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1. Introduction

Two classes of properties are of particular interest when considering programs: safety properties
and liveness properties. Informally, a safety property stipulates that "bad things" do not happen dur-
ing execution of a program and a l/iveness property stipulates that "good things" do happen (eventu-
ally) [2]. Distinguishing between safety and liveness properties is useful because knowing whether a
property is safety or liveness helps when deciding how to prove that the property holds for a program.

In [1], formal definitions of safety and liveness are given and it is proved that every property
can be expressed as the conjunction of a safety property and a liveness property. The formal
definitions of safety and liveness are given in terms of first-order predicate logic, but the proof that
every property can be decomposed into safety and liveness is not—it uses topology. The purpose of
this paper is to give a proof of this theorem using only first-order predicate logic.

2. Specifying Properties

A program state is a mapping from variables to values. An execution of a concurrent program
can be viewed as an infinite sequence of program states

T=5051 s

which we call a history. In a history, s is an initial state of the program and each subsequent state
results from executing a single atomic action in the preceding state. (For a terminating execution, an
infinite sequence is obtained by repeating the final state.) A property is a set of such sequences.

One way to specify a property is by using first-order predicate logic. For a state s, define s.v to

be the value of variable v in that state. A formula of first-order predicate logic where s is the only free
variable defines a set of states. For example,

(Vi: 1€i<N: salilSs.a[i+1])
specifies the set of states in which the elements of array a[1:N] are sorted. Usually "s." is implicit

and therefore left out of such a formula, resulting in the more familiar use of first-order predicate
logic as an assertion language.

A set of sequences of states—a property—can also be defined using first-order predicate logic.
To facilitate such specifications, for any sequence ¢ = s5g 51 ... define for 0<i:

O[i] = s;.
o[..i] = §so51...5;—1. The empty sequence if i=0.
lol = the length of o (@ if ¢ is infinite).

A formula of first-order predicate logic in which ¢ is the only free variable defines the set of
sequences that satisfy the formula and therefore specifies a property. For example,

(Vi: 0<i: ofilLv=0)
specifies the property in which the value of v remains 0 throughout execution.



We write =P if e $® is in the property specified by P. Thus,
o=P = PS.
OEP = —|Pg.

3. Safety and Liveness
According to [1], a property P is a safety property provided

Safety: (Vo: 6e S®: o#P = (@i: 0<i: (VP: Be S°: ol.LIp¥P))), 3.1

where S is the set of program states, S* the set of finite sequences of states, S® the set of infinite
sequences of states, and juxtaposition is used to denote catenation of sequences. A property P is a
liveness property provided

Liveness: (Vo ae S$*: @p: Be $°: af=P)). (3.2)

Given a property P, we are interested in defining properties Safe (P) and Live (P) such that
e Safe(P)is a safety property,
e Live(P)is aliveness property, and
e P =Safe(P) A Live (P).
Observe that if
Safe(P)=P v Mp
Live(P)=P v —-M;
then

Safe (P) A Live(P) = (P v Mp) A (P v ~Mp)
=(PAPYv(PA-Mp)v (MpAP)v (MpA—-Mp)
=P

Hence, we have only to look for an Mp that makes P v Mp (i.c. Safe(P)) a safety property and
P v —~Mp (i.e. Live (P)) a liveness property.

It umns out that using

Mp: (Vi 0<i: @B: Be S®: of..LIPEP))

suffices. First, we show formally that Safe (P) satisfies definition (3.1) of safety. The proof that fol-
lows is a sequence of first-order predicate logic formulas with explanations interspersed (and delim-
ited by « and ») of how each formula is derived from its predecessor.

Choose any o€ S;

oi#Safe (P)



«by definition of Safe (P)»

= OW(P v (Vi: 0si: @B: PeS®: ol.ilpEP))

-

= (P

«by definition of #»

v (Vi: 0si: @B: Be S®: ol.ilpFP)S
«by substitution»

v (Vi: 0<i: @P: Pe S ol.ilpEPY))
«by De Morgan’'s Laws»

= —P AQ@i: 0<i: (VP: Pe $*: ol..ilp#P)

«AnB=>B»

i: 0<i: (VB: PeS®: o[.iIBrP))

«because (Vx:: A) = (Vx: AA(Vy: AD»

i: 0<i: (VP: PeS®: ol.ilp#P A (VY Ye S ol.ily#P))

«because rrue AP = P and (o[ .iIP)[.i]=0[..i]»

i: 0<i: (VP: Pe S OL.iJPEP A (i=i) A (VY Ye S®: (OL.iIP)L.ilyFP)))

«by substitution»

i 0si: (VB: BeS®: OLiIBHEP A (k=D A (V1. Ye S®: (OL.iIP)L.£IYHPIE)

«by 3-Generalization»

i1 0<i: (VP: PeS®: ol.ilBEP A Gk: k=i: (Vv Ye S°: (SL.LIP).kIY#P)))

«by Range Widening»

i: 0i: (VB: PeS® of.{IpFP A Gk: 0sk: (Vv €S2 (OLiIPLAI#FP))

«by De Morgan’s Law»

i: 0<i: (VB: PeS®: OL.iIp#P A (Vk: 02k: @y YeS®: OLIIPLAIYFP))

«by definition of #»

i: 0<i: (VB: PeS®: oOl.iIp#P A of.ilp#(Vk: 0<k: @y ye S®: ol.kIYFP)))

«because A A OB = 0F(A v EB)»

i: 0<i: (VB: BeS®: ol.iIp#(P v (Vk: 0<k: @y ve S°: ol kIyFP))))

«by definition of Safe (P)»

: 0<i: (VB: Pe S“: of..f1p#Safe(P))

It is not surprising that Safe (P) is a safety property. If o#Safe (P) then, by definition, o#Mp. How-
ever, this means there exists an # such that

(vP: Pe

S®. of..iIp#P).

We could consider prefix of..i] to be a "bad thing". Thus, ¢ violates a safety property whenever

o Safe (P).

We now

(Vou

show formally that Live (P) satisfies definition (3.2) of liveness.

oe S$*: rrue)
ssince true = A v —4»

: ae $*: @P: Pe S apEP)v —~@3p: Pe S®: oafEP))

«renaming bound variable B to y»

: ae $*: @P: Pe $°: ofEP) v@y: Y SP: ayFP)

«since B is ot free in 3y: ye S°: oyEP)»

: ae S": @B: PeS®: oafEP va3y: 7€ SP: ayEP))

«by De Morgan's Law»

: ae $*: @B: PeS®: afFP v (VY Ye S ay#P)))



«since frue AA =A»

= (Vo xeS": @P: PeS®: af=P v(lal=lal A (VY e S®: ay#P)))
«by substitution, since (of)[.. | otl I=0» _

= (Vo e S*: @P: Pe S®: ofEP v ((i=la)ig A Y. Y S®: OP).i1YFP) e )
«by 3-Generalization»

= (Vo aeS*: @B: Be S ofEP v @i i=lal: (VY Ye $° (of)[..ily#P)))
«by Range Widening»

= (Vo e S*: @P: PeS®: off=P v @i: 0<i: (VY. ye S (0P)[..L1YEP)))
«by De Morgan’s Law»

= (Vo: oe $*: @p: Pe SO off=P v (Vi: 0<i: Ay e S®: (oP)L..ilyEP)))
«by definition of affi=A»

= (Vou aeS*: @B: PeS?: ofrP vofe(Vi: 0<i: Gy ve $°: ol.ilyEP)))
«because oA v effEB = off=(A v B)»

= (Vo ae $*: @P: BeS®: af= (P v(Vi: 0<i: @y ye $°: ol.ilyFP))
«by definition of Live (P)»

= (Yo aeS": @B: Be S®: ofFELive(P))
«by Liveness definition (3.2)»

= Live(P)is liveness.

An informal justification that Live (P) is liveness is the following. If o#Live (P) then, by definition,
oE=Mp. From, o=Mp, we conclude that it always remains possible for some "good thing” (i.e. B in
Mp) to happen. This is the defining characteristic of liveness, so ¢ violates a liveness property when-
ever ot Live (P).
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