Decomposing Properties into Safety and Liveness
using Predicate Logict

Fred B. Schneider
87-874

October 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

tThis material is based on work supported in part by the Office of Naval Research
under contract N00014-86-K-0092 and the National Science Foundation under Grant No.
CCR-8701103. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author and do not reflect the views of the Office of Naval
research or National Science Foundation.

Decomposing Properties into Safety and Liveness

*
using Predicate Logic

Fred B. Schneider

Department of Computer Science
Comell University
Ithaca, New York 14853

October 5, 1987

ABSTRACT

A new proof .is given that every property can be expressed as a conjunction of safety and
liveness properties. The proof is in terms of first-order predicate logic.

"I‘his material is based on work supponted in part by the Office of Naval Research under contract NO0O014-856-K.0092
and the National Science Foundation under Grant No. CCR-8701103. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the author and do not reflect the views of the Office of Naval Research
or National Science Foundation.

1. Introduction

Two classes of properties are of particular interest when considering programs: safety properties
and liveness properties. Informally, a safety property stipulates that "bad things" do not happen dur-
ing execution of a program and a l/iveness property stipulates that "good things" do happen (eventu-
ally) [2]. Distinguishing between safety and liveness properties is useful because knowing whether a
property is safety or liveness helps when deciding how to prove that the property holds for a program.

In [1], formal definitions of safety and liveness are given and it is proved that every property
can be expressed as the conjunction of a safety property and a liveness property. The formal
definitions of safety and liveness are given in terms of first-order predicate logic, but the proof that
every property can be decomposed into safety and liveness is not—it uses topology. The purpose of
this paper is to give a proof of this theorem using only first-order predicate logic.

2. Specifying Properties

A program state is a mapping from variables to values. An execution of a concurrent program
can be viewed as an infinite sequence of program states

T=5051 s

which we call a history. In a history, s is an initial state of the program and each subsequent state
results from executing a single atomic action in the preceding state. (For a terminating execution, an
infinite sequence is obtained by repeating the final state.) A property is a set of such sequences.

One way to specify a property is by using first-order predicate logic. For a state s, define s.v to

be the value of variable v in that state. A formula of first-order predicate logic where s is the only free
variable defines a set of states. For example,

(Vi: 1€i<N: salilSs.a[i+1])
specifies the set of states in which the elements of array a[1:N] are sorted. Usually "s." is implicit

and therefore left out of such a formula, resulting in the more familiar use of first-order predicate
logic as an assertion language.

A set of sequences of states—a property—can also be defined using first-order predicate logic.
To facilitate such specifications, for any sequence ¢ = s5g 51 ... define for 0<i:

O[i] = s;.
o[..i] = §so51...5;—1. The empty sequence if i=0.
lol = the length of o (@ if ¢ is infinite).

A formula of first-order predicate logic in which ¢ is the only free variable defines the set of
sequences that satisfy the formula and therefore specifies a property. For example,

(Vi: 0<i: ofilLv=0)
specifies the property in which the value of v remains 0 throughout execution.

We write =P if e $® is in the property specified by P. Thus,
o=P = PS.
OEP = —|Pg.

3. Safety and Liveness
According to [1], a property P is a safety property provided

Safety: (Vo: 6e S®: o#P = (@i: 0<i: (VP: Be S°: ol.LIp¥P))), 3.1

where S is the set of program states, S* the set of finite sequences of states, S® the set of infinite
sequences of states, and juxtaposition is used to denote catenation of sequences. A property P is a
liveness property provided

Liveness: (Vo ae S$*: @p: Be $°: af=P)). (3.2)

Given a property P, we are interested in defining properties Safe (P) and Live (P) such that
e Safe(P)is a safety property,
e Live(P)is aliveness property, and
e P =Safe(P) A Live (P).
Observe that if
Safe(P)=P v Mp
Live(P)=P v —-M;
then

Safe (P) A Live(P) = (P v Mp) A (P v ~Mp)
=(PAPYv(PA-Mp)v (MpAP)v (MpA—-Mp)
=P

Hence, we have only to look for an Mp that makes P v Mp (i.c. Safe(P)) a safety property and
P v —~Mp (i.e. Live (P)) a liveness property.

It umns out that using

Mp: (Vi 0<i: @B: Be S®: of..LIPEP))

suffices. First, we show formally that Safe (P) satisfies definition (3.1) of safety. The proof that fol-
lows is a sequence of first-order predicate logic formulas with explanations interspersed (and delim-
ited by « and ») of how each formula is derived from its predecessor.

Choose any o€ S;

oi#Safe (P)

«by definition of Safe (P)»

= OW(P v (Vi: 0si: @B: PeS®: ol.ilpEP))

-

= (P

«by definition of #»

v (Vi: 0si: @B: Be S®: ol.ilpFP)S
«by substitution»

v (Vi: 0<i: @P: Pe S ol.ilpEPY))
«by De Morgan’'s Laws»

= —P AQ@i: 0<i: (VP: Pe $*: ol..ilp#P)

«AnB=>B»

i: 0<i: (VB: PeS®: o[.iIBrP))

«because (Vx:: A) = (Vx: AA(Vy: AD»

i: 0<i: (VP: PeS®: ol.ilp#P A (VY Ye S ol.ily#P))

«because rrue AP = P and (o[.iIP)[.i]=0[..i]»

i: 0<i: (VP: Pe S OL.iJPEP A (i=i) A (VY Ye S®: (OL.iIP)L.ilyFP)))

«by substitution»

i 0si: (VB: BeS®: OLiIBHEP A (k=D A (V1. Ye S®: (OL.iIP)L.£IYHPIE)

«by 3-Generalization»

i1 0<i: (VP: PeS®: ol.ilBEP A Gk: k=i: (Vv Ye S°: (SL.LIP).kIY#P)))

«by Range Widening»

i: 0i: (VB: PeS® of.{IpFP A Gk: 0sk: (Vv €S2 (OLiIPLAI#FP))

«by De Morgan’s Law»

i: 0<i: (VB: PeS®: OL.iIp#P A (Vk: 02k: @y YeS®: OLIIPLAIYFP))

«by definition of #»

i: 0<i: (VB: PeS®: oOl.iIp#P A of.ilp#(Vk: 0<k: @y ye S®: ol.kIYFP)))

«because A A OB = 0F(A v EB)»

i: 0<i: (VB: BeS®: ol.iIp#(P v (Vk: 0<k: @y ve S°: ol kIyFP))))

«by definition of Safe (P)»

: 0<i: (VB: Pe S“: of..f1p#Safe(P))

It is not surprising that Safe (P) is a safety property. If o#Safe (P) then, by definition, o#Mp. How-
ever, this means there exists an # such that

(vP: Pe

S®. of..iIp#P).

We could consider prefix of..i] to be a "bad thing". Thus, ¢ violates a safety property whenever

o Safe (P).

We now

(Vou

show formally that Live (P) satisfies definition (3.2) of liveness.

oe S$*: rrue)
ssince true = A v —4»

: ae $*: @P: Pe S apEP)v —~@3p: Pe S®: oafEP))

«renaming bound variable B to y»

: ae $*: @P: Pe $°: ofEP) v@y: Y SP: ayFP)

«since B is ot free in 3y: ye S°: oyEP)»

: ae S": @B: PeS®: oafEP va3y: 7€ SP: ayEP))

«by De Morgan's Law»

: ae $*: @B: PeS®: afFP v (VY Ye S ay#P)))

«since frue AA =A»

= (Vo xeS": @P: PeS®: af=P v(lal=lal A (VY e S®: ay#P)))
«by substitution, since (of)[.. | otl I=0» _

= (Vo e S*: @P: Pe S®: ofEP v ((i=la)ig A Y. Y S®: OP).i1YFP) e)
«by 3-Generalization»

= (Vo aeS*: @B: Be S ofEP v @i i=lal: (VY Ye $° (of)[..ily#P)))
«by Range Widening»

= (Vo e S*: @P: PeS®: off=P v @i: 0<i: (VY. ye S (0P)[..L1YEP)))
«by De Morgan’s Law»

= (Vo: oe $*: @p: Pe SO off=P v (Vi: 0<i: Ay e S®: (oP)L..ilyEP)))
«by definition of affi=A»

= (Vou aeS*: @B: PeS?: ofrP vofe(Vi: 0<i: Gy ve $°: ol.ilyEP)))
«because oA v effEB = off=(A v B)»

= (Vo ae $*: @P: BeS®: af= (P v(Vi: 0<i: @y ye $°: ol.ilyFP))
«by definition of Live (P)»

= (Yo aeS": @B: Be S®: ofFELive(P))
«by Liveness definition (3.2)»

= Live(P)is liveness.

An informal justification that Live (P) is liveness is the following. If o#Live (P) then, by definition,
oE=Mp. From, o=Mp, we conclude that it always remains possible for some "good thing” (i.e. B in
Mp) to happen. This is the defining characteristic of liveness, so ¢ violates a liveness property when-
ever ot Live (P).

Acknowledgment
David Gries made numerous suggestions—some of which [even adopred—about presenting the proofs.

References
[1] Alpemn, B., and F.B. Schneider. Defining liveness. Information Processing Lerters 21 (Oct. 1985), 181-185.

[2] Lamport, L. Proving the correctmess of multiprocess programs. JEEE Trans. on Sofiware Engineering SE-3, 2
(March 1977), 125-143.

