
Integer Programming and 
Branch and Bound

Brian C. Williams
16.410-13 
November 15th, 17th, 2004

Adapted from slides 
by Eric Feron, 16.410, 2002.



Cooperative Vehicle Path Planning

Vehicle
Obstacle

Waypoint



Cooperative Vehicle Path Planning

Vehicle
Obstacle

Waypoint



Cooperative Vehicle Path Planning

Objective: Find most fuel-efficient 2-D paths for all 
vehicles.

Constraints:
– Operate within vehicle dynamics
– Avoid static and moving obstacles
– Avoid other vehicles
– Visit waypoints in specified order
– Satisfy timing constraints



Outline

• What is Integer Programming (IP)?
• How do we encode decisions using IP?

– Exclusion between choices
– Exclusion between constraints

• How do we solve using Branch and Bound?
– Characteristics
– Solving Binary IPs
– Solving Mixed IPs and LPs



Integer Programs
LP: Maximize 3x1 + 4x2

Subject to:
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1 , x2 ≥ 0

IP: Maximize 3x1 + 4x2

Subject to:
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1 , x2 ≥ 0

x1 , x2 integers

e)
x1

x2



Integer programs are LPs where some variables are integers 

Why Integer programs?

1. Some variables are not real-valued:
• Boeing only sells complete planes, not fractions.

2. Fractional LP solutions poorly approximate integer solutions:
• For Boeing Aircraft Co., producing 4 versus 4.5 airplanes 

results in radically different profits.

Often a mix is desired of integer and non-integer variables 
• Mixed Integer Linear Programs (MILP). 

Integer Programming



Graphical representation of IP



Outline

• What is Integer Programming (IP)?
• How do we encode decisions using IP?

– Exclusion between choices
– Exclusion between constraints

• How do we solve using Branch and Bound?
– Characteristics
– Solving Binary IPs
– Solving Mixed IPs and LPs



Integer Programming for 
Decision Making

Encode “Yes or no” decisions with binary variables:

1  if decision is yes
xj

0 if decision is no.

Binary Integer Programming (BIP):
• Binary variables + linear constraints.

• How is this different from propositional logic?



Problem:

1. Cal wants to expand:
• Build new factory in either Los Angeles, San Francisco, both or neither. 
• Build new warehouse (at most one).
• Warehouse must be built close to the city of a new factory.

2. Available capital: $10,000,000

3. Cal wants to maximize “total net present value” (profitability vs. time value of money)

NPV Price
1 Build a factory in L.A.? $9m $6m
2 Build a factory in S.F.? $5m $3m
3 Build a warehouse in L.A.? $6m $5m
4 Build a warehouse in S.F.? $4m $2m

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



Cal wants to expand:
Build new factory in Los Angeles, San Francisco, both or neither. 
Build new warehouse (at most one).

Warehouse must be built close to the city of a new factory.

What decisions are to be made?

1.Build factory in LA
2.Build factory in SFO
3.Build warehouse in LA
4.Build warehouse in SFO

1 if decision i is yes
Introduce 4 binary variables xi=

0 if decision i is no

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



1. Cal wants to expand
2. Available capital: $10,000,000
3. Cal wants to maximize “total net present value” (profitability vs. time value of money)

NPV Price
1 Build a factory in L.A.? $9m $6m
2 Build a factory in S.F.? $5m $3m
3 Build a warehouse in L.A.? $6m $5m
4 Build a warehouse in S.F.? $4m $2m

What is the objective?
• Maximize NPV:

Z = 9x1 + 5x2 + 6x3 + 4x4

What are the constraints on capital?
• Don’t go beyond means:

6x1 + 3x2 + 5x3 + 2x4 <10

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



LA factory(x1), SFO factory(x2), LA warehouse(x3),SFO warehouse (x4)
• Build new factory in Los Angeles, San Francisco, both or neither. 
• Build new warehouse (at most one).
• Warehouse must be built close to city of a new factory.

What are the constraints between decisions?
1. No more than one warehouse:

Most 1 of {x3 , x4}  
x3 + x4 < 1

2. Warehouse in LA only if Factory is in LA:
x3 implies x1
x3 – x1 < 0

3. Warehouse in SFO only if Factory is in SFO:
x4 implies x2
x4 - x2 < 0

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



• Exclusive choices
• Example: at most 2 decisions in a group can be yes:

LP Encoding:
x1 +…+ xk < 2.

Encoding Decision Constraints:

• Logical implications
• x1 implies x2:  (x1 requires x2)

LP Encoding:
x1 - x2 < 0.



LA factory(x1), SFO factory(x2), LA warehouse(x3),SFO warehouse (x4)
• Build new factory in Los Angeles, San Francisco, or both. 
• Build new warehouse (only one).
• Warehouse must be built close to city of a new factory.

What are the constraints between decisions?
1. No more than one warehouse:

Most 1 of {x3 , x4}
x3 + x4 < 1

2. Warehouse in LA only if Factory is in LA:
x3 implies x1
x3 – x1 < 0

3. Warehouse in SFO only if Factory is in SFO:
x4 implies x2
x4 - x2 < 0

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



Complete binary integer program:

Maximize  Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:  6x1 + 3x2 + 5x3 + 2x4 <10

x3 + x4 < 1
x3 - x1 < 0
x4 - x2 < 0
xj < 1

xj = {0,1}, j=1,2,3,4
xj > 0

Binary Integer Programming Example:
Cal Aircraft Manufacturing Company



Outline

• What is Integer Programming (IP)?
• How do we encode decisions using IP?

– Exclusion between choices
– Exclusion between constraints

• How do we solve using Branch and Bound?
– Characteristics
– Solving Binary IPs
– Solving Mixed IPs and LPs



Cooperative Vehicle Path Planning



Cooperative Path Planning
MILP Encoding: Constraints

• Min JT Receding Horizon Fuel Cost Fn
• sij ≤ wij, etc. State Space Constraints
• si+1 = Asi + Bui State Evolution Equation
• xi ≤ xmin + Myi1

-xi ≤ -xmax + Myi2
yi ≤ ymin + Myi3 Obstacle Avoidance

-yi ≤ -ymax + Myi4
Σ yik ≤ 3

• Similar constraints for Collision Avoidance
(for all pairs of vehicles)



Cooperative path planning
MILP Encoding: Fuel Equation

min = JT = min   Σ q’wi +   Σ r’vi + p’wNwi, vi
wi, vi i=1

N-1

i=1

N-1

slack control vector weighting vectors

slack state vector

total fuel calculated over all time 
instants i

past-horizon
terminal cost term



How Do We Encode Obstacles?

• Each obstacle-vehicle pair represents a disjunctive constraint:

• Each disjunct is an inequality
– let xR, yR be red vehicle’s co-ordinates then:
– Left: xR < 3
– Above: R > 4,  . . .

• Constraints are not limited to rectangular obstacles 
– (inequalities might include both co-ordinates)

• May be any polygon 
– (convex or concave)

Red Vehicle is above obstacle OR 
Red Vehicle is below obstacle OR 
Red Vehicle is left of obstacle OR 
Red Vehicle is right of obstacle



Example:  (x1 ,x2  real) 

Either   3x1 + 2x2 < 18 

Or         x  + 4x  < 16

BIP Encoding:
• Use Big M to turn-off constraint:

Either:
3x1 + 2x2 < 18

and       x1 +  4x2 < 16 + M   (and M is very BIG)
Or:

3x1 + 2x2 < 18 + M
and x1 + 6x2 < 16

Encoding Exclusion Constraints

• Use binary y to decide which constraint to turn off:
3x1  + 2x2  < 18 + y M
x1  + 2x2  < 16 + (1-y)M
y ∈ {0,1}



Cooperative Path Planning
MILP Encoding: Constraints

• Min JT Receding Horizon Fuel Cost Fn
• sij ≤ wij, etc. State Space Constraints
• si+1 = Asi + Bui State Evolution Equation
• xi ≤ xmin + Myi1

-xi ≤ -xmax + Myi2
yi ≤ ymin + Myi3 Obstacle Avoidance

-yi ≤ -ymax + Myi4 At least one enabled
Σ yik ≤ 3 At least one enabled

• Similar constraints for Collision Avoidance 
(for all pairs of vehicles)



• K out of N constraints hold:
f1(x1, x2 ,…xn) < d1 OR

:
fN(x1, x2 , …, xn ) < dN
where fi are linear expressions

• LP Encoding:
• Introduce yi to turn off each constraint i:
• Use Big M to turn-off constraint:

f1(x1, ... , xn ) < d1  + My1
:

fN(x1, … , xn ) < dN + MyN

• Constrain K of the yi to select constraints:

Encoding General Exclusion Constraints

∑
=

−≤
N

i
i KNy

1

• At least K of N hold:

∑
=

−=
N

i
i KNy

1



• Function takes on one out of n  possible values:

a1x1+ . . . an xn = [d1 or d2 … or dp]

• LP Encoding:

yi ∈ {0,1}   i=1,2,…p

Σ yi = 1

a1x1+ . . . an xn=  Σι di yi

Encoding Mappings to Finite Domains 



Encoding Constraints 
• Fixed – charge problem:

fi(xj) = |  kj + cjxj if  xj >0

|  0  if  xj=0

Minimizing costs:

Minimizing  z=f1(x1) +---+ fn(xn)

Yes or no decisions:  should each of the activities be undertaken?

Introduce auxiliary variables:

y1, …, yn = 0,1

y = 1  if x > 0

0 if x = 0 

Which can be written as a linear constraint using big M:

x <yM

∑
=

+=
n

i
iiii ykxcZ

1



Outline

• What is Integer Programming (IP)?
• How do we encode decisions using IP?

– Exclusion between choices
– Exclusion between constraints

• How do we solve using Branch and Bound?
– Characteristics
– Solving Binary IPs
– Solving Mixed IPs and LPs



Solving Integer Programs: 
Characteristics

• Fewer feasible solutions than LPs.
• Worst-case exponential in  # of variables.
• Solution time tends to:

– Increase with increased # of variables.
– Decrease with increased # of constraints.

• Commercial software:
– Cplex



Methods To Solve Integer Programs

• Branch and Bound
– Binary Integer Programs
– Integer Programs
– Mixed Integer (Real) Programs

• Cutting Planes



Branch and Bound
Problem: Optimize f(x) subject to A(x) ≥ 0, x ∈ D

B & B - an instance of Divide & Conquer:
I. Bound D’s solution and compare to alternatives.

1) Bound solution to D quickly.
• Perform quick check by relaxing hard part of problem and solve.

Relax integer constraints.  Relaxation is LP.
2) Use bound to “fathom” (finish) D if possible. 

a. If relaxed solution is integer,
Then keep soln if best found to date (“incumbent”), delete Di

b. If relaxed solution is worse than incumbent, Then delete Di.
c. If no feasible solution, Then delete Di.

II. Otherwise Branch to smaller subproblems
1) Partition D into subproblems D1 … Dn

2) Apply B&B to all subproblems, typically Depth First.



B&B for Binary Integer Programs (BIPs)

Problem i: Optimize f(x) st A(x) ≥ 0, xk∈{0,1}, x∈Di

Domain Di encoding (for subproblem):
• partial assignment to x, 

– {x1 = 1, x2 = 0, …}

Branch Step:
1. Find variable xj that is unassigned in Di
2. Create two subproblems by splitting Di:

• Di1 ≡ Di ∪ {xj = 1} 
• Di0 ≡ Di ∪{xj = 0}

3. Place on search Queue



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• InitializeQueue: {}
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Dequeue {}Queue: {}
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Bound {}
1. Constrain xi by {}
2. Relax to LP
3. Solve LP

Z = 16.5, x = <0.8333,1,0,1>

Queue:
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Try to fathom:
1. infeasible?
2. worse than incumbent?
3. integer solution?

Z = 16.5, x = <0.8333,1,0,1>

{}

Queue:
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Branch:
1. select unassigned xi

• pick non-integer (x1)
2. Split on xi

Z = 16.5, x = <0.8333,1,0,1>

{x1 = 0} {x1 = 1}

Queue:{x1 = 0}{x1 = 1}
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Dequeue:
• depth first

{}

{x1 = 0} {x1 = 1}

Queue:{x1 = 0}{x1 = 1} or
• best firstIncumbent: none

Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Bound {x1 = 0}
• constrain x by {x1 = 0}
• relax to LP
• solve

{}

{x1 = 0} {x1 = 1}

{x1 = 1}Queue:
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9 0 + 5x2 + 6x3 + 4x4

Subject to:
– 6 0 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -0 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Bound {x1 = 0}
• constrain x by {x1 = 0}
• relax to LP
• solve

{}

{x1 = 0} {x1 = 1}

{x1 = 1}Queue:
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9 0 + 5x2 + 6x3 + 4x4

Subject to:
– 6 0 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -0 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

• Bound {x1 = 0}
• constrain x by {x1 = 0}
• relax to LP
• solve LP

{}

{x1 = 0} {x1 = 1}

Z = 19,5, x = <0,1,0,1>

{x1 = 1}Queue:
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9 0 + 5x2 + 6x3 + 4x4

Subject to:
– 6 0 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -0 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{}

{x1 = 0} {x1 = 1}

Z = 19,5, x = <0,1,0,1>

• Try to fathom:
1. infeasible?
2. worse than incumbent?
3. integer solution?

Queue:{x1 = 1}
Incumbent: none
Best cost Z*: - inf



Example: B&B for BIPs
Solve:
Max Z = 9 0 + 5x2 + 6x3 + 4x4

Subject to:
– 6 0 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -0 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{}

{x1 = 0} {x1 = 1}

Z = 19,5, x = <0,1,0,1>

• Try to fathom:
1. infeasible?
2. worse than incumbent?
3. integer solution?

Queue:{x1 = 1}
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{x1 = 1} • Dequeue



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

• Bound {x1 = 1}Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

Z = 16.2, x = <1,.8,0,.8>

• Bound {x1 = 1}Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

Z = 16.2, x = <1,.8,0,.8>

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

Queue:{x1 = 1}
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{x1=1, x2=1}{x1=1, x2=0}

{}

{x1 = 0} {x1 = 1}

• Branch
• Dequeue

{x2 = 1} {x2 = 0}

Z = 16.2, x = <1,.8,0,.8>



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

• Bound {x1 = 1, x2 = 1} Queue:{x1=1, x2=0}
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{x1=1, x2=0}

{}

{x1 = 0} {x1 = 1}

Z = 16, x = <1,1,0,.5>

• Bound {x1 = 1, x2 = 1} 

{x2 = 1} {x2 = 0}

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:{…,x2=0}

{}

{x1 = 0} {x1 = 1}

• Branch

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

{…,x3=1}{…,x3=0}{…,x2=0}

Z = 16, x = <1,1,0,.5>

Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{}

{x1 = 0}

• Dequeue
• Bound {x1=1, x2=1, x3=1} 

{x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

{…,x3=1} {…,x3=0}{…,x2=0}



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– 13 + x4 ≤ 1
– -11 + 13 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

No Solution

• Bound {x1=1, x2=1, x3=1} • Try to fathom:
• infeasible?Queue:{…,x3 = 0}{…,x2 = 0}

Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -x1 + x3 ≤ 0
– -x2 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{…,x3 = 0}{…,x2 = 0} • Dequeue
• Bound {x1=1, x2=1, x3=0}



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

Z = 16, x = <1,1,0,.5>

• Bound {x1=1, x2=1, x3=0}• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

Queue:{…,x2 = 0}
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{}

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

{…,x4=0}{…,x4=1}{…,x2=0}

Z = 14, x = <1,1,0,0>

• Branch
• Dequeue
• Bound

{x4 = 0} {x4 = 1}

{…,x2=0}



Example: B&B for BIPs
{} Solve:

Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

{x4 = 0} {x4 = 1}

Z = 14, x = <1,1,0,0>

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

Queue:{…,x4=1}{…,x2=0}
Incumbent: x = <0,1,0,1>
Best cost Z*: 9



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Incumbent: x = <0,1,0,1>
Best cost Z*: 9

Queue:

{}

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

Z = 14, x = <1,1,0,0>

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

{x4 = 0} {x4 = 1}

Incumbent: x = <1,1,0,0>
Best cost Z*: 14

{…,x4=1}{…,x2=0}



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + 14≤ 1
– -11 + x3 ≤ 0
– -12 + 14 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Incumbent: x = <0,1,0,1>
Best cost Z*: 9

Queue:

{}

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

• dequeue & bound

No Solution, x = <1,1,0,1>

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

{x4 = 0} {x4 = 1}

Incumbent: x = <1,1,0,0>
Best cost Z*: 14

{…,x4=1}{…,x2=0}



Example: B&B for BIPs
Solve:
Max Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to:
– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
– x3 + x4 ≤ 1
– -11 + x3 ≤ 0
– -12 + x4 ≤ 0
– xi ≤ 1, xi ≥ 0, xi integer

Queue:
Incumbent: x = <0,1,0,1>
Best cost Z*: 9

{}

{x1 = 0} {x1 = 1}

{x2 = 1} {x2 = 0}

{x3 = 1} {x3 = 0}

• dequeue & bound

Z = 13.8, x = <1,0,.8,0>

• Try to fathom:
• infeasible?
• worse than incumbent?
• integer solution?

{x4 = 0} {x4 = 1}

Incumbent: x = <1,1,0,0>
Best cost Z*: 14

{…,x2=0}



Integer Programming (IP)

• What is it?
• Making decisions with IP

– Exclusion between choices
– Exclusion between constraints

• Solutions through branch and bound
– Characteristics
– Solving Binary IPs
– Solving Mixed IPs and LPs



Example: B&B for MIPs
Max Z = 4x1 - 2x2 + 7x3 - x4

Subject to:
– x1 + 5x3 ≤ 10
– x1 + x2 - x3 ≤ 1
– 6x1 + 5x2 ≤ 0
– -x1 + 2x3 – 2x4 ≤ 3
– xi ≥ 0, xi integer x1, x2, x3,

{}

{x1 ≤ 1} {x1 ≥ 2}

{x2 ≤ 1} {x2 ≥ 2}

{x1 = 0} {x1 = 1}

Incumbent:

Best cost Z*:

Z = 14.25,  x = <1.25,1.5,1.75,0>
Z = 14.2,    x = <1,1.2,1.8,0>

Infeasible, x = < ≥2,?,?,?>

Infeasible,  x = <1,≤1,?,?>

x = <0,0,2,.5>

13.5

Z = 14 1/6, x = <5/6,1,11/6,0>

Z = 12 1/6, x = <5/6,2,11/6,0>

Z = 13.5,    x = <0,0,2,.5>


