Integer Programming and Branch and Bound

Brian C. Williams 16.410-13 November 15^{th,} 17th, 2004

Adapted from slides by Eric Feron, 16.410, 2002.

riangle Waypoint

Obstacle

🗘 Vehicle

riangle Waypoint

Obstacle

Objective: Find most fuel-efficient 2-D paths for all vehicles.

Constraints:

- Operate within vehicle dynamics
- Avoid static and moving obstacles
- Avoid other vehicles
- Visit waypoints in specified order
- Satisfy timing constraints

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
 Exclusion between choices
 - Exclusion between constraints
- How do we solve using Branch and Bound?
 - Characteristics
 - Solving Binary IPs
 - Solving Mixed IPs and LPs

Integer Programs

IP: Maximize $3x_1 + 4x_2$ Subject to: $x_1 \le 4$ $2x_2 \le 12$ $3x_1 + 2x_2 \le 18$ $x_1, x_2 \ge 0$ x_1, x_2 integers

Integer Programming

Integer programs are LPs where some variables are integers

Why Integer programs?

- 1. Some variables are not real-valued:
 - Boeing only sells complete planes, not fractions.
- 2. Fractional LP solutions poorly approximate integer solutions:
 - For Boeing Aircraft Co., producing 4 versus 4.5 airplanes results in radically different profits.

Often a mix is desired of integer and non-integer variables

• Mixed Integer Linear Programs (MILP).

Graphical representation of IP

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
 Exclusion between choices
 - Exclusion between constraints
- How do we solve using Branch and Bound?
 - Characteristics
 - Solving Binary IPs
 - Solving Mixed IPs and LPs

Integer Programming for Decision Making

Encode "Yes or no" decisions with binary variables:

 x_j 1 if decision is yes 0 if decision is no.

Binary Integer Programming (BIP):

- Binary variables + linear constraints.
- How is this different from propositional logic?

Problem:

- 1. Cal wants to expand:
 - Build new factory in either Los Angeles, San Francisco, both or neither.
 - Build new warehouse (at most one).
 - Warehouse <u>must</u> be built close to the city of a new factory.
- 2. Available capital: \$10,000,000
- 3. Cal wants to maximize "total net present value" (profitability vs. time value of money)

		<u>NPV</u>	Price
1	Build a factory in L.A.?	\$9m	\$6m
2	Build a factory in S.F.?	\$5m	\$3m
3	Build a warehouse in L.A.?	\$6m	\$5m
4	Build a warehouse in S.F.?	\$4m	\$2m

Cal wants to expand:

Build new factory in Los Angeles, San Francisco, both or neither. Build new warehouse (at most one).

Warehouse <u>must</u> be built close to the city of a new factory.

What decisions are to be made?

Build factory in LA
 Build factory in SFO
 Build warehouse in LA
 Build warehouse in SFO

Introduce 4 binary variables $x_i =$

1 if decision i is yes

0 if decision i is no

- 1. Cal wants to expand
- 2. Available capital: \$10,000,000
- 3. Cal wants to maximize "total net present value" (profitability vs. time value of money)

		<u>NPV</u>	Price
1	Build a factory in L.A.?	\$9m	\$6m
2	Build a factory in S.F.?	\$5m	\$3m
3	Build a warehouse in L.A.?	\$6m	\$5m
4	Build a warehouse in S.F.?	\$4m	\$2m

What is the objective?

• Maximize NPV:

$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

What are the constraints on capital?

• Don't go beyond means: $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

LA factory(x_1), SFO factory(x_2), LA warehouse(x_3),SFO warehouse (x_4)

- Build new factory in Los Angeles, San Francisco, both or neither.
- Build new warehouse (at most one).
- Warehouse <u>must be built close to city of a new factory</u>.

What are the constraints between decisions?

1. No more than one warehouse:

Most 1 of $\{x_3, x_4\}$

- 2. Warehouse in LA only if Factory is in LA: x_3 implies x_1
- 3. Warehouse in SFO only if Factory is in SFO: x_4 implies x_2

Encoding Decision Constraints:

- Exclusive choices
 - Example: at most 2 decisions in a group can be yes:

LP Encoding:

 $\mathbf{x}_1 + \ldots + \mathbf{x}_k \leq 2.$

- Logical implications
 - x₁ implies x₂: (x₁ requires x₂)

LP Encoding:

$$\mathbf{x}_1 \ \textbf{-} \ \mathbf{x}_2 \ \leq \mathbf{0}.$$

LA factory(x1), SFO factory(x2), LA warehouse(x3),SFO warehouse (x4)

- Build new factory in Los Angeles, San Francisco, or both.
- Build new warehouse (only one).
- Warehouse <u>must</u> be built close to city of a new factory.

What are the constraints between decisions?

1. No more than one warehouse:

Most 1 of $\{x_3, x_4\}$ $x_3 + x_4 \le 1$

2. Warehouse in LA only if Factory is in LA:

 $\begin{array}{l} x_3 \text{ implies } x_1 \\ x_3 - x_1 \le 0 \end{array}$

3. Warehouse in SFO only if Factory is in SFO:

 $\begin{array}{l} x_4 \text{ implies } x_2 \\ x_4 - x_2 \leq 0 \end{array}$

Complete binary integer program:

Maximize $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$

Subject to: $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$\begin{array}{l} x_{3}+x_{4} \leq 1 \\ x_{3}-x_{1} \leq 0 \\ x_{4}-x_{2} \leq 0 \\ x_{j} \leq 1 \\ x_{j} \geq 0 \end{array} \\ x_{j} \geq 0 \end{array}$$

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?

 Exclusion between choices
 Exclusion between constraints
- How do we solve using Branch and Bound?
 - Characteristics
 - Solving Binary IPs
 - Solving Mixed IPs and LPs

Cooperative Path Planning MILP Encoding: Constraints

• Min J_T

•

- $s_{ij} \le w_{ij}$, etc.
- $\mathbf{s}_i + 1 = \mathbf{A}\mathbf{s}_i + \mathbf{B}\mathbf{u}_i$

Receding Horizon Fuel Cost Fn State Space Constraints State Evolution Equation

Obstacle Avoidance

Collision Avoidance

Cooperative path planning MILP Encoding: Fuel Equation

How Do We Encode Obstacles?

• Each obstacle-vehicle pair represents a disjunctive constraint:

Red Vehicle is above obstacle OR Red Vehicle is below obstacle OR Red Vehicle is left of obstacle OR Red Vehicle is right of obstacle

- Each disjunct is an inequality
 - let xR, yR be red vehicle's co-ordinates then:
 - Left: xR < 3
 - Above: $R > 4, \ldots$
- Constraints are not limited to rectangular obstacles
 - (inequalities might include both co-ordinates)
- May be any polygon
 - (convex or concave)

Encoding Exclusion Constraints

Example: (x1,x2 real)

Either $3x_1 + 2x_2 \le 18$ Or $x + 4x \le 16$

BIP Encoding:

Or:

• Use Big M to turn-off constraint: Either:

> and $3x_1 + 2x_2 \le 18$ $x_1 + 4x_2 \le 16 + M$ (and M is very BIG) $3x_1 + 2x_2 \le 18 + M$ and $x_1 + 6x_2 \le 16$

• Use binary y to decide which constraint to turn off:

 $\begin{array}{l} 3x1 + 2x2 \leq 18 + y \ M \\ x1 + 2x2 \leq 16 + (1 - y)M \\ y \in \{0, 1\} \end{array}$

Cooperative Path Planning MILP Encoding: Constraints

- Min J_T
- $s_{ij} \le w_{ij}$, etc.
- $\mathbf{s}_i + 1 = \mathbf{A}\mathbf{s}_i + \mathbf{B}\mathbf{u}_i$
- $x_i \leq x_{min} + My_{i1}$ $-x_i \leq -x_{max} + My_{i2}$ $y_i \leq y_{min} + My_{i3}$ $-y_i \leq -y_{max} + My_{i4}$ $\Sigma y_{ik} \leq 3$

Receding Horizon Fuel Cost Fn State Space Constraints State Evolution Equation

Obstacle Avoidance At least one enabled

• Similar constraints for Collision Avoidance (for all pairs of vehicles)

Encoding General Exclusion Constraints

<u>K out of N constraints hold:</u> $f_1(x_1, x_2, ..., x_n) \le d_1$ OR

 $\begin{array}{l} f_N(x_1,\,x_2\,,\,\ldots,\,x_n\,) \leq d_N \\ \text{where } f_i \text{ are linear expressions} \end{array}$

- LP Encoding:
 - Introduce y_i to turn off each constraint i:
 - Use Big M to turn-off constraint:

 $f1(x1, ..., xn) \le d1 + My1$: $fN(x1, ..., xn) \le dN + MyN$

• Constrain K of the y_i to select constraints:

$$\sum_{i=1}^{N} y_i = N - K$$

At least K of N hold:

Encoding Mappings to Finite Domains

• <u>Function takes on one out of n possible values</u>:

 $a_1 x_1 + \dots a_n x_n = [d_1 \text{ or } d_2 \dots \text{ or } d_p]$

• <u>LP Encoding:</u>

 $y_i \in \{0,1\}$ i=1,2,...p $\Sigma y_i = 1$ $a_1x_1 + ... a_n x_n = \Sigma_1 d_i y_i$

Encoding Constraints

• Fixed – charge problem:

$$\begin{split} f_i(x_j) = & \mid k_j + c_j x_j & \text{if } x_j > 0 \\ & \mid 0 \text{ if } x_j = 0 \end{split}$$

~ 4

Minimizing costs:

Minimizing $z=f_1(x_1) + \dots + f_n(x_n)$

Yes or no decisions: should each of the activities be undertaken?

Introduce auxiliary variables:

 $x \leq yM$

$$y_{1}, ..., y_{n} = 0, 1$$

$$y = 1 \text{ if } x > 0$$

$$0 \text{ if } x = 0$$

$$Z = \sum_{i=1}^{n} c_{i} x_{i} + k_{i} y_{i}$$
Which can be written as a linear constraint using big M:

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
 Exclusion between choices
 - Exclusion between constraints
- How do we solve using Branch and Bound?
 - Characteristics
 - Solving Binary IPs
 - Solving Mixed IPs and LPs

Solving Integer Programs: Characteristics

- Fewer feasible solutions than LPs.
- Worst-case exponential in *#* of variables.
- Solution time tends to:
 - Increase with increased # of variables.
 - Decrease with increased # of constraints.
- Commercial software:
 - Cplex

Methods To Solve Integer Programs

- Branch and Bound
 - Binary Integer Programs
 - Integer Programs
 - Mixed Integer (Real) Programs
- Cutting Planes

Branch and Bound

Problem: Optimize f(x) subject to $A(x) \ge 0, x \in D$

- B & B an instance of Divide & Conquer:
- I. Bound D's solution and compare to alternatives.
 - 1) Bound solution to D quickly.
 - Perform quick check by relaxing hard part of problem and solve.
 - \rightarrow Relax integer constraints. Relaxation is LP.
 - 2) Use bound to "fathom" (finish) D if possible.
 - a. If relaxed solution is integer,
 Then keep soln if best found to date ("incumbent"), delete D_i
 - **b.** If relaxed solution is worse than incumbent, Then delete D_i.
 - c. If no feasible solution, Then delete D_{i} .
- II. Otherwise Branch to smaller subproblems
 - 1) Partition D into subproblems $D_1 \dots D_n$
 - 2) Apply B&B to all subproblems, typically Depth First.

B&B for Binary Integer Programs (BIPs)

Problem i: Optimize f(x) st $A(x) \ge 0$, $x_k \in \{0,1\}$, $x \in D_i$

Domain D_i encoding (for subproblem):

• partial assignment to x,

$$- \{x_1 = 1, x_2 = 0, \ldots\}$$

Branch Step:

- 1. Find variable x_i that is unassigned in D_i
- 2. Create two subproblems by splitting D_i:

•
$$D_{i1} \equiv D_i \cup \{x_j \equiv 1\}$$

•
$$D_{i0} \equiv D_i \cup \{x_j \equiv 0\}$$

3. Place on search Queue

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Queue: {} Incumbent: none Best cost Z*: - inf

 $\{\}$

• Initialize

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

• Dequeue {}

Incumbent: none Best cost Z*: - inf

Queue:

Incumbent: none

Best cost Z*: - inf

 $\{\}$

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16.5, x = <0.8333,1,0,1>

- Bound {}
 - 1. Constrain x_i by {}
 - 2. Relax to LP
 - 3. Solve LP

Queue:

Incumbent: none

Best cost Z*: - inf

 $\{\}$

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16.5, x = <0.8333,1,0,1>

- Try to fathom:
 - 1. infeasible?
 - 2. worse than incumbent?
 - 3. integer solution?

Queue: $\{x_1 = 0\} \{x_1 = 1\}$

Incumbent: none Best cost Z*: - inf Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16.5, x = <0.8333,1,0,1>

- Branch:
 - 1. select unassigned x_i
 - pick non-integer (x_1)
 - 2. Split on x_i

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

Subject to:

 $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$-x_3 + x_4 \le 1$$

$$- -x_1 + x_3 \le 0$$

-
$$-x_2 + x_4 \le 0$$

- $x_i \le 1, x_i \ge 0, x_i$ integer

Queue:
$$\{x_1 = 0\} \{x_1 = 1\}$$

Incumbent: none Best cost Z*: - inf • Dequeue:

- <u>depth first</u> or
- best first

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

Subject to:

 $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$- x_3 + x_4 \le 1$$

$$- \mathbf{-}\mathbf{x}_1 + \mathbf{x}_3 \le 0$$

$$\begin{array}{l} - \ -x_2 + x_4 \leq 0 \\ - \ x_i \leq 1, \, x_i \geq 0, \, x_i \, \mbox{integer} \end{array}$$

Queue: $\{x_1 = 1\}$ Incumbent: none Best cost Z*: - inf Bound {x₁ = 0}
constrain x by {x₁ = 0}

Solve:

 $Max \ Z = 9 \ \mathbf{0} + 5x_2 + 6x_3 + 4x_4$

Subject to:

$$- 60 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- -\mathbf{0} + \mathbf{x}_3 \le \mathbf{0}$$

$$\begin{array}{l} - \ -x_2 + x_4 \leq 0 \\ - \ x_i \leq 1, \, x_i \geq 0, \, x_i \, \text{integer} \end{array}$$

Queue: $\{x_1 = 1\}$ Incumbent: none Best cost Z*: - inf Bound {x₁ = 0}
constrain x by {x₁ = 0}

Queue: $\{x_1 = 1\}$

Incumbent: none Best cost Z*: - inf

Solve: Max $Z = 5x_2 + 6x_3 + 4x_4$ Subject to: $3x_2 + 5x_3 + 2x_4 \le 10$ $-x_3 + x_4 \le 1$ $+ x_3 \leq 0$ $- -x_2 + x_4 \le 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer Z = 9, x = <0,1,0,1>

• Bound $\{x_1 = 0\}$

- constrain x by $\{x_1 = 0\}$
- relax to LP
- solve LP

Queue: $\{x_1 = 1\}$

Incumbent: none Best cost Z*: - inf Solve: Max Z = $5x_2 + 6x_3 + 4x_4$ Subject to: $3x_2 + 5x_3 + 2x_4 \le 10$ $-x_3 + x_4 \le 1$ $+x_3 \le 0$ $-x_2 + x_4 \le 0$ $-x_i \le 1, x_i \ge 0, x_i \text{ integer}$

Z = 9, x = <0,1,0,1>

- Try to fathom:
 - 1. infeasible?
 - 2. worse than incumbent?
 - 3. <u>integer solution?</u>

Queue: {x₁ = 1} Incumbent: x = <0,1,0,1> Best cost Z*: 9 Solve: Max Z = $5x_2 + 6x_3 + 4x_4$ Subject to: $3x_2 + 5x_3 + 2x_4 \le 10$ $-x_3 + x_4 \le 1$ $+x_3 \le 0$ $-x_2 + x_4 \le 0$ $-x_i \le 1, x_i \ge 0, x_i \text{ integer}$

Z = 9, x = <0,1,0,1>

- Try to fathom:
 - 1. infeasible?
 - 2. worse than incumbent?
 - 3. <u>integer solution?</u>

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

Subject to:

 $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$- x_3 + x_4 \le 1$$

$$- -x_1 + x_3 \le 0$$

$$- -x_2 + x_4 \le 0$$

$$- x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue: {x₁ = 1} Incumbent: x = <0,1,0,1> Best cost Z*: 9 • Dequeue

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

 $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$-x_3 + x_4 \le 1$$

$$- -x_1 + x_3 \le 0$$

$$\begin{array}{l} - \ - x_2 + x_4 \leq 0 \\ - \ x_i \leq 1, \, x_i \geq 0, \, x_i \, \mbox{integer} \end{array}$$

• Bound $\{x_1 = 1\}$

Queue:

Incumbent: **x** = <**0**,**1**,**0**,**1**> Best cost Z*: 9

Solve: Max $Z = 9 + 5x_2 + 6x_3 + 4x_4$ Subject to: -6 $+3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer Z = 16.2, x = <1,.8,0,.8>

• Bound $\{x_1 = 1\}$

Queue:

Incumbent: **x** = <**0**,**1**,**0**,**1**> Best cost Z*: 9

Queue:

Incumbent: **x** = <**0**,**1**,**0**,**1**>

Best cost Z*: 9

Solve: Max $Z = 9 + 5x_2 + 6x_3 + 4x_4$ Subject to: -6 $+3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer Z = 16.2, x = <1,.8,0,.8>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $-1_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer Z = 16.2, x = <1,.8,0,.8>

Queue: $\{x_1 = 1, x_2 = 1\} \{x_1 = 1, x_2 = 0\}$ Incumbent: x = <0,1,0,1>Best cost Z*: 9

- Branch
- Dequeue

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

 $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$- x_3 + x_4 \le 1$$

$$- \mathbf{-x}_1 + \mathbf{x}_3 \le 0$$

$$\begin{array}{l} - & -\mathbf{x}_{2} + \mathbf{x}_{4} \leq 0 \\ - & \mathbf{x}_{i} \leq 1, \, \mathbf{x}_{i} \geq 0, \, \mathbf{x}_{i} \, \text{integer} \end{array}$$

Queue: $\{x_1=1, x_2=0\}$ Incumbent: x = <0,1,0,1>Best cost Z*: 9 • Bound $\{x_1 = 1, x_2 = 1\}$

Queue: {x₁=1, x₂=0} Incumbent: **x** = <0,1,0,1> Best cost Z*: 9 Solve: Max $Z = 9 + 5 + 6x_3 + 4x_4$ Subject to: $-6 + 3 + 5x_3 + 2x_4 \le 10$ $-x_3 + x_4 \le 1$ $-1 + x_3 \le 0$ $-1 + x_4 \le 0$ $-x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16, x = <1,1,0,.5>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16, x = <1,1,0,.5>

Queue: $\{..., x_3 = 0\} \{..., x_3 = 0\} \{..., x_2 = 0\}$ • Branch Incumbent: **x** = <0,1,0,1> Best cost Z*: 9

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Queue: $\{..., x_3=1\}$ $\{..., x_3=0\}$ $\{..., x_2=0\}$ • Dequeue • Bound $\{x_1=1, x_2=1, x_3=1\}$ Incumbent: $\mathbf{x} = <0,1,0,1>$ Best cost Z*: 9

Queue: $\{..., x_3 = 0\} \{..., x_2 = 0\}$ Incumbent: x = <0,1,0,1>Best cost Z*: 9 Solve: Max $Z = 9 + 5 + 6 + 4x_4$ Subject to: $-6 + 3 + 5 + 2x_4 \le 10$ $-1 + x_4 \le 1$ $-1 + 1 \le 0$ $-1 + x_4 \le 0$ $-x_i \le 1, x_i \ge 0, x_i$ integer

No Solution

Try to fathom: infeasible?

Solve: Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to: $- 6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -x_1 + x_3 \le 0$ $- -x_2 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Queue:
$$\{..., x_3 = 0\} \{..., x_2 = 0\}$$

Incumbent: $x = <0,1,0,1>$
Best cost $Z^* \cdot 9$

- Dequeue
- Bound $\{x_1=1, x_2=1, x_3=0\}$

Queue: {...,x₂ = 0} Incumbent: **x** = <0,1,0,1> Best cost Z*: 9

Solve: Max $Z = 9 + 5 + 4x_4$ Subject to: $-6 + 3 + 2x_4 \le 10$ $+x_4 \le 1$ $--1 \le 0$ $-1 + x_4 \le 0$ $-x_i \le 1, x_i \ge 0, x_i$ integer

Z = 16, x = <1,1,0,.5>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Solve: Max Z = 9 + 5Subject to: - 6 + 3 < 10 ≤ 1 $- -1 \leq 0$ $- -1 \leq 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer Z = 14, x = <1,1,0,0>

Queue: $\{..., x_{2}=0\} \{..., x_{4}=1\} \{..., x_{2}=0\}$ • Branch Incumbent: **x** = <**0**,**1**,**0**,**1**> • Bound Best cost Z*: 9

Queue: $\{..., x_4=1\} \{..., x_2=0\}$ Incumbent: x = <0,1,0,1>Best cost Z*: 9 Solve: Max Z = 9 + 5Subject to: $-6 + 3 \leq 10$ ≤ 1 $--1 \leq 0$ $--1 \leq 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer

Z = 14, x = <1,1,0,0>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Queue: $\{..., x_4=1\} \{..., x_2=0\}$ Incumbent: x = <1,1,0,0>Best cost Z*: 14 Solve: Max Z = 9 + 5Subject to: $-6 + 3 \leq 10$ ≤ 1 $--1 \leq 0$ $--1 \leq 0$ $-x_i \leq 1, x_i \geq 0, x_i$ integer

Z = 14, x = <1,1,0,0>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Queue: $\{..., x_4=1\} \{..., x_2=0\}$ Incumbent: x = <1,1,0,0>Best cost Z*: 14 Solve: Max Z = 9 + 5 + 4Subject to: $-6 + 3 + 2 \le 10$ $+1 \le 1$ $--1 \le 0$ $-1 + 1 \le 0$ $-x_i \le 1, x_i \ge 0, x_i$ integer

No Solution, **x** = <1,1,0,1>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Queue: {...,
$$x_2=0$$
}

Incumbent: **x** = <1,1,0,0> Best cost Z*: 14 Solve: Max Z = 9 $+ 6x_3 + 4x_4$ Subject to: $- 6 + 5x_3 + 2x_4 \le 10$ $- x_3 + x_4 \le 1$ $- -1_1 + x_3 \le 0$ $- 1 + x_4 \le 0$ $- x_i \le 1, x_i \ge 0, x_i$ integer

Z = 13.\$, x = <1,0,.8,0>

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Integer Programming (IP)

- What is it?
- Making decisions with IP
 - Exclusion between choices
 - Exclusion between constraints
- Solutions through branch and bound
 - Characteristics
 - Solving Binary IPs
 - Solving Mixed IPs and LPs

Max $Z = 4x_1 - 2x_2 + 7x_3 - x_4$ Subject to:

- $-x_1 + 5x_3 \le 10$
- $-x_1 + x_2 x_3 \le 1$
- $-6x_1+5x_2 \le 0$
- $-x_1 + 2x_3 2x_4 \le 3$

$$- x_i \ge 0, x_i \text{ integer } x_1, x_2, x_3,$$

Z = 14.25, x = <1.25, 1.5, 1.75, 0> Z = 14.2, x = <1, 1.2, 1.8, 0> Z = 14.1/6, x = <5/6, 1, 11/6, 0> Z = 13.5, x = <0, 0, 2, .5>Infeasible, x = <1, $\le 1, \le 1, 2, \le 2$ Z = 12.1/6, x = <5/6, 2, 11/6, 0> Infeasible, x = < $\ge 2, 2, 2, \le 2$

Incumbent: **x** = <**0**,**0**,**2**,**.5**>

Best cost Z*: 13.5