
Fast Solutions to CSP’s

Based on

PROSSER, P. Hybrid algorithms for
the constraint satisfaction problem.

Computational Intelligence 9
(1993), 268--299

Outline

• Motivation

• Methods of advancing CSP search
– Backmarking

– Forward Checking

• Hybrid algorithms

• Conclusion

Problem to be solved
Given a set of n variables where the ith variable,
1<= i<=n, has a discrete domain of values it can
take, domain[i], and a set of binary relations C =
{C1,1 … C1,n C2,1 … C2,n … Cn,n}, find the first
consistent instantiation of these variables which
satisfies all the relations.

Notation:
Current variable is indexed with i, Vi

Past variables will be variables that have already been instantiated
(those whose index is <i)
Future variables will be those yet to be instantiated (those whose
index is >i)

Why Binary CSP’s

Every higher order (multiple variables) , finite domain
constraint can be reduced to a set of binary constraints if
enough auxillary variables are introduced.

What is the forward move and why change it?

Forward move – the procedure that determines what actions to
take (consistency checks, bookkeeping, etc) when the next variable
is instantiated.

Goal : avoid unnecessary computation

•Backmarking (BM) – remembers consistency checks it already
performed

•Forward Checking (FC) – doesn’t expand nodes it knows aren’t
feasible

Go Backwards

Go
Forwards

BT

BM

FC

BJ CBJ

More
informed
styles

Different styles

The 5 Base styles of search

Hybrid
Algorithms

Generally
Faster

Outline

• Motivation

• Methods of advancing CSP search
– Backmarking

– Forward Checking

• Hybrid algorithms

• Conclusion

What does BM do?

• Objective : BM prevents redundant consistency
checks when
– The current variable is known to fail with its current

value because of some variable in the past still has the
value that made the current variable fail.

– The current variable is known to succeed with its
current value in a check against a past value that still
has the same value that made the current variable
succeed.

• Tradeoff : must spend time doing, and allot space
for, bookkeeping.

What does BM do?

• Maximum checking level (mcl) array
– Size = Number of variables x domain size
– mcl[i,k] holds the index of the deepest variable

that v[i] = k, k ∊ Di, was checked against

• Minimum backup level (mbl) array
– Size = Number of variables x 1
– mbl[i] the index of the shallowest past variable

that has changed value since v[i] was the
current variable

What does BM do?

• mcl[i,k] < mbl[i] means the previous consistency
check between v[I] = k and some variable in the
past of mcl[i,k] failed and will still fail because
mcl[i,k] hasn’t been changed

• mcl[I,k] >= mbl[i] means v[i] = k passed
consistency checking for all variables in the past
of mbl[i]. V[i] only needs to be checked for
consistency with the new variables, those in the
future of mbl[i]

Backmarking example

V
ariable #

1

2

3

4

5

0

0

0

0

0

B

5

4

3

2

1

i mblGR

000

000

000

000

000

Remaining
domain

Suppose no element of the domain of the 5th variable is consistent
with the first element of the domain of the first variable

Backmarking example

V
ariable #

1

2

3

4

5

0

0

0

0

0

B

5

4

3

2

1

i mblGR

000

000

000

001

000

Remaining
domain

Backmarking example

V
ariable #

1

2

3

4

5

0

0

0

0

0

B

5

4

3

2

1

i mblGR

000

003

002

001

000

Remaining
domain

Skipping a step

Backmarking example

V
ariable #

1

2

3

4

5

0

0

0

0

0

B

5

4

3

2

1

i mblGR

001

003

002

001

000

Remaining
domain

X X

Backmarking example

V
ariable #

1

2

3

4

5

0

0

0

0

0

B

5

4

3

2

1

i mblGR

011

003

002

001

000

Remaining
domain

X XX

Backmarking example

V
ariable #

1

2

3

4

5

1

0

0

0

0

B

5

4

3

2

1

i mblGR

411

003

002

001

000

Remaining
domain

X X XX

Backmarking example

V
ariable #

1

2

3

4

5

1

0

0

0

0

B

5

4

3

2

1

i mblGR

411

003

002

001

000

Remaining
domain

X X

Backmarking example

V
ariable #

1

2

3

4

5

1

0

0

0

0

B

5

4

3

2

1

i mblGR

411

033

002

001

000

Remaining
domain

X

Backmarking example

V
ariable #

1

2

3

4

5

1

0

0

0

0

B

5

4

3

2

1

i mblGR

411

033

002

001

000

Remaining
domain

X

No consistency checks at level 5 will be performed until the
value of the first variable is changed

X

X

Backmarking example

V
ariable #

1

2

3

4

5

1

0

0

0

0

B

5

4

3

2

1

i mblGR

411

033

002

001

000

Remaining
domain

X

X

Eventually variable 4 also encounters DWO

X

X X X

Backmarking example

V
ariable #

1

2

3

4

5

1

3

0

0

0

B

5

4

3

2

1

i mblGR

411

333

002

001

000

Remaining
domain

XX X

Eventually variable 4 also encounters DWO

X

Backmarking example

V
ariable #

1

2

3

4

5

1

3

0

0

0

B

5

4

3

2

1

i mblGR

411

333

022

001

000

Remaining
domain

The algorithm does not recognize that no instantiation of variable 4
works while variable 1 is red, it does however save on consistency
checks between variable 4 and all variables previous to the shallowest
change since variable 4 was last tested

X

Forward Checking

•Objective : look ahead to find impossible combinations as
soon as possible; “fail early”

•Remove inconsistent values from the domains of all
future variables

•If domain of future variable is null, then backtrack

•Trade off : perform speculative checks hoping they will
reduce the total number of checks you must perform

Suppose no element of the domain of the 5th variable is consistent
with the first element of the domain of the first variable

Remaining
domain

1

2

3

4

5

V
ariable #

This entire sub-tree would be impossible. FC
detects this in 12 checks, BT detects this in
426 checks

Forward checking example
5 variables to be
instantiated, each

has domain
{red,green,blue}

Remaining
domain

V
ariable #

1

2

3

4

5

Forward checking example

X

X

V
ariable #

1

2

3

4

5

First step does 3 x 4 consistency checks
In general, nth step can require up to (N-n) x max domain size
consistency checks, N = total number of variables

Remaining
domain

Forward checking example

X

X

V
ariable #

1

2

3

4

5

X X

Remaining
domain

Forward checking example

X

X

X

V
ariable #

1

2

3

4

5

X X Domain wipe out (DWO) occurs, must backtrack

Remaining
domain

Forward checking example

X

X X

X

V
ariable #

1

2

3

4

5

X

Remaining
domain

Forward checking example

X

X X

X

X

V
ariable #

1

2

3

4

5

X

Remaining
domain

Forward checking example

X

X X

X

X

V
ariable #

1

2

3

4

5

X

Solution Found

Remaining
domain

Example when FC is beat by BT

BT would pick the first element in each variable’s domain and find
the solution while performing the minimum possible number of
consistency checks (4+3+2+1 = 10 consistency checks)
FC would propagate the domain reductions downward which would
be fruitless effort (4x3 + 3x3 + 2x3 + 1x3 = 30 consistency checks)

A problem
with 5
variables,
each with
domain of
size = 3

Outline

• Motivation

• Methods of advancing CSP search
– Backmarking

– Forward Checking

• Hybrid algorithms

• Conclusion

Why create a hybrid algorithm?

•Objective : create better CSP algorithms by mixing forward and
backward algorithms

•Requires that the backward and forward algorithms be
compatible : information stored by the forward algorithm won’t
be corrupted by the actions of the backward algorithm and vice
versa

How do you create a hybrid algorithm?

•Implement each algorithm iteratively instead of recursively

•Two functions : move-forward() and move-backward()

•WHILE (!solution and !impossible) {

IF consistent then move-forward()

ELSE move-backward()

}

•Maintain the information required by each algorithm in the
forward and backward move

Hybrid Algorithms Implemented by Prosser

Backmark Jumping (BMJ)

Backmarking and Conflict Directed Backjumping (BM-CBJ)

Forward Checking and Backjumping (FC-BJ)

Forward Checking and Conflict Directed Backjumping (FC-
CBJ)

He compared these with the base algorithms BT, BJ, CBJ,
BM, FC on the ZEBRA problem

Results: Consistency checks (from Prosser)

119,76726216,38310,361FC-CBJ

280,30226229,97716,839FC-BJ

802,06926271,01235,582FC

1,237,28329772,00425,470BM-CBJ

5,214,608300361,595125,474BMJ

18,405,5144011,276,415396,945BM

19,324,081339193,84663,212CBJ

19,324,0813581,524,193503,324BJ

102,267,38317739,616,4073,858,989BT

MaxMinStd. Dev.meanAlgorithm

Consistency checks and Nodes visited are two possible, implementation independent
metrics for algorithm efficiency. FC’s performance is unfairly enhanced by the Nodes
Visited metric since it prunes the tree. Also, consistency checks could possibly be
computationally intense for more difficult problems and therefore is the preferable
metric

How Often One Algorithm (Row) Bettered Another (Column) (from Prosser)

-----------388440415447448445450450FC-CBJ

0-----------438333443445415450450FC-BJ

00-----------163421437320450450FC

35117286-----------433442450450450BM-CBJ

372917-----------419170450450BMJ

2513831-----------80318450BM

5351300280370-----------450450CBJ

000001320-----------450BJ

00000000-----------BT

FC-CBJFC-BJFCBM-CBJBMJBMCBJBJBT

If (i,j) does not equal (j,i) then there were ties

Go Backwards

Go
Forwards

BT

BM

FC

BJ CBJ

More
informed
styles

Different styles

The 5 Base styles of search

Generally
Faster

BMJ

FC-BJ

BM-CBJ

FC-CBJ

Beware

• If one part of the hybrid performs poorly on a
problem, then its possible that the hybrid will
perform poorly as well.
– CBJ is usually better than BM, but when BM beats

CBJ, its possible that BM might out perform BM-CBJ
• In jumping back you change some past variable further up the

tree than you would with BM alone. This causes you to forget
about the previous consistency checks that have been
performed since mbl[i] < mcl[i,k]

Why do BM schemes sometimes outperform FC-CBJ?

• FC performs speculative consistency
checks, these may pare down the tree
(detect DWO) or they may just be a waste
of time

• Can you detect DWO without performing
excess consistency checks?
– No, but Minimal Forward Checking (MFC) will

reduce the number of excess consistency checks

MFC

• To detect DWO you only need to check for
existence of a single consistent instantiation for a
variable
– Use lazy evaluation for all consistency checks beyond

those necessary to find the first consistent instantiation

• MFC = adding DWO detection to BM with lazy
evaluation of consistency checks (hybrid of FC
and BM)

• Results : MFC usually performs better than BM,
FC, and FC-CBJ

Outline

• Motivation

• Methods of advancing CSP search
– Backmarking

– Forward Checking

• Hybrid algorithms

• Conclusion

Conclusion

• BM and FC are powerful in their ability to reduce
consistency checks

• Hybrids generally perform better than their
constituent parts
– Poor performance of one algorithm in the hybrid might

mean poor hybrid performance

• Can even make hybrids within the forward move
(MFC)

Information on MFC from
Bacchus, F. & Grove, A. On the Forward Checking Algorithm. In Proceedings the First
International Conference on Principle and Practice of Constraint Programming, 292-

309, 1995

Framework for the iterative Constraint Satisfaction Search Problem

PROCEDURE bcssp(n,status)
BEGIN

consistent = true
status = “unknown”
i = 1
WHILE status == “unknown”
DO BEGIN

IF consistent
THEN i=label(i,consistent)
ELSE i = unlabel(i,consistent)
IF i>n
THEN status = “solution”
ELSE IF i=0

THEN status = “impossible”
END

END

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

FUNCTION bm-label(I,consistent) return INTEGER
BEGIN

consistent = false
FOR k = EACH ELEMENT OF current-domain[I] WHILE not

consistent
DO BEGIN

consistent = mcl[I,k] >= mbl[I]
FOR h=mbl[I] TO I-1 WHILE consistent
DO BEGIN

v[I] = k
consistent = check(I,h)
mcl[I,k] = h

END
IF not consistent
THEN current-domain[I] = remove(v[I],current-domain[I])

END
IF consistent THEN return(I+1) ELSE return(I)

END

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17

FUNCTION bm-unlabel(I,consistent) return INTEGER
BEGIN

h = I-1
current-domain[I] = domain[I]
mbl[I] = h
FOR j = h+1 TO n DO mbl[j] = min(mbl[j],h)
current-domain[h] = remove(v[h],current-domain[h])
consistent = current-domain[h] != null
return(h)

END

1
2
3
4
5
6
7
8
9
10

FUNCTION check-forward(I,j) returns BOOLEAN
BEGIN

reduction = null
FOR v[j] = EACH ELEMENT OF current-domain[j]
DO IF not check(I,j)

THEN push(v[j],reduction)
IF reduction != null
THEN BEGIN

current-domain[j] = set-difference(current-domain[j],reduction)
push(reduction,reductions[j]
push(j,future-fc[I])
push(I,past-fc[j])

END
return (current-domain[j] != null)

END

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

PROCEDURE update-current-domain(I)
BEGIN

current-domain[I] = domain[I]
FOR reduction = EACH ELEMENT OF reductions[I]
DO current-domain[i] = set-difference(current-domain[I],reduction)

END

1
2
3
4
5
6

FUNCTION fc-label(I,consistent) returns INTEGER
BEGIN

consistent = false
FOR k = EACH ELEMENT OF current-domain[I] WHILE not

consistent
DO BEGIN

consistent = true
FOR j = I+1 TO n WHILE consistent
DO consistent = check-forward(I,j)
IF not consistent
THEN BEGIN

current-domain[I] = remove(v[I],current-domain[I])
undo-reductions(I)

END
END
IF consistent THEN return(I+1) ELSE return(I)

END

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16

FUNCTION fc-unlabel(I,consistent) returns INTEGER
BEGIN

h = I-1
Undo-reductions(h)
Update-current-domain(I)
current-domain[h] = remove(v[h],current-domain[h])
consistent = current-domain[h] != null
return(h)

END

1
2
3
4
5
6
7
8
9

