Integer Programming and Branch and Bound

Brian C. Williams
16.410-13
November 15 th, $17^{\text {th }}, 2004$

Adapted from slides
by Eric Feron, 16.410, 2002.

Cooperative Vehicle Path Planning

Obstacle

Cooperative Vehicle Path Planning

$\begin{array}{ll}\rightsquigarrow & \text { Vehicle } \\ \triangle & \text { Waypoint }\end{array}$
Obstacle

Cooperative Vehicle Path Planning

Objective: Find most fuel-efficient 2-D paths for all vehicles.

Constraints:

- Operate within vehicle dynamics
- Avoid static and moving obstacles
- Avoid other vehicles
- Visit waypoints in specified order
- Satisfy timing constraints

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
- Exclusion between choices
- Exclusion between constraints
- How do we solve using Branch and Bound?
- Characteristics
- Solving Binary IPs
- Solving Mixed IPs and LPs

Integer Programs

LP: Maximize $3 \mathrm{x}_{1}+4 \mathrm{x}_{2}$
Subject to:

$$
\begin{aligned}
& \mathrm{x}_{1} \leq 4 \\
& 2 \mathrm{x}_{2} \leq 12 \\
& 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

Subject to:

$$
\begin{aligned}
& \mathrm{x}_{1} \leq 4 \\
& 2 \mathrm{x}_{2} \leq 12 \\
& 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2}$ integers

Integer Programming

Integer programs are LPs where some variables are integers

Why Integer programs?

1. Some variables are not real-valued:

- Boeing only sells complete planes, not fractions.

2. Fractional LP solutions poorly approximate integer solutions:

- For Boeing Aircraft Co., producing 4 versus 4.5 airplanes results in radically different profits.

Often a mix is desired of integer and non-integer variables

- Mixed Integer Linear Programs (MILP).

Graphical representation of IP

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
- Exclusion between choices
- Exclusion between constraints
- How do we solve using Branch and Bound?
- Characteristics
- Solving Binary IPs
- Solving Mixed IPs and LPs

Integer Programming for Decision Making

Encode "Yes or no" decisions with binary variables:

Binary Integer Programming (BIP):

- Binary variables + linear constraints.
- How is this different from propositional logic?

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

Problem:

1. Cal wants to expand:

- Build new factory in either Los Angeles, San Francisco, both or neither.
- Build new warehouse (at most one).
- Warehouse must be built close to the city of a new factory.

2. Available capital: $\$ 10,000,000$
3. Cal wants to maximize "total net present value" (profitability vs. time value of money)

1 Build a factory in L.A.?
2 Build a factory in S.F.?
3 Build a warehouse in L.A.?
4 Build a warehouse in S.F.?

$\frac{\text { NPV }}{\$ 9 m}$	$\frac{\text { Price }}{\$ 6 m}$
$\$ 5 m$	$\$ 3 m$
$\$ 6 m$	$\$ 5 m$
$\$ 4 m$	$\$ 2 m$

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

Cal wants to expand:
Build new factory in Los Angeles, San Francisco, both or neither.
Build new warehouse (at most one).
Warehouse must be built close to the city of a new factory.

What decisions are to be made?

1.Build factory in LA
2.Build factory in SFO
3. Build warehouse in LA
4.Build warehouse in SFO

1 if decision i is yes
Introduce 4 binary variables $x_{i}=$
0 if decision i is no

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

1. Cal wants to expand
2. Available capital: $\$ 10,000,000$
3. Cal wants to maximize "total net present value" (profitability vs. time value of money)

1 Build a factory in L.A.?
2 Build a factory in S.F.?
3 Build a warehouse in L.A.?
4 Build a warehouse in S.F.?

$\frac{\text { NPV }}{\$ 9 m}$	$\frac{\text { Price }}{\$ 6 m}$
$\$ 5 m$	$\$ 3 m$
$\$ 6 m$	$\$ 5 m$
$\$ 4 m$	$\$ 2 m$

What is the objective?

- Maximize NPV:

$$
\mathrm{Z}=9 \mathrm{x}_{1}+5 \mathrm{x}_{2}+6 \mathrm{x}_{3}+4 \mathrm{x}_{4}
$$

What are the constraints on capital?

- Don't go beyond means:

$$
6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10
$$

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

LA factory $\left(\mathrm{x}_{1}\right)$, SFO factory $\left(\mathrm{x}_{2}\right)$, LA warehouse $\left(\mathrm{x}_{3}\right)$, SFO warehouse (x_{4})

- Build new factory in Los Angeles, San Francisco, both or neither.
- Build new warehouse (at most one).
- Warehouse must be built close to city of a new factory.

What are the constraints between decisions?

1. No more than one warehouse:

$$
\text { Most } 1 \text { of }\left\{x_{3}, x_{4}\right\}
$$

2. Warehouse in LA only if Factory is in LA:

$$
\mathbf{x}_{3} \text { implies } x_{1}
$$

3. Warehouse in SFO only if Factory is in SFO:
\mathbf{x}_{4} implies \mathbf{x}_{2}

Encoding Decision Constraints:

Exclusive choices

- Example: at most 2 decisions in a group can be yes:

LP Encoding:

$$
\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{k}} \leq 2
$$

Logical implications

- x_{1} implies x_{2} : (x_{1} requires x_{2})

LP Encoding:

$$
\mathrm{x}_{1}-\mathrm{x}_{2} \leq 0
$$

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

LA factory(x1), SFO factory(x2), LA warehouse(x3), SFO warehouse (x4)

- Build new factory in Los Angeles, San Francisco, or both.
- Build new warehouse (only one).
- Warehouse must be built close to city of a new factory.

What are the constraints between decisions?

1. No more than one warehouse:

$$
\begin{aligned}
& \text { Most } 1 \text { of }\left\{\mathrm{x}_{3}, \mathrm{x}_{4}\right\} \\
& \mathbf{x}_{3}+\mathbf{x}_{4} \leq \mathbf{1}
\end{aligned}
$$

2. Warehouse in LA only if Factory is in LA:

$$
\begin{aligned}
& \mathrm{x}_{3} \text { implies } \mathrm{x}_{1} \\
& \mathbf{x}_{\mathbf{3}}-\mathbf{x}_{\mathbf{1}} \leq 0
\end{aligned}
$$

3. Warehouse in SFO only if Factory is in SFO:

$$
\begin{aligned}
& \mathbf{x}_{4} \text { implies } \mathrm{x}_{2} \\
& \mathbf{x}_{4}-\mathbf{x}_{2} \leq \mathbf{0}
\end{aligned}
$$

Binary Integer Programming Example: Cal Aircraft Manufacturing Company

Complete binary integer program:
Maximize $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to: $6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$

$$
\begin{aligned}
& \mathrm{x}_{3}+\mathrm{x}_{4} \leq 1 \\
& \mathrm{x}_{3}-\mathrm{x}_{1} \leq 0 \\
& \mathrm{x}_{4}-\mathrm{x}_{2} \leq 0 \\
& \mathrm{x}_{\mathrm{j}} \leq 1 \\
& \\
& \mathrm{x}_{\mathrm{j}} \geq 0
\end{aligned} \quad \mathrm{x}_{\mathrm{j}}=\{0,1\}, \mathrm{j}=1,2,3,4
$$

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
- Exclusion between choices
- Exclusion between constraints
- How do we solve using Branch and Bound?
- Characteristics
- Solving Binary IPs
- Solving Mixed IPs and LPs

Cooperative Vehicle Path Planning

Cooperative Path Planning MILP Encoding: Constraints

- \quad Min J_{T}
- $\mathrm{s}_{\mathrm{ij}} \leq \mathrm{w}_{\mathrm{ij}}$, etc.
- $\mathbf{s}_{\mathrm{i}}+1=\mathbf{A} \mathbf{s}_{\mathrm{i}}+\mathbf{B} \mathbf{u}_{\mathrm{i}}$

Receding Horizon Fuel Cost Fn State Space Constraints State Evolution Equation

Obstacle Avoidance

Collision Avoidance

Cooperative path planning MILP Encoding: Fuel Equation

past-horizon total fuel calculated over all time terminal cost term instants i

$\min _{\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}}=\mathrm{J}_{\mathrm{T}}=\operatorname{wan}_{\mathrm{i}} \min _{\mathrm{i}=1} \sum \mathrm{q}^{\prime} \mathrm{w}_{\mathrm{i}}+{ }_{\mathrm{i}=1} \sum_{\uparrow} \mathrm{r}^{\prime} \mathrm{v}_{\mathrm{i}}+\mathrm{p}^{\prime} \mathrm{w}_{\mathrm{N}}$
$\longrightarrow W_{i}, V_{4}$
slack control vector

How Do We Encode Obstacles?

- Each obstacle-vehicle pair represents a disjunctive constraint:

- Each disjunct is an inequality
- let xR, yR be red vehicle's co-ordinates then:
- Left: $\quad x R<3$
- Above: $\quad \mathrm{R}>4, \ldots$
- Constraints are not limited to rectangular obstacles
- (inequalities might include both co-ordinates)
- May be any polygon
- (convex or concave)

Encoding Exclusion Constraints

Example: (x1 ,x2 real)
Either

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 18 \\
& x+4 x \leq 16
\end{aligned}
$$

BIP Encoding:

- Use Big M to turn-off constraint:

Either:

$$
\begin{array}{ll}
& 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18 \\
\text { and } & \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 16+\mathrm{M} \quad(\text { and } \mathrm{M} \text { is very BIG) }
\end{array}
$$

Or:

$$
\begin{array}{ll}
& 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18+\mathrm{M} \\
\text { and } & \mathrm{x}_{1}+6 \mathrm{x}_{2} \leq 16
\end{array}
$$

- Use binary y to decide which constraint to turn off:

$$
\begin{aligned}
& 3 \mathrm{x} 1+2 \mathrm{x} 2 \leq 18+\mathrm{yM} \\
& \mathrm{x} 1+2 \mathrm{x} 2 \leq 16+(1-\mathrm{y}) \mathrm{M} \\
& \mathrm{y} \in\{0,1\}
\end{aligned}
$$

Cooperative Path Planning

 MILP Encoding: Constraints- $\operatorname{Min~}_{\mathrm{T}}$
- $\mathrm{s}_{\mathrm{ij}} \leq \mathrm{w}_{\mathrm{ij}}$, etc.
- $\mathbf{s}_{\mathrm{i}}+\mathbf{1}=\mathbf{A s}_{\mathrm{i}}+\mathbf{B u}_{\mathrm{i}}$
- $\mathrm{x}_{\mathrm{i}} \leq \mathrm{x}_{\text {min }}+M \mathrm{y}_{\mathrm{il}}$
$-\mathrm{x}_{\mathrm{i}} \leq-\mathrm{x}_{\text {max }}+\mathrm{My}_{\mathrm{i} 2}$
$\mathrm{y}_{\mathrm{i}} \leq \mathrm{y}_{\text {min }}+\mathrm{My}_{\mathrm{i} 3}-\quad$ Obstacle Avoidance
$-\mathrm{y}_{\mathrm{i}} \leq-\mathrm{y}_{\text {max }}+\mathrm{My}_{\mathrm{i} 4}$
$\Sigma y_{\text {ik }} \leq 3$
- Similar constraints for Collision Avoidance (for all pairs of vehicles)

Encoding General Exclusion Constraints

$$
\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}_{1} \quad \text { OR }
$$

:

$$
\mathrm{f}_{\mathrm{N}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}_{\mathrm{N}}
$$

where f_{i} are linear expressions

- LP Encoding:
- Introduce y_{i} to turn off each constraint i :
- Use Big M to turn-off constraint:

$$
\begin{gathered}
\mathrm{fl}(\mathrm{x} 1, \ldots, \mathrm{xn}) \leq \mathrm{d} 1+\mathrm{Myl} \\
: \\
\mathrm{fN}(\mathrm{x} 1, \ldots, \mathrm{xn}) \leq \mathrm{dN}+\mathrm{MyN}
\end{gathered}
$$

- Constrain K of the y_{i} to select constraints:

$$
\sum_{i=1}^{N} y_{i}=N-K \quad \sum_{i=1}^{N} y_{i} \leq N-K
$$

Encoding Mappings to Finite Domains

Function takes on one out of n possible values:
$\mathrm{a}_{1} \mathrm{x}_{1}+\ldots \mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\left[\mathrm{d}_{1}\right.$ or $\mathrm{d}_{2} \ldots$ or $\left.\mathrm{d}_{\mathrm{p}}\right]$

- LP Encoding:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{i}} \in\{0,1\} \quad \mathrm{i}=1,2, \ldots \mathrm{p} \\
& \Sigma \mathrm{y}_{\mathrm{i}}=1 \\
& \mathrm{a}_{1} \mathrm{x}_{1}+\ldots \mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\Sigma_{\mathrm{l}} \mathrm{~d}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}
\end{aligned}
$$

Encoding Constraints

- Fixed - charge problem:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right)= & \mid \mathrm{k}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \text { if } \mathrm{x}_{\mathrm{j}}>0 \\
& \mid 0 \text { if } \mathrm{x}_{\mathrm{j}}=0
\end{aligned}
$$

Minimizing costs:
Minimizing $\mathrm{z}=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)+---+\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}\right)$
Yes or no decisions: should each of the activities be undertaken?
_Introduce auxiliary variables:

$$
\begin{aligned}
& \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}=0,1 \\
& \mathrm{y}=1 \text { if } \mathrm{x}>0 \\
& \quad 0 \text { if } \mathrm{x}=0 \\
& \mathrm{Z}=\sum_{i=1}^{n} c_{i} x_{i}+k_{i} y_{i}
\end{aligned}
$$

Which can ${ }^{i=1}{ }^{1}$ e written as a linear constraint using big M:

$$
\mathrm{x} \leq \mathrm{yM}
$$

Outline

- What is Integer Programming (IP)?
- How do we encode decisions using IP?
- Exclusion between choices
- Exclusion between constraints
- How do we solve using Branch and Bound?
- Characteristics
- Solving Binary IPs
- Solving Mixed IPs and LPs

Solving Integer Programs: Characteristics

- Fewer feasible solutions than LPs.
- Worst-case exponential in \# of variables.
- Solution time tends to:
- Increase with increased \# of variables.
- Decrease with increased \# of constraints.
- Commercial software:
- Cplex

Methods To Solve Integer Programs

- Branch and Bound
- Binary Integer Programs
- Integer Programs
- Mixed Integer (Real) Programs
- Cutting Planes

Branch and Bound

Problem: Optimize $\mathrm{f}(\mathrm{x})$ subject to $\mathrm{A}(\mathrm{x}) \geq 0, \mathrm{x} \in \mathrm{D}$

B \& B - an instance of Divide \& Conquer:
I. Bound D's solution and co

- Perform quick check by relaxing hard part of problem and solve.
\rightarrow Relax integer constraints. Relaxation is LP.

2) Use bound to "fathom" (finish) D if possible.
a. If relaxed solution is integer, Then keep soln if best found to date ("incumbent"), delete D_{i}
b. If relaxed solution is worse than incumbent, Then delete D_{i}.
c. If no feasible solution, Then delete D_{i}.
II. Otherwise Branch to smaller subproblems
3) Partition D into subproblems $D_{1} \ldots D_{n}$
4) Apply B\&B to all subproblems, typically Depth First.

B\&B for Binary Integer Programs (BIPs)

Problem i: Optimize $f(x)$ st $A(x) \geq 0, x_{k} \in\{0,1\}, x \in D_{i}$
Domain D_{i} encoding (for subproblem):

- partial assignment to x ,
- $\quad\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=0, \ldots\right\}$

Branch Step:

1. Find variable x_{j} that is unassigned in D_{i}
2. Create two subproblems by splitting D_{i} :

- $\mathrm{D}_{\mathrm{i} 1} \equiv \mathrm{D}_{\mathrm{i}} \cup\left\{\mathrm{x}_{\mathrm{j}}=1\right\}$
- $\mathrm{D}_{\mathrm{i} 0} \equiv \mathrm{D}_{\mathrm{i}} \cup\left\{\mathrm{x}_{\mathrm{j}}=0\right\}$

3. Place on search Queue

Example: B\&B for BIPs

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& x_{i} \leq 1, x_{i} \geq 0, x_{i} \text { integer }
\end{aligned}
$$

- Initialize

Incumbent: none
Best cost Z^{*} : - inf

Example: B\&B for BIPs

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& -x_{i} \leq 1, x_{i} \geq 0, x_{i} \text { integer }
\end{aligned}
$$

Queue: : $\$$
Incumbent: none
Best cost Z^{*} : - inf

- Dequeue $\}$

Example: B\&B for BIPs

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1$
$-\mathrm{x}_{1}+\mathrm{x}_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ integer
$\mathrm{Z}=16.7, \mathrm{x}=<0.8333,1,0,1>$

Queue:
Incumbent: none
Best cost Z^{*} : - inf

- Bound $\}$

1. Constrain x_{i} by $\}$
2. Relax to LP
3. Solve LP

Example: B\&B for BIPs

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-x_{3}+x_{4} \leq 1$
$-\mathrm{x}_{1}+\mathrm{x}_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-\mathrm{x}_{\mathrm{i}} \leq 1, \mathrm{x}_{\mathrm{i}} \geq 0$, ximeger $_{\mathrm{i}}$
$\mathrm{Z}=16.7, \mathrm{x}=<0.8333,1,0,1>$

Queue:
Incumbent: none
Best cost Z^{*} : - inf

- Try to fathom:

1. infeasible?
2. worse than incumbent?
3. integer solution?

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=0\right\}\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none
Best cost Z^{*} : - inf

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-x_{3}+x_{4} \leq 1$
$-\mathrm{x}_{1}+\mathrm{x}_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imieger
$\mathrm{Z}=16.7, \mathrm{x}=<0.8333,1,0,1>$

- Branch:

1. select unassigned x_{i}

- pick non-integer (x_{1})

2. Split on x_{i}

Example: B\&B for BIPs

Queue: $\{\mathrm{x}, \not \subset 0\}\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& x_{i} \leq 1, x_{i} \geq 0, \\
& x_{i} \text { integer }
\end{aligned}
$$

- Dequeue:
- depth first or
- best first

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none
Best cost Z^{*} : - inf

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& --x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& -x_{i} \leq 1, x_{i} \geq 0, \\
& x_{\text {i }} \text { integer }
\end{aligned}
$$

- Bound $\left\{\mathrm{x}_{1}=0\right\}$
- constrain x by $\left\{\mathrm{x}_{1}=0\right\}$

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none
Best cost Z^{*} : - inf

Solve:
Max Z=90+5x $x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -60+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& --0+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& -x_{i} \leq 1, x_{i} \geq 0, \\
& x_{\text {i }} \text { integer }
\end{aligned}
$$

- Bound $\left\{\mathrm{x}_{1}=0\right\}$
- constrain x by $\left\{\mathrm{x}_{1}=0\right\}$

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none
Best cost Z^{*} : - inf

Solve:
$\operatorname{Max} Z=\quad 5 \mathrm{x}_{2}+6 \mathrm{x}_{3}+4 \mathrm{x}_{4}$
Subject to:

$$
\begin{aligned}
& \quad 3 \mathrm{x}_{2}+5 \mathrm{x}_{3}+2 \mathrm{x}_{4} \leq 10 \\
& -\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1 \\
& +\mathrm{x}_{3} \leq 0 \\
& --\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0 \\
& -\mathrm{x}_{\mathrm{i}} \leq 1, \mathrm{x}_{\mathrm{i}} \geq 0, \mathrm{x}_{\mathrm{i}} \text { integer }
\end{aligned}
$$

$$
\mathbf{Z}=9, \quad \mathbf{x}=<0,1,0,1>
$$

- Bound $\left\{\mathrm{x}_{1}=0\right\}$
- constrain x by $\left\{\mathrm{x}_{1}=0\right\}$
- relax to LP
- solve LP

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: none
Best cost Z^{*} : - inf

Solve:
Max Z $=\quad 5 \mathrm{x}_{2}+6 \mathrm{x}_{3}+4 \mathrm{x}_{4}$
Subject to:

$$
\begin{aligned}
& \quad 3 \mathrm{x}_{2}+5 \mathrm{x}_{3}+2 \mathrm{x}_{4} \leq 10 \\
& -\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1 \\
& +\mathrm{x}_{3} \leq 0 \\
& -\quad-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0 \\
& -\mathrm{x}_{\mathrm{i}} \leq 1, \mathrm{x}_{\mathrm{i}} \geq 0, \frac{\text { xititeger }}{}
\end{aligned}
$$

$$
\mathbf{Z}=9, \quad \mathbf{x}=<0,1,0,1>
$$

- Try to fathom:

1. infeasible?
2. worse than incumbent?
3. integer solution?

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1 >}$ Best cost Z*: 9

Solve:
$\operatorname{Max} Z=\quad 5 \mathrm{x}_{2}+6 \mathrm{x}_{3}+4 \mathrm{x}_{4}$
Subject to:

$$
\begin{aligned}
& \quad 3 \mathrm{x}_{2}+5 \mathrm{x}_{3}+2 \mathrm{x}_{4} \leq 10 \\
& -\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1 \\
& +\mathrm{x}_{3} \leq 0 \\
& -\quad-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0 \\
& -\mathrm{x}_{\mathrm{i}} \leq 1, \mathrm{x}_{\mathrm{i}} \geq 0, \frac{\text { x integer }}{}
\end{aligned}
$$

$$
\mathbf{Z}=9, \quad \mathbf{x}=<0,1,0,1>
$$

- Try to fathom:

1. infeasible?
2. worse than incumbent?
3. integer solution?

Example: B\&B for BIPs

Queue: $\{x, \neq 1\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& -x_{i} \leq 1, x_{i} \geq 0, x_{i} \text { integer }
\end{aligned}
$$

- Dequeue

Example: B\&B for BIPs

Queue:
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& -x_{i} \leq 1, x_{i} \geq 0, \\
& x_{i} \text { integer }
\end{aligned}
$$

- Bound $\left\{\mathrm{x}_{1}=1\right\}$

Example: B\&B for BIPs

Queue:
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1$
$--1+x_{3} \leq 0$
$-\mathrm{X}_{2}+\mathrm{x}_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imiteger
$Z=16.2, x=<1, .8,0, .8>$

- Bound $\left\{\mathrm{x}_{1}=1\right\}$

Example: B\&B for BIPs

Queue:
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-x_{3}+x_{4} \leq 1$
$--1+x_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imieger
$\mathrm{Z}=16.2, \mathrm{x}=<1, .8,0, .8>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Solve:
Max $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1$
$--1_{1}+x_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-\mathrm{x}_{\mathrm{i}} \leq 1, \mathrm{x}_{\mathrm{i}} \geq 0$, rimeger $_{\mathrm{i}}$
$\mathrm{Z}=16 . \not 2, \mathrm{x}=<1, .8,0,8>$
Queue: $\left\{x, f, x_{2}=1\right\}\left\{x_{1}=1, x_{2}=0\right\}$

- Branch
- Dequeue Best cost Z*: 9

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=0\right\}$ Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

- Bound $\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=1\right\}$

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& -x_{i} \leq 1, x_{i} \geq 0, \\
& x_{i} \text { integer }
\end{aligned}
$$

Example: B\&B for BIPs

Queue: $\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9+5+6 x_{3}+4 x_{4}$
Subject to:
$-6+3+5 x_{3}+2 x_{4} \leq 10$
$-\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1$
$--1+x_{3} \leq 0$
$--1+x_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imiteger
$Z=16, x=<1,1,0, .5>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Solve:
Max $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$-6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-x_{3}+x_{4} \leq 1$
$-\mathrm{x}_{1}+\mathrm{x}_{3} \leq 0$
$-\mathrm{x}_{2}+\mathrm{x}_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imeger
$\mathrm{Z}=16, \mathrm{x}=<1,1,0,5>$

Queue: $\left\{\ldots, \mathrm{x}_{2}=0\right\}\left\{\ldots, \mathrm{x}_{3}=0\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$

- Branch

Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1 >}$
Best cost Z^{*} : 9

Example: B\&B for BIPs

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& x_{i} \leq 1, x_{i} \geq 0, \\
& x_{i} \text { integer }
\end{aligned}
$$

Queue: $\left\{. ., \mathrm{x}_{3}=1\right\}\left\{\ldots, \mathrm{x}_{3}=0\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\} \quad \begin{aligned} & \bullet \text { Dequeue } \\ & \\ & \text { Bound }\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=1, \mathrm{x}_{3}=1\right\}\end{aligned}$ Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Example: B\&B for BIPs

Queue: $\left\{\ldots, \mathrm{x}_{3}=0\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1 >}$ Best cost Z*: 9

Solve:
Max Z $=9+5 \quad+6 \quad+4 x_{4}$
Subject to:
$-6+3+5+2 x_{4} \leq 10$
$-1+x_{4} \leq 1$
$--1+1 \leq 0$
$--1+x_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ imeger

No Solution

- Try to fathom:
- infeasible?

Example: B\&B for BIPs

Queue: $\left\{\right.$.., $\left.\mathrm{x}_{3}=0\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1 >}$ Best cost Z*: 9

Solve:
$\operatorname{Max} Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:

$$
\begin{aligned}
& -6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 \\
& -x_{3}+x_{4} \leq 1 \\
& - \\
& -x_{1}+x_{3} \leq 0 \\
& - \\
& -x_{2}+x_{4} \leq 0 \\
& - \\
& -x_{i} \leq 1, x_{i} \geq 0, \\
& x_{i} \text { integer }
\end{aligned}
$$

- Dequeue
- Bound $\left\{\mathrm{x}_{1}=1, \mathrm{x}_{2}=1, \mathrm{x}_{3}=0\right\}$

Example: B\&B for BIPs

Queue: $\left\{\ldots, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9+5+\quad+4 x_{4}$
Subject to:
$-6+3+\quad+2 x_{4} \leq 10$
$+\mathrm{x}_{4} \leq 1$
$--1 \leq 0$
$--1+x_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, x_{i}$ integer
$Z=16, x=<1,1,0, .5>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Solve:
Max $Z=9+5$
Subject to:
$-6+3$
≤ 10
$Z=14, x=<1,1,0,0>$
Queue: $\left\{. ., \mathrm{x}_{4}=0\right\}\left\{\ldots, \mathrm{x}_{4}=1\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\} \begin{aligned} & \text { • Branch } \\ & \text { • Dequeue }\end{aligned}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$

- Bound Best cost Z*: 9

Example: B\&B for BIPs

Queue: $\left\{\ldots, \mathrm{x}_{4}=1\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{0 , 1 , 0 , 1}>$ Best cost Z^{*} : 9

Solve:
$\operatorname{Max} Z=9+5$
Subject to:
$-6+3$
$Z=14, x=<1,1,0,0>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Queue: $\left\{\ldots, \mathrm{x}_{4}=1\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{1 , 1 , 0 , 0}>$ Best cost Z^{*} : 14

Solve:
$\operatorname{Max} Z=9+5$
Subject to:
$-6+3$
$\mathrm{Z}=14, \mathrm{x}=<1,1,0,0>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Queue: $\left\{.\right.$, , $\left.\mathrm{x}_{4}=1\right\}\left\{\ldots, \mathrm{x}_{2}=0\right\}$ Incumbent: $\mathbf{x}=<\mathbf{1 , 1 , 0 , 0}>$ Best cost Z*: 14

Solve:
$\operatorname{Max} Z=9+5+4$
Subject to:

$$
\begin{array}{lll}
-6 & +3 & +2 \leq 10 \\
& +1 \leq 1 \\
- & -1 \quad \leq 0 \\
- & -1 & +1 \leq 0 \\
- & x_{i} \leq 1, x_{i} \geq 0, \\
x_{\mathrm{i}} \text { integer }
\end{array}
$$

No Solution, $x=<1,1,0,1>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Example: B\&B for BIPs

Queue: $\left\{. / ., \mathrm{X}_{2}=0\right\}$
Incumbent: $\mathbf{x}=<\mathbf{1 , 1 , 0 , 0}>$ Best cost Z^{*} : 14

Solve:
$\operatorname{Max} Z=9 \quad+6 x_{3}+4 x_{4}$
Subject to:
$-6 \quad+5 x_{3}+2 x_{4} \leq 10$
$-\mathrm{x}_{3}+\mathrm{x}_{4} \leq 1$
$-1_{1}+x_{3} \leq 0$
$--1+x_{4} \leq 0$
$-x_{i} \leq 1, x_{i} \geq 0, \underset{x_{i} \text { imitger }}{ }$
$Z=13.8, x=<1,0, .8,0>$

- Try to fathom:
- infeasible?
- worse than incumbent?
- integer solution?

Integer Programming (IP)

- What is it?
- Making decisions with IP
- Exclusion between choices
- Exclusion between constraints
- Solutions through branch and bound
- Characteristics
- Solving Binary IPs
- Solving Mixed IPs and LPs

Example: B\&B for MIPs

$\operatorname{Max} Z=4 x_{1}-2 x_{2}+7 x_{3}-x_{4}$
Subject to:

$$
\begin{aligned}
& -x_{1}+5 x_{3} \leq 10 \\
& -x_{1}+x_{2}-x_{3} \leq 1 \\
& -6 x_{1}+5 x_{2} \leq 0 \\
& - \\
& -x_{1}+2 x_{3}-2 x_{4} \leq 3 \\
& -x_{i} \geq 0, x_{i} \text { integer } x_{1}, x_{2}, x_{3},
\end{aligned}
$$

$$
\mathrm{Z}=14.2 / 5, \quad \mathrm{x}=<1.25,1.5,1.75,0>
$$

$$
\mathrm{Z}=14 \not \subset, \quad \mathrm{x}=<1,1.2,1.8,0>
$$

$$
Z=141 / 6, x=<5 / 6,1,11 / 6,0>
$$

$$
\mathrm{Z}=13.7 \mathrm{f}, \quad \mathrm{x}=<0,0,2, .5>
$$

Infeasible, $x=<1, \leq 1, ?, ?>$

$$
\mathrm{Z}=121 / 6, \mathrm{x}=<5 / 6,2,11 / 6,0\rangle
$$

Infeasible, $x=<\geq 2, ?, ?, ?>$

