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Using Uncertainty for Visual 
Exploration: Strategy

Instead of trying to resolve uncertainty, 
communicate uncertainty together with 
computed volumetric models to 3-D world 
processes using these models to try to make 
use of uncertainty for world exploration

x = (x, y, z) - data point

a = (ax, ay, az, ε2, ε1) - superellipsoid parameters

ax > 0, ay > 0, az > 0, 0 ≤ ε2 ≤ 2, 0 ≤ ε1 ≤ 2

f - inside-outside function:

f(x,a) = 1 then x is on the surface

f(x,a) > 1 then x is outside the surface

f(x,a) < 1 then x is inside the surface
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Volumetric Representation of 
Real-World Objects: Superellipsoids



Levenburg-Marquardt least squares 
minimization method

• Minimize in steepest descent fashion the squared 
sum:

– D(xi,a) - metric: measure of distance from data 
point xi to superellipsoid surface described by 
parameters a

– σi - distance error
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Metrics

• Metric 1: example of bad metric

– biased toward large ε1
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Metrics
• Metric 2: example of bad metric

– biased toward large ⎜xs⎥

• Metric 3: example of bad metric

– model shape depends on volume exponent, 
metric is over-committed to object classes
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• Metric 4: good metric

– designed to expose weaknesses in the 
interpretation (i.e. uncertainty)

– makes minimum assumptions about object 
shape

Metrics
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Nonuniqueness
• Ambiguity is inherent in the fitting process.

Communicating Nonuniqueness
with Confidence

• Nonuniqueness region in the parameter space in 
the absence of measurement noise:

• Noise distorts the region, “swamps” the smallest 
misfit errors => impossible to decide if the error is 
due to misfit or random perturbations in the data
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• Confidence level  γ
• Acceptable error for parameters a

• Chance variations in the data will cause the error to 
exceed (100 - γ) % of time

• Complication:

– There is no analytic solution for the probability 
distribution of the error at arbitrary parameters a

• Simplifying assumption: choose constant value of
independent of parameters

Communicating Nonuniqueness
with Confidence
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• Region of non-unique (equivalent) models in the 
parameter space is enclosed by the surface:

• Complex shape of is non-linear and not 
easily described mathematically => use Taylor 
expansion:

Communicating Nonuniqueness
with Confidence
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• is the displacement from the minimum 
position

• H is Hessian matrix

• At a minimum position Therefore:

Communicating Nonuniqueness
with Confidence
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• Assumptions:

– Local linearity of X2

– Normal distribution of noise

• Covariance matrix:

• Then:

• Covariance matrix is used to communicate the 
nonuniqueness of the fitted model

Communicating Nonuniqueness
with Confidence
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Ellipsoid of Confidence

• Limitation of the ellipsoid of confidence: can only 
represent nonuniqueness at a single minimum in 
parameter space. Presence of multiple minima is a 
difficult problem.

Uncertainty in 3-D Space

• ∆ is the change in the model’s 

surface in response to change

δa in model’s parameter

estimate

• ∆ is not easily described analytically => use 
Taylor expansion:
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• Constrain parameters to lie within the ellipsoid of 
confidence => the surface perturbation is 
constrained as well

• Want to know maximum surface variation

• Constrained optimization problem => use Lagrange 
multipliers to maximize the quantity:

Uncertainty in 3-D Space
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Uncertainty in 3-D Space
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• Two solutions for ∆max: (+) and (-) => each point x
on the fitted superellipsoid is inside one of the models 
from the ellipsoid of confidence and outside another

• Ellipsoid of confidence in the parameter space maps 
into a shell around the fitted surface in 3-D space => 
shell of uncertainty

• The thicker the shell of uncertainty => the more 
uncertainty about the true position on the surface
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Uncertainty in 3-D Space

• Two types of processes in 3-D world that use the 
obtained volumetric representations:

– Type 1: ones that need to minimize the obtained 
uncertainty: path planning, grasp control etc.

– Type 2: ones that can use the obtained 
uncertainty: gaze planning

• Useful function for both types of processes: 

Uncertainty in 3-D Space
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• Breakdown of local linearity assumption for high 
levels of confidence

Uncertainty in 3-D Space

Plots for three
levels of confidence:
(a) γ = 5 %
(b) γ = 25 %
(c) γ = 68 %

uncertainty image: surface of 
the fitted model colored with 
levels of gray proportional to
uncertainty measure U

• Measure of improvement

P - projection

U - surface uncertainty measure

(θ,φ) - view position

(u,v) - viewplane coordinates

x(P(u,v, θ,φ)) - point of

intersection of the projected ray 

with the surface of the model

Gaze Planning
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• Measure of improvement as a function of view 
position

Gaze Planning

example of range
scanning of a noisy
hemisphere

• +90 deg latitude (north pole):
zero improvement

• -90 deg latitude (south pole):
maximum improvement

• Wooden mannequin

• Gaze planning strategies:
– choose a viewpoint

corresponding to a 

maximum peak on the 

improvement map

– choose a viewpoint

corresponding to a

steepest ascent on the

improvement map

Gaze Planning: Real Example



Gaze Planning Strategy

Continue until there is negligible decrease in the
overall uncertainty

Take measurementChoose (new) viewpoint

(Re)fit the model(Re)calculate improvement map

• Ambiguity can be used to plan new direction of 
view that minimizes the ambiguity of subsequent 
interpretation

• Unresolved problems:

– Real world is not only composed of objects that 
can be represented by volumetric models

– Metrics are either suitable for good model fit or 
for good uncertainty measure but not for both

Conclusions


