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Problem to be solved
Given a set of  n variables where the ith variable, 
1<= i<=n, has a discrete domain of values it can 
take, domain[i], and a set of binary relations C = 
{C1,1 … C1,n C2,1 … C2,n … Cn,n}, find the first 
consistent instantiation of these variables which 
satisfies all the relations.

Notation:
Current variable is indexed with i, Vi

Past variables will be variables that have already been instantiated
(those whose index is  <i )
Future variables will be those yet to be instantiated (those whose 
index is  >i )

Why Binary CSP’s

Every higher order (multiple variables) , finite domain 
constraint can be reduced to a set of binary constraints if 
enough auxillary variables are introduced.



What is the forward move and why change it?

Forward move – the procedure that determines what actions to 
take (consistency checks, bookkeeping, etc) when the next variable 
is instantiated.

Goal : avoid unnecessary computation

•Backmarking (BM) – remembers consistency checks it already 
performed

•Forward Checking (FC) – doesn’t expand nodes it knows aren’t 
feasible
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What does BM do?

• Objective : BM prevents redundant consistency 
checks when
– The current variable is known to fail with its current 

value because of some variable in the past still has the 
value that made the current variable fail.

– The current variable is known to succeed with its 
current value in a check against a past value that still 
has the same value that made the current variable 
succeed.

• Tradeoff : must spend time doing, and allot space 
for, bookkeeping.



What does BM do?

• Maximum checking level (mcl) array
– Size = Number of variables x domain size
– mcl[i,k] holds the index of the deepest variable 

that v[i] = k, k ∊ Di, was checked against

• Minimum backup level (mbl) array
– Size = Number of variables x 1
– mbl[i] the index of the shallowest past variable 

that has changed value since v[i] was the 
current variable

What does BM do?

• mcl[i,k] < mbl[i] means the previous consistency 
check between v[I] = k and some variable in the 
past of mcl[i,k] failed and will still fail because 
mcl[i,k] hasn’t been changed

• mcl[I,k] >= mbl[i] means v[i] = k passed 
consistency checking for all variables in the past 
of mbl[i].  V[i] only needs to be checked for 
consistency with the new variables, those in the 
future of mbl[i]
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Suppose no element of the domain of the 5th variable is consistent 
with the first element of the domain of the first variable
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Backmarking example
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The algorithm does not recognize that no instantiation of variable 4 
works while variable 1 is red, it does however save on consistency 
checks between variable 4 and all variables previous to the shallowest 
change since variable 4 was last tested
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Forward Checking

•Objective : look ahead to find impossible combinations as 
soon as possible; “fail early”

•Remove inconsistent values from the domains of all 
future variables

•If domain of future variable is null, then backtrack

•Trade off : perform speculative checks hoping they will 
reduce the total number of checks you must perform

Suppose no element of the domain of the 5th variable is consistent 
with the first element of the domain of the first variable
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This entire sub-tree would be impossible.  FC 
detects this in 12 checks, BT detects this in 
426 checks



Forward checking example
5 variables to be 
instantiated, each 

has domain 
{red,green,blue}
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Forward checking example
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Forward checking example
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Example when FC is beat by BT

BT would pick the first element in each variable’s domain and find 
the solution while performing the minimum possible number of 
consistency checks (4+3+2+1 = 10 consistency checks)
FC would propagate the domain reductions downward which would 
be fruitless effort (4x3 + 3x3 + 2x3 + 1x3 = 30 consistency checks)

A problem 
with 5 
variables, 
each with 
domain of 
size = 3
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Why create a hybrid algorithm?

•Objective : create better CSP algorithms by mixing forward and 
backward algorithms

•Requires that the backward and forward algorithms be 
compatible : information stored by the forward algorithm won’t 
be corrupted by the actions of the backward algorithm and vice 
versa



How do you create a hybrid algorithm?

•Implement each algorithm iteratively instead of recursively

•Two functions : move-forward( ) and move-backward( )

•WHILE (!solution and !impossible) {

IF consistent then move-forward( )

ELSE move-backward( )

}

•Maintain the information required by each algorithm in the 
forward and backward move

Hybrid Algorithms Implemented by Prosser

Backmark Jumping (BMJ)

Backmarking and Conflict Directed Backjumping (BM-CBJ)

Forward Checking and Backjumping (FC-BJ)

Forward Checking and Conflict Directed Backjumping (FC-
CBJ)

He compared these with the base algorithms  BT, BJ, CBJ, 
BM, FC on the ZEBRA problem



Results: Consistency checks (from Prosser)

119,76726216,38310,361FC-CBJ

280,30226229,97716,839FC-BJ

802,06926271,01235,582FC

1,237,28329772,00425,470BM-CBJ

5,214,608300361,595125,474BMJ

18,405,5144011,276,415396,945BM

19,324,081339193,84663,212CBJ

19,324,0813581,524,193503,324BJ

102,267,38317739,616,4073,858,989BT

MaxMinStd. Dev.meanAlgorithm

Consistency checks and Nodes visited are two possible, implementation independent 
metrics for algorithm efficiency.  FC’s performance is unfairly enhanced by the Nodes 
Visited metric since it prunes the tree.  Also, consistency checks could possibly be 
computationally intense for more difficult problems and therefore is the preferable 
metric

How Often One Algorithm (Row) Bettered Another (Column) (from Prosser)

-----------388440415447448445450450FC-CBJ

0-----------438333443445415450450FC-BJ

00-----------163421437320450450FC

35117286-----------433442450450450BM-CBJ

372917-----------419170450450BMJ

2513831-----------80318450BM

5351300280370-----------450450CBJ

000001320-----------450BJ

00000000-----------BT

FC-CBJFC-BJFCBM-CBJBMJBMCBJBJBT

If (i,j) does not equal (j,i) then there were ties
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Beware

• If one part of the hybrid performs poorly on a 
problem, then its possible that the hybrid will 
perform poorly as well.
– CBJ is usually better than BM, but when BM beats 

CBJ, its possible that BM might out perform BM-CBJ
• In jumping back you change some past variable further up the 

tree than you would with BM alone.  This causes you to forget 
about the previous consistency checks that have been 
performed since mbl[i] < mcl[i,k]



Why do BM schemes sometimes outperform FC-CBJ?

• FC performs speculative consistency 
checks, these may pare down the tree 
(detect DWO) or they may just be a waste 
of time

• Can you detect DWO without performing 
excess consistency checks?
– No, but Minimal Forward Checking (MFC) will 

reduce the number of excess consistency checks

MFC

• To detect DWO you only need to check for 
existence of a single consistent instantiation for a 
variable
– Use lazy evaluation for all consistency checks beyond 

those necessary to find the first consistent instantiation

• MFC = adding DWO detection to BM with lazy 
evaluation of consistency checks (hybrid of FC 
and BM)

• Results : MFC usually performs better than BM, 
FC, and FC-CBJ
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Conclusion

• BM and FC are powerful in their ability to reduce 
consistency checks

• Hybrids generally perform better than their 
constituent parts
– Poor performance of one algorithm in the hybrid might 

mean poor hybrid performance

• Can even make hybrids within the forward move 
(MFC)

Information on MFC from 
Bacchus, F. & Grove, A. On the Forward Checking Algorithm. In Proceedings the First 
International Conference on Principle and Practice of Constraint Programming, 292-

309, 1995



Framework for the iterative Constraint Satisfaction Search Problem

PROCEDURE bcssp(n,status)
BEGIN

consistent = true
status = “unknown”
i = 1
WHILE status == “unknown”
DO BEGIN

IF consistent
THEN i=label(i,consistent)
ELSE i = unlabel(i,consistent)
IF i>n
THEN status = “solution”
ELSE IF i=0

THEN status = “impossible”
END

END
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FUNCTION bm-label(I,consistent) return INTEGER
BEGIN

consistent = false
FOR k = EACH ELEMENT OF current-domain[I] WHILE not 

consistent
DO BEGIN

consistent = mcl[I,k] >= mbl[I]
FOR h=mbl[I] TO I-1 WHILE consistent
DO BEGIN

v[I] = k
consistent = check(I,h)
mcl[I,k] = h

END
IF not consistent
THEN current-domain[I] = remove(v[I],current-domain[I])

END
IF consistent THEN return(I+1) ELSE return(I)

END
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FUNCTION bm-unlabel(I,consistent) return INTEGER
BEGIN

h = I-1
current-domain[I] = domain[I]
mbl[I] = h
FOR j = h+1 TO n DO mbl[j] = min(mbl[j],h)
current-domain[h] = remove(v[h],current-domain[h])
consistent = current-domain[h] != null
return(h)

END

1
2
3
4
5
6
7
8
9
10

FUNCTION check-forward(I,j) returns BOOLEAN
BEGIN

reduction = null
FOR v[j] = EACH ELEMENT OF current-domain[j]
DO IF not check(I,j)

THEN push(v[j],reduction)
IF reduction != null
THEN BEGIN

current-domain[j] =  set-difference(current-domain[j],reduction)
push(reduction,reductions[j]
push(j,future-fc[I])
push(I,past-fc[j])

END
return (current-domain[j] != null)

END
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PROCEDURE update-current-domain(I)
BEGIN

current-domain[I] = domain[I]
FOR reduction = EACH ELEMENT OF reductions[I]
DO current-domain[i] = set-difference(current-domain[I],reduction)

END
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FUNCTION fc-label(I,consistent) returns INTEGER
BEGIN

consistent = false
FOR k = EACH ELEMENT OF current-domain[I] WHILE not 

consistent
DO BEGIN

consistent = true
FOR j = I+1 TO n WHILE consistent
DO consistent = check-forward(I,j)
IF not consistent
THEN BEGIN

current-domain[I] = remove(v[I],current-domain[I])
undo-reductions(I)

END
END
IF consistent THEN return(I+1) ELSE return(I)

END
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FUNCTION fc-unlabel(I,consistent) returns INTEGER
BEGIN

h = I-1
Undo-reductions(h)
Update-current-domain(I)
current-domain[h] = remove(v[h],current-domain[h])
consistent = current-domain[h] != null
return(h)

END
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