

— Example:
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An order embedding is injective

THEOREM. Let (P, <} and (@, C} be two posets and
f € P < (J be an order-embedding. f is injective. |

Proar.

flz) = f(y)
= fEC fly) A fly) C fl=)
— TsyAy=cx
— z=1¢y andso

z#y = flz) # f(y)

TH
I I" Ceurse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 1E — o F. Couset, 200%




Order isomorphism

— Let (P, <) and {@, C) be posets. An order-isomorphism

is an order-embedding which is onto (whence bijec-
tive).

— Example:
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— Let (P, <) and (@, C) be posets. These ordered or-
dered sets are therefore order-isomorphic if and only
if
—p e P—Q e @—P:

-pey=1g°

Ypep=1p

@ 1s monotaone

7y 18 monotone

2 15 iz the identity mag co set 3.
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Example of order isomorphism:
boolean encoding of finite sets

THEOREM. Let X = {z1,23,...,2n} be a finite set. De-
fine

P p(X)—2"
0(S) & N (z, €S2t e )
The ¢ is an order-isomorphism between {E(X), C} and

(2", <) where < is the componentwise ordering based
on ff <ff <ttt <tt. |
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Proar.

rCY

Vie[ln e X =umxcY

vie [1,n): ¢(X) < oY),

¢(X) < g(Y) on 2"

— If X 2Y then thereisa z; € X not in Y (ar inversely) so ¢(x); = tt and
w(Y); = ff (or inversely), praving that ¢(X] # ¢(Y) hence ¢ is in‘ective.

— Given (by, ..., bys € 2", we take § = {x; € § | iy = t#} so that ¢(5) =
(b, ..., b, proving that ¢ i= onta. C

p1g

Used to encode finite sets as bit vectors.
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Embedding of a poset in its powerset

THEOREM. Let (P, <} be a poset. Then there is a set
Q@ C p(P) of subsets of P such that (P, <) is oreder-
isomorphic to {(Q, C} [
ProoF. — Define @Q={lz |z P}

- DeﬂnE(pePr—}Qby(p(m]d:EfLas

— ¢ iz a bi’ection

- (z<y) = (lzCly)

Example:
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Join/meet preserving maps

- let {p, <) and (@, C) be two posets. The map f €
P — @ 1s called join preserving whenever if z,¢y € P
and the lub z V ¢ exists in P then the lub f(z)L f(y)
does exist in () and is such that:

flevy) = flz)L f(y)

— Example:

- (flevd) = fle) = z = gLz = F(S L f(d)

- bv ¢ does not exists so the is no requirement on f(h) L f(c)
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— It follows that for a join preserving map and a finite
subset X C P for which \/ X does exist:

/Xy =1 |f(x)e

— The dual notion is that of meet preserving map:

FIANXY = 1700

for all finite subsets X C P such that A X exists.

T ohere F(X)E {f(2) |z C X}
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Join/meet preserving maps are monotone

THEOREM. A join or meet preserving map is monotone
|

ProofF. — if z C y then z L ¥ = y does exists. So f(sL y) = f(z) hence
flxIL fly)] = f(v) since f preserves existing, praving that f(x) C f{y) by
def. of lubs.

- By duality a meet-preserving maps is monatone (since the dual of monaotane
is monotone)

C
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Not all monotone maps preserve lubs/glbs

Counter-example:

— f is monotone
- flzvy)=f(z)=1b
- fl@)Lfly)=aLa=a#b
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Complete join preserving maps

— Let (P, <) and (@, C) be two posets. The map f €
P — @ 1s a complete join preserving whenever it pre-
serves existing lubs:

VX CP:\/ X exists = f(\/ X) = |F(X)
— The dual notion 1s that of complete meet preserving

map:

VX CP: A\ X exists = f(\X) = |F(X)
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— Example:

- ¢ is not a complete join morphism:
p(Uw) = o({0,1,2,...}) = p(w) = b # a = J{a} =
Helz) [z € w} =Uo(w)

- ¢ is a join morphism

- ¢ is a complete join morphism
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Not all finite join/meet preserving maps are
complete

— Example of finite join preserving map which is not a
complete join preserving map:
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Continuous and co-continuous maps

- Amap f € P @ from a poset (P, <} into a poset (@, C} is
continuous (or upper-continuous) if an only if for all chains C
of P such that \/ C exists then | | f(C) exists and we have

oy =1 |f©@

— Often this hypothesis is needed only for denumerable chains.
f is w-continuous iff for all increasing chains zg < z1 < ... <
zn < ... of P such that \/;  z; exists then | |;~q f(z;) exists

and
f(\/xz)—| |f($z)
€N 1€
i .
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— Example (@) and counter-example ():
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Continuous (or co-continuous) maps are
monotone (but not the converse)

THEOREM. Let f € P> @, (P, <) be a poset. If f is w-
continuous (preserves exists lubs of denumerable chains)

then f 1s monotone. |
Praoor. If 2 < y the denumerable chain z <y <y <y < ... has alub y, so
by w-continuity of f, f(y) = f(\V{z, y}) = f(z) v f(y) proving f(z) < f(y)
by def. of lubs. C

— By duality, w-co-continuous maps are monotone
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— The reciprocal is not true. A monotone map may not
be w-continuous, as shown by the following counter-
example:

- flz)=z+1, z<w

- flwu+1l)=w+1

— f 1s monotone

— f 1s not continuous since
f(Un<w):f(w):w+l
Un<w f(n) = Un<w(n +)=Uw=w

TH
I I" Ceurse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 3z — o F. Couset, 200%




Chain conditions and continuity

THEOREM. Let (P, <) be a poset statisfying the ascend-
ing chain condition (ACC) and (@, C} be a poset. Then
any monotone map f € P +— (J 1s continuous. |

Proof. Let (15, &§ € 0% he an increasing chain of elements of P. By the
ACC, zk < w : ¥§ > k : 15 = i so that \; -5 = zi. It follows that
FVscmws) = flzx). Since ¥&6 € © : x5 < z; and f is monotone, we have
f(z5) C f(zx) whence |_;. f(zs) T f(xx). But f(zx) € {f(z;5) | & € T} s0
flxx) C s~ f(zs) and by antisymmetry | ;- f(zs) = f(zx). It follows that
Lsce flzs) = flzx) = f(Vs0- T5), proving continuity. C

Boolean lattice morphism

— Let (P, v, A} and {@, L, '} be lattices. A lattice morphism
f € P+— @ satisfies:

- Tet{P,0,1,v,A, —Yand (@, |, T,L,," be boolean algebras.
A Boaolean algebra morphism f € P+ @ if and only if:
- f is a lattice morphism

o . . . - fO)=1
By duality, if (P, <} is a poset satisfying the descending S f) =T
chain condition (DCC) and (@, C) is a poset then any - f-z) = f(z)
monotone map f € P+ (J 1s co-continuous.
Illil- Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — 33 — o F. Ceusct, 200E III"- Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 4 — i B Censet, 2rrs
— Terminology: On the conditions defining the

- Homomorphism: morphism

[somorphism: bijective marphism

Endomorphism: P=Q

Monomorphism: injective morphism

Epimorphism: surjective morphism
(The conditions defining a boolean algebra morphism
are not independent, see below).
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Boolean lattice morphisms

THEOREM. Let (P, 0,1, V, A, —yand (Q, L, T,L, 1,7
be boolean algebras. Assume f is a lattice morphism.
(1) (a) f(0)=Land f(1)=T
= (b) f(~a)=(f(a)),Va€ P
(i) If f(—a) = (f(a))’, then
(c) flavb)=fla)L f(b)
= (d) flarnb)=fla)r f(b)
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Proor.(i) Assume (a), then:

— = f(0) = flar—a) = fla) f(-a]

T =f(1)1= flav—a) = fla)y/sgcupf(—a)
praving that f(—a) = (f(a)) whence (b)
Agsume (b), then

flO) = flaA—a) = fle) A (fle)) =

f()=d(av—ea)= fla)v(f(a)) =
praving (a)

(ii]) Assume f preserves complement and ‘ain.
flanb) = f(~(~a v b))
= (f(mav b))
= (fma)L f(-B))
= ((fla)y L (F(B))Y
= fla)T f(b)

n::-
I I" Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — aF — o F. Ceusct, 200E

Notations for monotone, lub/glb preserving
and (co-)continuous maps

Let (P, <‘~ and (@J, C) be posets. We define:

(P, <) 5 (@, C) (or P+ Q if < and C are under-
stood) to be the set of monotone maps of P into
¢

(P, <) > {Q, ) (or P+ Q if < and C are un-
derstood) to be the set of complete lub-preserving
maps of P into ()

(P, <) "+ {Q,C) (or P+~ Q if < and C are un-
derstood) to be the set of complete glb-preserving

jji; |, Maps of P into

curse 1F.365: "Atstract interpretation”, Thursday March 2gth) zere — E — ‘o B Censet, 2008

(P, <) > (Q, T) (or P> Q if < and C are under-
stood) to be the set of w-upper-countinuous maps
of P into ¢}

(P, <) 5 (Q, L) (or P —> Q if < and C are under-
stood) to be the set of w-lower-continuous maps of
P into ¢}

We use — for injective maps
—» for surjective maps
—» for bijective maps
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The complete lattice of pointwise ordered
maps on a complete lattice

THREOREM. Let P be a set and (@, C, L, T, ™, L) be
a complete lattice. Let T be the pointwise ordering of
maps f € P— L fL g < Ve P: flz)C

g(z). Then (P — @, C, 1, T, 1, U} (where 1 d

M. l, T = xa.T, | |F . Lscr f(2) and |_|FdEf

Az [|rcp f(z)) is a complete lattice. u
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ProoF. — f L f since vz € P: f(x) C f(z) because L is reflexive

—~fCgand gL fthenVz € P: f(x) C g(z) Ao(z) C f(z) save € P:
f(z) = g(x) by antisymmetry, proving that f = ¢

- fC gnrgC himplies Ve € P: f(z) C g(z) C h(z) so f C h proving
fransitivity

~ Lt FCP—Q VfeF: flz)e{g(z)|gc F}soflz) T {o(z)]gc

F}=(_ F)(z) whence f C | F proving | F to be a C-upper bound of F.

— Let « be another upper bound of F. We have ¥f c F: fCusavz € P
£() C u(2) 50 |_jer £(2) C u(z) hence (| F)(z) C w(z) and [ F C u. It
follows that | F is the C-least upper bound of ¥

— By duality, the glbis [ | F = Az. [{f(z) | f € F}

— The infimum is _ since Vo € P: _ C f(z) implies _ [ f

— By duality, the supremum is T =iz
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The complete lattice of pointwise ordered
monotone maps on a complete lattice

THEOREM. Let (P, <} be a poset and (@, C, L, T, I,
L} be a complete lattice. The set of monotonic maps of
P into () is a complete lattice (P — Q, L, L T -,
) u

I
I I" Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 4z — = F. Ceuset, 200E

PrRoOF. — Theordering f C ¢ —= ¥z € P: f(z) C g(z) makes (P> @, L}
a camplete lattice

- Since (P +2 Q) C (P~ @), is follows that (F += @Q, L} is a poset
~ The lubin (P s Q, T is | such that (|| fi)(2) = ;- 4(filx))

A
— Qbserve that |_ fi is monotone since z < y implies ¥i € A fi(z) T fi(y)
A
since ;€ Pr—+ QsovieA: fi(lz) T, fily) proving (|, fil(=) =
Licafilz) © Lica fily) = (Lica fi)(y) that is I_A fi € P+ Q whenever
(e
Vic AP Q

— Tt follows that | f; iz also the lub in P25 @
WA
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The complete lattice of pointwise ordered,
lub-preserving maps on a complete lattice

THREOREM. Let (P, <, 0,1, Vv, Ayand (L, C, L, T, L}
be complete lattices. The set of complete _‘|0111 morphlsm
of P into Q is a complete lattice (P — Q, C, J_ T ~,
) u

ProoF. — The subset P +— @ of the poset (P > Q, Q}. is a poset for C
— Thelub| in{P =5 @, Chisalsothelubin P Qsince | fi € P+ Q
gl
whenever ¥i € A f; € P+— Q. Indeed

(L]0 =

WA Fie s
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H[CAQVEN) {def. |_§

1A T

= |_| |_| filz,)

tCA T

= |_| |_| fi(zy)

cr z'('_A
= (L] (=) (def. |§
3T icA
- Gince P ~— @ has lubs L, it also has glbs i~ which may not coincide with
the pointwise glh [ in (P~ @, E}, ag shawn hy the following counter-
example:

(fie P—Qf

{commutativity |

Encoding Maps between Posets

P a Fra
- = > L.} >
i 1 \ -
¢ % 4 ¢ hS | Ll ® 29
N /
L . & 2] o >4
e i F .
Pe Pl L T Prig & P c
Ill" Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — 48 — o F. Ceusct, 200E Ill" Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 4 — = F. Ceuset, 200E
L L]
Encoding of Boolean functions
by Boolean terms
Claude Elwood Shannon Randal E. Bryant
_ Reference
[1] R.E. Bryant, “Graph-Bazed Algcrithms for Beclean Functicn Manipulaticn”. IFFEF Tranzacticns co Com-
Futers, Vel C-38, Mc. & (August, 1686), pE. E7T-6G1.
Ill" Ccurse 1€.355: “Abstract interpretaticn”, Thursday March 26th) 2oce — a7 — Ill"

o F. Ceusct, 2005
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Boolean terms

— Let (B, 0, 1, vV, A, =) be a boolean algebra
— Let V be a set of variables and (z1, ..., zn) € V7

— The boolean terms Bt(B, {z1, ..., zn}) are defined by
the following grammar:

Tu=zi |01 | AV [ TIAT2| ~T1 | (TY)
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The interpretation of Boolean terms

— The semantics or interpretation S[T] € 2™ — 2 of
T € Bt(B,{z1, ..., zn}) is defined by

S[z;](v1,- .-, vn) o v,
S[0](v1,...,va) € 0
S[i](v1,...,vn) ¥ 1
S[TL Vv T] (v, .., v2) & S[T](v1, ..., v0) vV S[To](v1, . .., v5)
S[TL AT (v, ... vp) & S[T](v1, ..., vn) AS[TH](v1, . .., vr)
S[-Ti (v, ... vn) & —S[Ti](v1, ..., vn)
SIT(s, - vn) € S[T(v1, -0, vn)
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Encoding of Boolean functions by Boolean terms

— The encoding of v = (v, ..., vn) € 2™ over variables
(21, ..., Tn) is:
Te(v){(z1, ..., Zny = (1 =122z135 1) A .. A
(vn=1%zn:—zn)
— The encodingof f € 2™ + 2 over variables (zy, ..., Zp}
1s:
Te(f)(z1, ..., Tn} = \/{Te(v)(z1, ..., zn) |
v €2 A f(v) =1}
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THROREM. For all a = {a1, ..., an} € 2" and b =
<b]_, faay bn} 6 2?’1:
S[Te(a){z1, ..., zn)]b =1 iff b=a

—0 if b#a
|
PraaF.
S[Te(a)(zy, ..., Tni]b
= (a1 =128[z]b: =S[z1]B) A ... A (an =17 S[zn]b s —S[xn]b)
= ([ﬂ.lzl?blg_bl])/\.../\([ﬂ.n:l?bng_bn])
= (alzblf\.../‘\an:bn]
= ﬂ.:b
. 1 iff a =4
- a iff a#£b
C
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Bijection between Boolean functions and their
encodings by Boolean terms

THEOREM. 2" +— 2 and {Te(f){z1, ..., zn) | f € 2" —

2} are isomorphic by (S, Te}. |
Praoor.
— S[Te(f)ix1, ..., Tn]b where b= (I, ..., by

= \/{S[[Te(’b](ﬁl, ey xn}-ﬂb ‘ f(t') = 1}
= V{(b=v?21:0)| f(») =1}

Boolean terms in disjunctive normal forms

— A Boolean tern over {z1,..., 2y} is in disjunctive nor-
mal form (DNF) iff it is in the form

E n

\/ /\ £;; where ¢;; 1s z; or —z;
i=17=1

— Any boolean term T' can be put in equivalent DNF*

= flo)=1
= f(v)
— Let T € {Te(f){z1, ..., Tn: | f € 2" — 2}. We must show that Te(&[T]) =
T. Given f € 2™ — 2, we have Te(S[Te i, ..., Tni]l = Te(f), QE.D. C
f (S[Te(f)= nil) (). Q % Since S[7] = S[Te(S[T]}z1, - .., zn}] and Te(S[T])z1, .., za) it in CNF.
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— Algorithm: Example (conditional)

- Use De Margarn's laws to reduce the term to meets and ‘oins of literals

T, Or —T,

- Use the distributive laws, with the lattice identities to abtains a ‘oin of
meets of literals
- Finally, each =, (or —=,) should appear once and only once in each meet

term:
1. Drop any meet term containing r; and —z; for some i =1,...,n
2. If neither z, nor —z, accurs in /\ 1" (where & € {0,1}, ' = =,
koK
zt = —zx) then:
£ (=Y
/\ Ty — (/\ ') Az, v —Ty)
kCK KCE
= (/\ a:i“/\.:c}:]v(/\ Tl A )
. . KCK KK .
Repeating this process for each missing variable will lead to a term
in DNF
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flz,y,2) = (z?ys2)
= (zAy)V(—zAz2)
= ((CzAz)A (v -yl Vv ((zAy) A (zV —2))
= (zAyrz)V(zAyrz)V(zAyA 2)V(zAyAz)

in so called “disjunctive normal form?”.
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Encoding of Boolean functions
by BDDs

The presentaticn fellews: Laurent Maubkcergne: “Abstract Interpretation Using Typed Decisicn Graphs
Science of Computer Pregramming, 31(11:91-11Z, may 1998.

n::-
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Example of Shannon trees

A BDD (Binary Decision Diagram) discovered by Randal
Bryant in 1986 1s a compact representation of a Shannon
tree of a boolean expression.

Example:

- flzy,z)=(@Ay)rn(yr—2z)V(zV—y)

— Table representation:

x 00001111
yv00110011
Z
f

01010101
01100111

n::-
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— Shannon tree representation (with z < y < 2)

[
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Example of Reduction of a Shannon tree into
an [Ordered| Boolean Decision Diagram — [O]BDD

— Shannon tree representation (with z < y < 2)

(1) Sharing: merge redundant subtrees (to get a Directed
Acyclic Graph — DAG)
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— — — —: left (0) branch
_ :right (1) branch

(2) Elimination of the useless nodes (where the different
possible values of the variable lead to the same result):
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Shannon decomposition of Boolean functions

— Let (Var, <V} be a totally strictly ordered set of vari-
ables

— Let Var, = {V C Var | |[V| = n} be the set of n vari-
ables {z1,...,zn} where, by convention, z; <¥ ... <¥
In

- Let By, = Vary, x ({0,1}" — {0, 1}) be the set of pairs
{{z1,...,2n}, f)denoted f(z1,...,z,) which value at
point 21 = by,...,2n = bp is f(by,...,byn)

- Let V(f(z1,...,zn))=4{z1,...,zn} wherez; <¥ ... <V
In

n::-
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— Let B = U,en Bn
— Shannon expansion theorem:
THEOREM. Let f(z1,...,2n) € Bp. Vo€ [1,n : =Kfz, fz)°
€ B, 1 x By_1 such that
flz1,. o zn) = (T2 A fa) V(@i A fay)

|
ProoF. Choose:
ffﬁ(mlj"'!miflimi'li"' )xn] = f(a:ls"':a:iflsﬂla:‘!—-ll"' )a:ﬂ!]
fx.L(:rlJ"':a::—flza:i-l:"' )x?’!] - (xlr" .,Q’:i,l,l,fﬂi.l,. "Jm?’!:]
C
§ “1z : P means “there exists a unique z such that P ie. "z : Favy, z: (Plz :=y]~ Flz = z]) = (= £).
TH
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Shannon tree

— A Shannon tree over variables z; <V ... <V z,, 18
-ifn=0thenlorQ

- if n > 0 then {z, #1, t3) where ¢, {5 are Shannon
trees over zp <V ... <V 2,

— Bxample 21 —z <V 2y — gy

{(z, (¥, 1, 0}, {y, 1, 1}}
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Isomorphism between Shannon trees and
Boolean functions

— A Shannon tree ¢ aver variables z1 <¥ ... <% z,, represents a
Boolean function
Fft)(zy,. .., z) = match t with
[0l 2t —case n=20
I] <$1: tl: tg}. - ($1Af(t1]($§:"':$n:]
W (—ml M f(tg](ﬂ:z, ey In]

— The Shannon tree representing a Boolean fonction f(z1,...,zpn)
with 1 <¥ ... <% z, is:
Sh(f(z1,...,2n)) = (n=07f():
{z1, Shildas, ...,z F(O, 20, ..., 22)),
Sh(/‘\.£2, ey T f(lr Tzyee vy $n:]:]>

— Example

| z0011
| y0101
|

fl@y) 1011 gy 10y, (g, 1, 1))

Illil- Ceurse 16,355 “Abstract interpretaticn”, Thuzsday March 26th, zeee — EE — o F. Ceusct, 200E Illil- Ceurse 1€.335: "Abstract interpretatien”, Thursday March 2gth) zeee — EE — = F. Ceuset, 200E
Definition of Boolean Decision Diagrams (BDD) Example
The BDDs are recursively defined as follows: by = O
- 01s a BDD by =1
— lis a BDD by = (2, by, bg)
. N N b3 - <Z, bU) blf’
— if b1, by are BDDsg, z € Var i1s a variable then & — by = (y, b3, by}
{z, b1, bo} is a BDD (with var(d) = =z, left(b) = by, = {y, {2, 0, 1}, {2, 1, O))
right(b) = b3)
Illil- Ccurse 1€.355: “Abstract interpretaticn”, Thursday March 26th) 2oce — E¥ — o F. Ceusct, 2005 Illil- Course 1€.335: “Akstract interpretation”, Thursday March 25th) 2ece — EE — o F. Couset, 200%




Ordered Boolean Decision Diagram (OBDD)

— Let {Var, <%} be a totally strictly ordered set of variahles
— A BDD ¢ is ordered (ordered(b) = tt) if and only if either b €
{0,1} or
- If left(d) ¢ {0, 1} then var(b) <<% var(left(d))
- If right(d) & {0, 1} then var(b) <% var(right(b))
- left(b) # right(b)
— Counter-examples:
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Representation of a Shannon tree by an
Ordered Boolean Decision Diagram (OBDD)

— The OBDD obdd(%) representing a Shannon tree ¢ is
defined as follows
obdd(#) = match ¢ with
[0]1 —¢
[ (z, 1, t2) —
(t1 = t2 ? obdd(%;1) : (z, obdd(#1), obdd(#2)})

n::-
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— Example:

x00d0o1111
y/aoli10011
z
f

gi1010101
gil1i100111

— Since the OBDD encoding of a Boolean function 1is
unique, an implementation can share identical sub-
trees and test equality of OBDDs by the physical equail-
ity of the addresses of their implementations.

[
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Boolean functions represented by an
Ordered Boolean Decision Diagram (OBDD)

— An OBDD no longer represents one function of 5 but
rather all functions whose results are the same regard-
less of the assignment of additicnal variables absent in
the BDD

— Example: If Yz,y,z : f(z,y,2) = g(y) then

obdd(sh(f(z,y, z)) = obdd(sh(g(¥))
For example if g(y) = —y then this OBDD is
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— If this does not matter, then it is sufficient to memcrize
the OBDD as well as the corresponding set of variables
({z,y, 2} or {y} in the above example).
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Typed Shannon tree

— The idea of typed Shannon tree [2] came from the re-
mark that
—f = (eA—f2)V (oA )
so that the Shannon trees Sh(f) and Sh(—f) of f and
—f are identical except at the leaves where 0 and 1 are
exchanged

— So one can use +Sh( f) for Sh( f) and —Sh( f) for Sh(—f)
with +1 =1 and —1 =0

Reference

[2] 3.B. Akers. Binary Cecisicn Ciagrams. IELEL Transacticns en computers. 1678,
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— Example (+ is omitted)

— Formally a typed Shannon tree t aver z1 <% ... <V z,, is either
- aleave 1 when n =0(, or
- anode {z, {s1, t1}, {s9, to}} where 51,89 € {+, -} and £, t5
are typed Shannon trees over z1 <% ... <% 2,

n:;:
I I" Ceurse 16.3G5: “Abstract interpretaticn”, Thursday March 25th) zrre — TE — o F. Ceusct, 2005

Boolean functions represented by
a Typed Shannon tree

— The Boolean function bf(f) represented by a typed
Shannon tree ¢ over z1 < ... <Y z,, 18
— bf(t) = match £ with
[0]1 = A().t—casen =20
[ <$: <511 tl}a <52, t2>> —
let fi(za,...,zn) = bf(#1)
and fo(zo,...,zn) = bf(¢2) in
AZ1, ..., Zn. (z1Abo(s1)(fi(za,. .., zn)))
\% (*31 A bo(52)(f2($2, cey :cn)]
where bo(+)(b) = b while bo(—)(b) = —b
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— Example:

Typed Shannon trees representing a Boolean function

t= f(t) = 00001111 - Let f(z1,...,2zn) € Bn he a Boolean function over the variables
1 <% ... <Y 2. The typed Shannon tree encoding f is:
YOO].].OO].]. tSh(f(xj_,.. xn)) _
201010101 (R=12(a, (F(0)7 (+, L)z (—, 1)),
fol1100111 M()?<+,1> (—, 1))}
slet {s1, t1} = (f(0,1,...,1) =17
{4, tsh(Azq, ..., 2o F(0O,z9,...,2,))}
{—, tsh(Azg,...,zn . —f(0,z9,...,2n))}
and {sq, to} = ([f( ,1,...,1)=17
(4, tshAzg,...,zn (f(1,29,...,2n))}
g {— tsh(Azg,...,zn —f(L,29,...,2n))}
in {z1, {s1, tlf-, 59, tg,-}])
II|"- Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — 7 — ‘o0 F. Censet, 2008 II|"- Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — e — ‘o B Censet, 2008
— Bxamples: Encoding of a Typed Shannon tree by

- tsh(Ay (0=—w)) = (v, (=, 1), {+, 1}}
- tsh(Ay-—(0=~¢)) = (y, (= 1}, (+, 1)}
- tsh(Az,y (z = —y)) =
<$1 <+1 <y: <_a 1): <+ 1>>>: <_: <y: <_: 1)1 <+a 1))
which can be represented by the following TDG

A
I

x (0011
101
flx,y) 0110

e
o

[
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a Typed Decision Graph (TDG)

If t 1s a typed Shannon tree, the the corresponding TDG
1s obtained by applying the previous sharing and elimi-
nation rules:
tdg(t) = (¢t = {s, 1} ? (s, 1}
|t = {z, {s1, t1}, {82, t2}} ?
((s1=sa2At1 =1t2)?(s1 =+ P11 —t1)
;o (s1, tdg(tn)), (s, tdg(t2))))
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— BExample 1: f(z,y,2) = (zAy)V (yA—2)V(zA—y)
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— Example 2: f(z,y,2) =(yArz)V(zA—2)V(2A—zx)

The size of TDGs, although very sensitive to the variable
order, 1s often reasonable but can be exponential in the
number of variables.
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Boolean functions represented by
a Typed Decision Graph (TDG)

The Boolean function bf(¢) represented by a TDG ¢ over variables
Z1,...,Zpn 18
bf(¢)(z1,...,Zn) = match ¢ with
[1—>1
I] {z, (s1, tl}) {83, tQ}) —
(z=a1 7 let fi(zg,...,2n) = bf(¢1)(zg,...,2n)
and fa(22, .., @) = bE(E2)(22, .., 2n)
in (z1 A bo(s1)(fi(za, ..., zn)))
v (mz1 Abo(so)(fa(2, .- - Zn)))

where bo(+)(8) — b and bo(~) — —b, b € {0, 1}
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Example:

- bf({y, <+ 1,"1 <_a 1)))(‘912)
= (y A bo(+)(bf(1)(2))) v
(—y A bo(=)(bf(1)(2)))
yAlv(iyr-1) =y
f(<z { ! 1/‘1 <+1 1)))(‘912)
bf({z, (=, 1}, {(+, 1}})(2)
— (2 Abo(—)(bf(1)(2))) V (2 A bo(+)(b(1)(2)))
(zA-1)v(—zAl)=—2z
f(<$1 <+1 t <+ tg} :](.T,,y,Z) where {1 = <y1 <+1 1}1 <_1 1}'}’
and = {2, < 1)1 -+, 1>>
(z A b0(+)(bf(f1)( ,2))) v (—z A bo(+)(bf(t2)(y, 2)))
((z Abf(E1)(y, 2)) Vv (—z A bf(E2)(y, 2))
=(zhy)Vv(—zVv—2)

=

S

to
x
&
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Operations on Typed Decision Graphs (TDG)

— Since the representation of a Boolean function by a
TDG 1s unique , equality of Boolean functions can he
represented by the equality (of the physical addresses)
of the representations

— Negation just inverts the signs at the leaves

—t(z1,...,2n) = match ¢ with —casen > 1
| {z1, {s1, 1}, {3, 1}} — (z1, (—s1, 1}, {—sg, 1})

| {z1, {s1, 1}, {s0, t2}} — (=1, {51, 1}, (52, —t2}}

| (=1, {s1, B}, (52, 1)} — (=1, {51, ~t1}, (=52, 1}}
| {1, {s1, t1}, (2, ta); — (&1, {s1, —t1}, (52, —t2}}

where —(+) = — and —(—) = +
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— Other operations use the Shannon decomposition (as
well as memoization by a hash table to avoid identical
recursive calls)
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Encoding of complete join
morphisms with join irreducibles

n:;:
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Join irreducible elements of a poset

— Let {P, <} be a poset. An element z € P is join
irreducible iff
1. z 1s not the infimum of P
2. ifz—avbthenz —aorz —b5,foralla,bc P
— Examples:
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— Counter-examples:

The lattice of open subsets of R (that is subsets which are unions
of open intervals |a, b[) has no ‘oin-irreducible element.

— When the second condition is generalized to arbitrary joins
Viena @,  is called completely join-irreducible

— In a lattice the secand candition 2. is equivalence tao:
2. Ve, beP:(z<arz<h)—(avb<z)®
— The meet irreducible elements are defined dually

— We let 7(P) and M(P) be the set of join-irreducible and meet-
irreducible elements of P

€ Assume z is jcin irreducible. We have (z < g~z < b) = {avls ) = (awb< a)v(evl = o)) =
{av b« x)since &' b = 2 implies (2 = a'v 2 = L) since « is reducitle in centradiction with (x < ¢~ < &),
Recipreeally, if (£ = a v E) then (z > arx > &), IE{z < ez < &) = (@b < z) iz in centradicticn with
assumpticn (z = a'wb) = (z = a'vz =), 3¢ either (z = 2) cr (z = &) helds.
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Decomposition of elements of a lattice
satisfying the descending chain condition
(DCC) into join irreducibles

THROREM. Let (L, <, V} be alattice satisfying the DCC.
VaEL:\/{mEJ(L)\mga}:a
u

Proofr. ((1Ve,bel :(agb) = Crec J(L):z<arx<b

Assume e £ b Let S={zx € L |z <aAxz£b} Theset 5 is not empty
gince & € 5. Since L satisfies the DCC, there exists a minimal element x of 5.
This element ig ‘oin-irreducible since £ = ¢ v d with ¢ < = and d < x implies,
by the minimalify of x that c ¢ Sand d ¢ 5. Wehavec <z < esoc < e
and similarly d < a. Therefore ¢,d & & implies ¢ < b and 4 < b. But then
z=cvd<h, acontradiction. Thus z € J(L) ™ 5, which proves (i).
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() Letec Land T = {x € J(L) | z < a}. ais an upper-bound of T". Let
¢ be any upper bound of 7. We have a < ¢ since otherwise a € ¢ implies
a £ anc by (1) there exists ¢ € J(L) with 2 < e and @ € a A ¢. Hence
r € T and g0 ¢ < ¢ gince ¢ ig an upper-bound of T'. Thus z ig a lower bound
of {a,c} and conzequently = < a A ¢, a contradiction. Hence a < ¢ proving
thata =V T in L proving thata =Ve € L:\{z € J(L) |z <a}. C
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Encoding of complete join morphisms on lattices
satisfying the descending chain condition
(DCC) by the image of join irreducibles

THEOREM. Let (L, <, V} be a lattice satisfying the DCC.

Let f € L — L be a complete join morphism. De-

fine g def f I J(L), that is g coincide with f on join-

irreducibles. Define f'(a) = \/{g(z) | z € T(L)rz < a}
Then f' = f. |

Proar.

fla)
= f(\{zeT(L) |z <a})
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= V{fle)e (L) | = < a} (fel—L§

= V{Q(Q’) €J(L) |z <a} {def. g§

= f(a) (def. f'§
C

— Examnple:
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Atoms

— Let (P, <, 1} bea poset with an infimum |. An atom
of pisa € Psuchthat | < ain P (ie |l < a and
Ebe P: Ll <b<a)

— The set of atoms of (P, <, |} is denoted A(P).
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Atoms and join irreducibles in Boolean lattices

THEOREM. Let {L, <, 1, V) be a lattice with infimum
1. Then

1) L <zelL—=zecJ(L)

(i1) If L is a boolean lattice then J(L) C A(L)
|
PrRoOF.(1) Assume _ —< z and 2z = av b with a < # and b < z. Since

_ —Zx,wehave a = b = _ whence £ = _, a contradiction proving that

z e J(L).
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(i1) Let L be a Boolean lattice and x € F(L). Assume _ < y < z. We have:

T =zWVy
= (zvylr(-yvy)
= (zAylvy
Since x € J(L) and y < z, we must have 2 = 2 A —y whence z < —y. But
theny=zAy<-yAy=_soy=_. This praves _ < zsox € A(L)
whence J(L) C A(L).
C
So in Boolean lattices it suffices to know complete join

morphisms on the atoms.
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Encoding of complete join morphisms on
Boolean lattices satisfying the DCC by the
image of atoms

— Atoms may no exist in infinite lattices (for example in

THEOREM. Let (L, <, 1, V) be a Boolean lattice satis-
fying the DCC. Tet f € L +—+ L be a complete join
morphism. Define g aer f I A(L), that is g coincide with
f on atoms. Then f = da. V{g(z) |z € A(L)rz <a}.

(R*, <3). However if they exist, they can replace join u
irreducible to encode complete jomn morphlsms. ProofF. Immediate consequence of the previous two theorems. C
— Example:
Illil- Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — c¥ — o F. Ceusct, 200E Illil- Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — GE — = F. Ceuset, 200E
Closure Operators
Kazimierz Kuratowski
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Definition of an upper closure operator

— An operator on a set P is a map of P into P

— An upper closure operator p on a poset (P, <} is
- extensive: Vz € P: z < p(z)
- monotone: Vz,y € P: (z < y) = (p(z) < p(y))
- idempotent: p(p(z)) = p(z)

— Examples:

n::-
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Definition of a lower closure operator

The dual notion 1s that of lower closure operator, which
18

— reductive: Vz € P p(z) <=z
— monotone

— 1idempotent
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Example of upper closure operator:
reflexive transitive closure

— TLet 2 be a set and ¢ C (X x Z) be a relation on X
- fo déf 15, ?fn+1 déf thet—=¢tcth . camposifion of relations

def def
-t = UneNtn tt = Un>0 £

— We have
-t C extensive
-t Ct = t* C#F monotone
- () idempotent

so that * is an upper closure operator on {p( X x X}, C}.

— Same for ¢t

n:;:
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Topological closure operator

— A topological closure operator” pon a poset (P, <, 1, V}
with infimum | and lub Vv, if any, satisfies

strict: p( 1) =1

extensive: Yz € P:z < p(x)

join morphism: Vz,y € P: plzVvy) = (p(z) v p(y))*

idempotent: p(p(z)) = p(z)

7 This is the criginal definiticn given by K. Kuratcwski co (={5), C) tc characterize a unigue tepclegy cn
i Let g ke a tepelegical clesure cperter e 5. Let T = {3V A | A C S p(A) = A}, Then T iz a topelegy
co 5 and g(A) is the T-clesure cf A for each subset A cf 5.

& Thiz imgliez that £ iz menctenic.
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Morgado Theorem (on upper closure operators)

THEOREM. An operator p on a poset (P, <} is an upper
closure operator if and only if
vz,y€ Pz <ply) = p(z)<p(y)

— vz:p(z) < p(z)

= x < p(x) {p is extensive]
- T=¥

=z <y <oy {praving that g is extensive§
= o(z) < p(y) {praving p to he monatone)
— z < p(x) {p is extensive§
= o(z] < p(p(x]) {by abave condition with y = p(x)§

olz) < p(z) (< is reflexive
= plp(z)) < p(x)
= p(z) = p(p(z))

(by above condition with ' = p(z) and ¢ = z§

{by antisymmetry§
L

[ |
Proof. — Let g be an upper closure operator
z < p(y)
= p(z) < plo(y)) (monotony§
= p(z) < p(y) {idempotence§
=z < g(x) < ply) {extensive
= = < p(y) {fransitivity§
— Conversely, let p satisfying the above condition.
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Fixpoints of a closure operator

The set of fixpoints of an operator f € P+— P on a set
Pis{z | f(z) = z}.

THEOREM. A closure operator is uniquely defined by its
fixpoints |

Proor. Let p; and p: be two upper closure operators on a paset (F, <! with
identical fixpoints:
YrePipgi(e) =2 < pm(zx) ==
We prove that g1 = g5
- Yz e Pz < pi(z)s0 p:(2) < ps(p1(2)) by extensivity of p; and monotony
of p;
= p1(;(2)) = pi(z) by idempotence so ps(p1(2)) = pi(2) since p; and p; have
the same fixpoints.

— It follows that pa(z) < pa(p1(2)) = pu(2)

n:;:
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— Exchanging the réles of p; and p;, we get p1(z) < ps(z) in the same way.
— By antisymmetry, we conclude that pi(z) = ps(z)

— By duality, a lower closure operataor is uniquely determined by its fixpaoints.
C
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Galois Connections
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C (& X I \.If i
Bvarist Galois

— ur —

= F. Ceuset, 200E

Definition of a Galois connection

— Let (P, <} and (@, C) be posets. A pair {a, 7} of
maps « € P— () and v € Q — P 1s a Galols connec-
tion if and only if

Vee P:VyeQ alz)Cy = z<v(y)
which 1s written: y
(P, <} =@, )

— « 18 the lower adjoint

— <y 1s the upper adjoint

n:;:
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— Example:

— 11z —
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Example of Galois connection: bijection

Let P and J be two sets and b € P »—» (J be a one-to-one
map of p onto ¢ with inverse b—1. Then

<PJ :> <:><QJ */'

(where (P, =) is P ordered by equality)

Example of Galois connection:
functional abstraction

Let C and A be sets an f € C +— A. Define
a(X) < {f(z) |z € X}
AY )d:{sc\f(x)eif}

then
Praooar.
(0(C), C) == {p(4), C)
blz) =y
= r="h"! (by def. bi‘ection]
C
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Proar Example of Galois connections with Pre and Post
z(rf(]]C Ye Xicy Jdet. o Recall that given a set 2 and ¢ C X' x 2, we have defined
f—r T T _ er. o - dﬁf I = . !
— vz X f)ey Jdef. C§ post[t‘de{m | =z € X : (z, z'} €t}
— XC{z|flz)eY} {def. C§ pre[t X = post[t_le
= X CY) (def. 4§ = {z|=2' € X : (z, 2y € t}
C — .
post[t X & —post[t (—X)
— Example: ={ |V (z, 2y ct=1z € X}
-C=7, A—4-1 1 — ;
¢ - {0 9’0’1+ }_ 0720: 41 pret X o —pre(t (—X)
_f(CC)—([$< § — Hﬁ— § u+]) :{ﬁ‘V$’<$,$I>Et:=>$f€X}
- a({oa 11 2}) — {01 +1}
-7({0,+1}) ={z € Z|z >0} =N
IIIII- Ccurse 1€.355: “Abstract interpretaticn”, Thursday March 26th) 2oce — 11 — o F. Ceusct, 2005 I |"- Course 1€.335: “Akstract interpretation”, Thursday March 25th) 2ece — 11 — o F. Couset, 200%




We have
el
post[t]

By letting ¢ — t~1, we get in the same way

post[{]
(p(2), C) &——= (p(X), C)
pre[]
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Proor.

postft| X C Y

= {z'|zzc X (z, et} C {def. post§
= vr:CreX:{x, 2 et)—= (£ €Y) {def. C§
= v,z (zeX:(z, 2t ct)—= (2 €Y) {def. =§
= vVri(zeX)=(v2':(r, 2l ct=12' € Y) (def. =
= XC{x|vr (x,zict—=12 c X} {def. C§
— X C pre[t|X {def. pre§

C
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Example of Galois connections induced by
upper closure operators

Recall Morgado’s theorem for an upper closure operator
on a poset (P, <)
Ve,y€ P:z<p(y) < plz)<p(y)
Let p(P) = {p(z) | = € P}. This can be written as
follows (with 2z = p(y))
Vee P:Vzep(P):z<1p(2) < plz)<z
which by definition of a (%alois connection implies that
(P, <) == (p(P), <)

Recipracally, this implies that

[
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Ve e P:Vz€p(P):plz) <z = z<1p(2)

—= Ve e P:VyeP:plz)<plyy <= =z <ply)
lz = p(y)§

so that
THEOREM. p is an upper closure of (P, <) if and only if

F
(P, <) =25 (p(P), <)
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Unique adjoints

THEOREM. In a Galois con;%ection
one adjoint uniguely determines the other, in that

a(z)=[ fvlz<vr@)} @) = \{z|alz)Cy}

ProaofF. — The set {y | e(x) C ¥} has a glh which is precisely o(z) so e(x)
=Ky lea(@)Ey} =THy [z <v(y)}since a(z) Cy = = <(y).

— The set {r | = < 7(y)} has a lub which is precisely +(y) so v(y) = V{z |
z< vy} =V{z|alz)Cy}since a(z)Cy = = < (y).

Characteristic property of Galois connections

Y
— Let <P7 S) (?) (Q: E) then
& 18 monotone

< 1s monotone

-lp<7yca

-acy C 1g

PrROOF. - a(z) C a(y) =z < 7« a(z)

- @) <) = a1y Cy
-r<y=z<vyco(z) = o) C ay)
-z By = () Cy = 1(z) <1y

L C
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—acyca=aandycasy =7 Fiquivalent definition of a Galois connection
ProOF. - acy{z] Czsoc:yc (y) C a(y) whenz = a(y). 1r Cvy-aso
@ C e = - o by monotony, concluding o = ¢ - @ = o by antisymmetry. THEOREM. ¥
-z <yca@sory) <veacqlyforaz =y so -y Cy (P, <) == (@, 5
sa v ey C 9y by monotony, concluding v <« @ = v = v by . .
antisymmetry. & @ 1s n?onotone./\ ¥ 18 mongtone A .
C a < <y 1s reductive A 7y © o 1s extensive
. - [ |
— a © <y is a lower closure operator on (P, <} PROQF. — We have already proved —:
. - Recdd lly, for all x € P and y €
— 7 ¢ & 1s a upper closure operator on (@, C) eciprocally, for all @ € Pand y € Q
a(z) Ty
= 7 a(z) < y(y) {7 monatone§
=z < ¥(y) {7 = ¢ is extensive and transitivity
= a(z)C o - v(y) {e is monatone|
= a(z)Cy {ee = 7 is reductive and transitivity§
n:=- = C
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Example:

I
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The upper adjoint of a Galois connection
preserves existing lubs

THREOREM. Let (P, <) t—— i;. (@, C} be a Galois connec-
tion and X C P such that its lub V X does exists in P.
Then a(\/ X) is the lub of {a(z) | z € X} in @, that is

a(\V X) = | |a(X). -

Praaf. — ¥z € X 1z </ X by existence of the lub\/ X savVz € X : e(x) C
eV X) by monotony of o proving that (Y X) is an upper bound of the
set {e(z) |z € X} in Q.

— Let y be another upper bound of {o(z) |z € X} in Q.
YreX elz)Cy (def. upper hound
= vreX z<q(y) {def. Galois connection§

I
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= \/X < () {def. lub§
= a(\/ XICy (def. Galois connection§

proving that c(y/ X) is the least of the upper bounds of {a(z) | z € X}.
— If we write | Y for thelubof ¥ C @ in (@, C} whenever it exists, then we
have proved that o preserves existing lubs, in that (a(X) = {c(z) |z € X})
If \/ X exists in {P, <} then | |e(X) does exists in
(@, C) and e(V X) = | |a(X).

n:;:
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Galois connection induced by lub preserving maps

THEOREM. Let & € P —— @ be a complete join preserv-
ing map between posets (P, <) and (@, C}. Define:

v =y \/{Z\a )C g}
If v is well-defined then

(P </' L} <Qa E/

I I" Ceurse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 12 — o F. Couset, 200%




PrOOF. — Assume that for all ¥y € @, V{z | (z) C ¥} does exist. A counter-
example is

< ig the identity on P = w. Then w €
w-—1=0Q. {z| e(z) C w}=whbut
V{z | (=) Ty} = V{0, 1,2,...} does

not exist in w!

— The proof that {c, v} is a Galois connection proceeds as follows:

C

Similarly€, if o preserves glbs and a = Az [y | z <
v(y)} is well-defined then (P, <} % (@, C).

e(z]Cy
=z € {z]a(z) Cy}
=< V{z | e(z) C y} {lub assumed to exsist!§
=z < 7(y)
= a(z) C a(\/{z | () C o)) {def. v and o monotone
= a(z)C |_|{o:(z] | () C y} { e preserves existing lubs|
—= a(z)Cy (def. lubf§ € Mcre precisely, by duality, see later cn page 131,
i Cenrse 16,366 “Atstract interpretation”, Thursday March 25th) zree —azg — & F. Cemsct, 20rE i Cenrse 1E.955: “Abstract interpretation”, Thursday March 2ath zres — o — & F. Conset, 2rre
Duality principle for Galois connections Examples:

g
THEOREM. We have (P, <) %} (@, C}

whence the dual of a Galois connection {a, v} is {7, a}
(exchange of adjoints). u
ProorF.

R
<PJ g)?(@) E)

] Yre P:Yye@ a(r)Cy — = <(y)

= YyeQ:YzeP vyl zr — y_olx)

— 4]
£ Qs E
C
n:;:
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— The dual of “a preserves existing lubs” 1s “ preserves
existing glbs”

— The dual of a(z) = [y | z < v(¥)} is v(v) = Vv |
z — a(y)} that is v(y) = V{z | a(z) C 9}
— Thedualof acyca=alsycacy=1v

TH
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Composition of Galois connections

THEOREM. The composition of Galols connections is a
Galois connection: if

T 72
<P: S) T)' {Qa E) and <Q1 7} T)' <R: f)
1 2
Y172
then (P, <) &——— (R, %) u
ac0]

PrROOF. Assume (P, <} 4}% (@, C and {Q, C} 4% (R, =} then ¥z ¢
1 =z
P:vzec R

o e oeg(x) <

)
)

= o(z) C vz
= <z
C
i .
Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — 1331 — oo F. Censct, 2005

— Example:

n::-
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The original Galois correspondances
do not compose

— A Galois correspondence, as originally defined by Galois *,
is a pair {e, v} of functions on posets (originally pow-
ersets with the subset ordering, such that

T .

1C frvariste (alcis intrcduced sach “cerrespendences” as the kasis of his critericn for sclvakility of a pelyncmial
equaticn cf degree » & by raclicalz and for the constructibility By straight-edge and ccmpass. If B iz a given
feld then let Tnv G = {a ¢ B | 75 ¢ & nla) = ¢} for a greup G of autemerphisme in £, The Galcés
greus Gal By E oof £ ocver a subfield F iz the set of austcmerphizms % of £ zuch that s{e) = 2 for every
a ¢ F. The mags o F) = Gal £/F and y(F) = Gal £;F are such that:

(Fi C Fz) = (o{F) Za(Fz)) (Gh 2 Ge) = ((Ga) S ¥{(Ge))
Faa(F]) a(¥(G)) = G

n:;:
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— So « is antitone: z < y = a(z) = ay)
— Hence when composing a2 © a; 1s monotonic, hence
not a Galols correspondance

— This justifies the introduction of Galois connections in
[3] (by taking semi-dual Galois correspondances).

_ Reference

[3] E. Ccusct and K. Ccusct. Systematic design cf pregram analysis framewcrks. Inn :emphCenference Recerd
cf the Sixth Anoaal ACM SIGELAN-BIGACT Sympcsiam co Frinciples of Fregramming Languages, pages
ZEC-ZRZ) Ran Antcnic, Tewas, 1676, ACM Freasz, New Yerk, 1134,
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Galois surjections (insertions)

g
THEOREM. If (P, <} % (@, C) then
a 1s onto
<= -y 1s one-to-one

= acy=lg

ProoF. — Assume that cisonto (Vy € Q@ : =z € P (z) = y)
— Assume y(z) = v(y). Z2' ¢ € P e(2) = y and «(¥'] = ¢, and so0

Ya(z]) = y(a(y))
= ' < 7(e(y)) (since ' <y = a(z')§
= alr) C a(y) {by def. Galois connection

n::-
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= zLy
Exchanging the rales of £ and y, we get ¥y C = so £ = y by antisymmetry,
proving that ¢ # y — ~(z) # +(y), by composition.

o3y = a-v-aly) where ao(y) = y. Soa - y(y) = o(¥) = ¥ so
cey=lg

— Assume & =7 = 1g. Then given y € @, we have « = 7(y) = y proving that
Zz = y(y) : e(r) = v, o is onta.

Example of Galois surjection: -

n::-
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Galois injections

. . ¥
THEOREM. By duality, if (P, <} ?} (@, C} then
< 1s onto
<— & 18 one-to-one

— adca=1p

n:;:
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Notations:
¥ .
—PES5 @ LD =FRGESRD A
onto
Y Y .
- (P =00 %R0 ES @D Aas
one-to-one
Y Y .
~P 5 Q0 E (RO ES (@D Aals
bijective

TH
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Conjugate Galois connections in a Boolean algebra

THEOREM. Let (P, <, 0, 1, v, A, —} and
(@, C, L, T, L, M, =) be Boolean algebras and the Ga-
lois connection y

(P, <) =@, 5
Define the conjugates™ & = —a(—z) and ¥ = —y(—z).
Then

t

<P12>—)< :;>

& |
ProorF.
&la) Z y
11 Thiz iz alsc called the dual, kut thizs may cavse cenfuszicn with lattice daality.
II Iil— Ceurse 16.3G5: “Atstract interpretaticn”, Thursday barch 26th zrre — 141 — o F. Ceusct, 200E

—= —o(—x) "y {def. &§
— e(-z]C -y
= —x < y(—x) (Galois connection§
= x> —y(-z) 8!
= = >F(y) (def. 7§
C
&
THEOREM. It follows that (@), T) &——= (P, <) |
Y
PragrF.
Fyl <z
— y L &(z)
C
II Iil— Cenrse 16.35G: “Abstract interpretatien”, Thursday March 2gth zres — 142 — = F. Ceuset, 200E

Example of dual Galois connections in a
Boolean algebra: Pre, Post and their duals

We have el
pre
(0(2), ) — = (p(2), S
post[t]

By conjugate/complement duality, we get
prelt]
. post[t]
since pre = pre, hence by order duality

ost[t]
(), O % (),

g

n:;:
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Example of reduction of a Galois connection

— Assume a Galols connection 1s not a surjection, for
example:

Y
— It 1s always possible to reduce @ by identifying ele-
ments with the same y-i1mage

z=y % y(z) = 1(y)

TH
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and to reduce Q) to the quotient /=, in which case &
becomes surjective:

a=(z) = |a(z) =

Reduction of a Galois connection

THEOREM. If (P, <} % Q, 0, z =y def y(z) =
Y(y), a=(z) = [a(z) = and v=(ly =) = 7(y), then

{Pi S) T» <Q/E) EE\
- - def
where [z =C= [y==zCyonQ/= u
PROOF. — = iz an equivalence relation. We let [z]= be the equivalence class

of z € @ in the quotient @/ =.

— We have a Galois connection (P, <} % (Q/=, T2} as follows:

r=(lv. =) = 7(v) a(z) Ca 9]
z=C= [y = & Cyon @/= = [a(z))=Cz [y]= {def. a(z)§
— a(z]Cy {def. C_§
II Iil- Ceurse 16.366: “Abstract interpretation”, Thuzsday March 26th, Zere — 14 — o F. Ceusct, 200E II Iil— Ceurse 1€.335: "Abstract interpretatien”, Thursday March 2gth) zeee — 1 — = F. Ceuset, 200E
= z <y(y) {original Galois connection§ Linear Sum of Galois connections
= = < r=(y]=) {def. 7=§ o

— To prove that v is in‘ective (which implies c= is sur’ective), assume

207
B
I
2
&

(by def. =5
= [z]= C= [y]= (by def. =§
= [z]= = [y]lz on Q/= (oy def. Q/=§

C
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g8
THEOREM. Let (Py, <1} = (@1, Ly) and (P, <o) &

(@2, Ty} be Galois connections. Define the linear (ordi-

nal) sums of posets (P, <) & (P, <1) & (P, <3) and

@, 0 ¥ (01, L) © (Qa, L) as well as o = a1 @ oy

and v = 1 B v as follows:
def
a((0, 2)) = (0, eu(z))  Y((0, x

\
)
def
a((l, z3) = (1, aa(z)y ({1, =)
then

—
=
Y
h

(0, y1(z))
= {1, y2(z)}

L
=9
o
—h

TH
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PROOF. al(d, ) T, v

(i) ifi =34 = 0 then

= (1, z; T((1, v))
= {t, z; C ({4 vi)

C
0 S Y
= z L ny)
e (0, = T {0, n(y)
= (0, z; C~((0, ¥})
= {1, = T ({5 o)
(i) ife=10, =1 then {4, z; = (0, z; T (1, v:(y); = ({1, i) = 2(0F, v3)
(i) if{ =7 = 1 then
= oz =5 Y
= s 7(y)
= (1, @ C {1, wly)h
T oo s ncs. ot smtepeetation, Tty basec 2ot e e & F Coma, z0e0 T covee s trtosct imerpretaticnr, Tmesday bseen 2ot zece e  F Camsat 201t
Disjoint sum of Galois connections PROOF.
T T2 a((i, =y C {4, v
THEOREM. Let (P, <1} : (@1, C1) and (P, <o) : — 0 es(a)i C G g
(@2, Co) be Galois connectmns. Define the disjoint sums = i=jAoy(z) < ¥
of posets (P, <) o (P, <1} + (P, <3) and {(Q, T} y e L= IAT S ()
(@1, C1) + (@2, Co) as well as & = a3 + ag and v = = <?- z; < {4, j;(y)}
41 + v9 as follows: — {4z < ({7 v) .

a((0, 2)) °* O (@) (0, 2) “ 0, ()
))

d
a((L, 2)) = (1, ax(@) (L 2) (1, 72(w))
then N
|
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Similar results hold for the smashed disjoint sum.

[
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Product of Galois connections

g 0
THEOREM. Let (P, <1) &= (@1, Eyjand (P, <) &
1 2

Proor.

a((z, v C (&, ¥

= {on(x), az(y); C (', o}
(@2, Co) be Galois connections. Define the cartesian = afg) Lz Aos(y) Ty
def ' '
product of posets (P, <} = (P, <1} x (P, <3) and =z nlE) Ay < nly)
def = {x, 4 C T
(@, ) (01, C1) x (@3, Ca) as well as @ = a1 x v £l ) -
and v = <y1 x v2 as follows: . . Y ) .
T def This can be generalized to (P, <} = (@, C} implies
VY = y (o]
a((z, y3) = {(a1(z), ca(y)} o
def LI EATE a— noCny
(=, ¥) € (), 12(v)) (PP, <) == (QF, L7) where
then N a({z1, ..., zn)) = {a(z1), ..., a(zn))
(- \
<P’ S/ T:' <Q’ Ef ’Yn(<y1: I y?‘l)) — <’Y(y1): RN 'Y(yn)>
- . -
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Power of Galois connections PROGF.
THEOREM. Let (P, <1} & (Qy, T1band (P, <g) t olf) g
. 1, >1;/ Tl)' 1, &1/ 24 .72/ Tz)' — e fe Ezg 2def. o
(@2, T3) be Galois connections and (P — Py, <3} as = vz :os(flm(z))) T, o(x) {def. T, and «§
well as {(J1 s o, C5) be sets of monotone maps with = vz f(r(x)) <; v:(9(z)) (Galois connection]§
the pointwise ordering. Then = Yy f(nlea(y))) < :(o(ea(y))) (by setting z = cu(y)§
(:Pl |l;. P2’ §2> . Ag.yacgeoy . (:Ql m Q2, E2> = Vy.: Fly) <o valgle(y))) {since y <; 11(c1(y) and f m.anotones
Af -agefer = f<megeon {def. <, and <§
= = [ <:(9) (def. ~§
— f<megee (def. 7§
— fem<;megeoiem (def. <§
& = )\f . C f c Y — fem<; g (since o = 7, reductive and -, and ¢ monotone|
Y= Ag.-v2cgcajy — aefemlioneycg {since ; monotone]

n:;:
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= e fimlsg
= Q(f]zzg
and sa &(f) EEQ — féz 1(g).

n::-
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{since ¢ = ; reductive§
{def. &§
C
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THE END

My MIT wek site is http://www.mit.edu/ " ccusct/
The ccurse wekb: site is htip://web.mit edu/afs/athena mit.edufccurse/16/16.399 /www/.
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