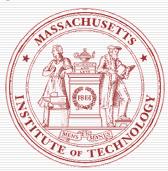
Information Based Adaptive Robotic Exploration

Presented by Morten Rufus Blas



Massachusetts Institute of Technology

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Motivation

☐ SLAM:

- "There is little value in a robot exploring and mapping new areas when it has no idea of how accurately it knows its own location."
- Come up with an algorithm to adapt controls to do better exploration.

- Motivation
- □ Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Introduction

- □ They attempt to maximize the accuracy and speed of their map building process.
 - ☐ How well does the robot know its pose?
 - How well have different areas been explored?
 - In this paper:

F. Bourgault, A. Makarenko, S.B. Williams, B. Grocholsky, H.F. Durrant-Whyte, "Information Based Adaptive Robotic Exploration", presented at IEEE/RSJ Intl. Workshop on Intelligent Robots and Systems, 2002

- Motivation
- Introduction
- □ Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Related work

- □ H.J.S. Feder, J.J. Leonard, and C.M. Smith. Adaptive mobile robot navigation and mapping. *Int. Journal of Robotics Research*, 18(7):650–668, 1999.
- □ T.M. Cover and J.A. Thomas. Elements of information theory. Wiley series in telecommunications. Wiley, New York, 1991.

- Motivation
- Introduction
- Related work
- □ Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Defining problem and model

- □ Problem:
 - Optimize control step in order to:
 - Minimize localization error.
 - Maximize gain in explored map.
- Model:
 - Solve problem by maximizing information gain.

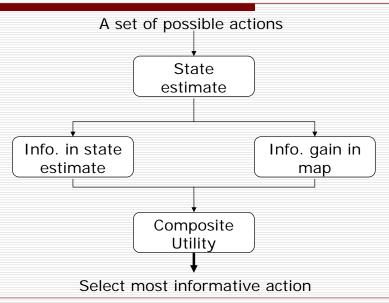
Defining problem and model

- ☐ We will be using:
 - EKF to model localization (Extended Kalman Filter).
 - OG to represent map (Occupation Grid).
 - Entropy map (more about this later).

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Defining problem and model



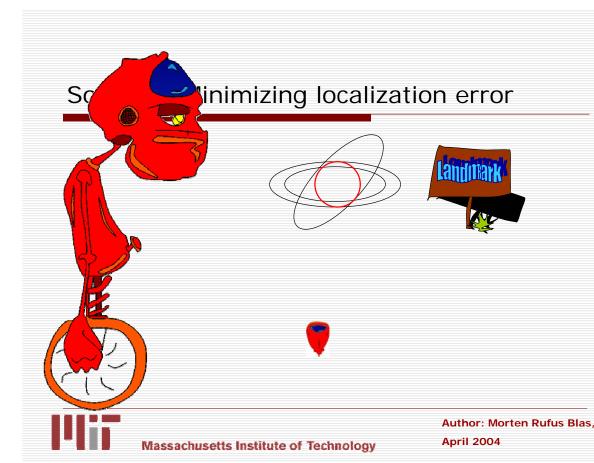
- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Solution: Minimizing localization error

- Localization is linked to two uncertainties:
 - Measurement,
 - And navigational uncertainty.
- Adaptively choose actions to maximize information about:
 - Robot position.
 - Feature positions (the map).



Solution: Minimizing localization error

 \square This can be modeled using a cost function $C(\mathbf{P})$:

$$C(\mathbf{P}) = \pi \prod_{j} \sqrt{\lambda_{j}(\mathbf{P}_{vv})} + \pi \sum_{i=1}^{n_{f}} \prod_{j} \sqrt{\lambda_{j}(\mathbf{P}_{ii})}$$
$$= \pi \sqrt{\det(\mathbf{P}_{vv})} + \pi \sum_{i=1}^{n_{f}} \sqrt{\det(\mathbf{P}_{ii})}$$
(14)

- Maximizing information about a state estimate is equivalent to minimizing the determinant of the corresponding covariance matrix.
- □ C(P) represents the sum of the uncertainty ellipses of both features and robot after the expected observation from the predicted state.

- Motivation
- Introduction
- Related work
- Defining problem and model
- □ Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Solution: Maximize gain in explored map

Entropy map:

0.00.00.6930.6930.6930.6930.6930.6930.693

Occupation Grid:

1.0 (occ)	0.0 (EMP)	0.5
0.5	0.5	0.5
0.5	0.5	0.5

 \square The a priori entropy at time t_k for grid cell i:

$$H_{k,i} \equiv -E[\ln P_i(x_i)] = -\sum_{x_i \in X_i} P_i(x_i) \ln P_i(x_i)$$

☐ Given two possible states (OCC, EMP) for OG map this becomes:

$$H_{k,i} = -P_i(OCC) \ln P_i(OCC) - P_i(EMP) \ln P_i(EMP)$$

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Solution: Maximize gain in explored map

$$H_{k,i} = -P_i(OCC) \ln P_i(OCC) - P_i(EMP) \ln P_i(EMP)$$

 \square So for unexplored cell at time t_k :

$$H_k = -0.5 \ln 0.5 - 0.5 \ln 0.5$$

= 0.693

□ For occupied explored cell at t_k:

$$H_k = -1\ln 1 - 0$$
$$= 0$$

Analogous for empty explored cell.

■ Expected mutual information gain for cell i:

$$\hat{I}_i(x_i) \equiv -E \left[\ln \frac{P_i(x_i|z_k)}{P_i(x_i)} \right] = H_i - \overline{H}_i(x_i|z_k)$$

Information gain = current entropy - new predicted entropy

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Solution: Maximize gain in explored map

■ Mean conditional entropy over all possible observations:

$$\overline{H}_i \equiv E[H_i(z_k)] = \int H_i(z_k) P_i(z_k) dz_k$$

It is the expectation of entropy left after an observation.

 \square Conditional entropy for cell i after observation z_k at time

$$H_i(z_k) \equiv -E[\ln P_i(x_i|z_k)]$$

=
$$-\sum_{x_i \in X_i} P_i(x_i|z_k) \ln P_i(x_i|z_k).$$

Where Bayes rule says:

$$P_i(x_i|z_k) = \frac{P_i(z_k|x_i)P_i(x_i)}{P_i(z_k)}.$$

☐ Using our two states (OCC, EMP) the conditional entropy can be rewritten as:

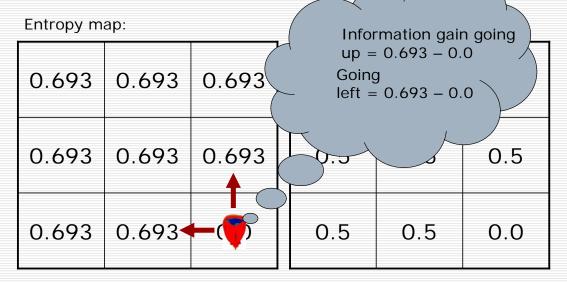
$$H_{k,i}(z_k) = -P_i(OCC \mid z_k) \ln P_i(OCC \mid z_k) - P_i(EMP \mid z_k) \ln P_i(EMP \mid z_k)$$

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

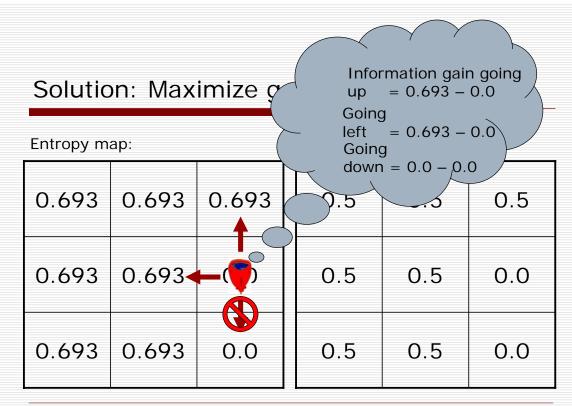
Max	imize ga	ain in ex	plored	map
		Occupation	n Grid:	
2.693	0.693	0.5	0.5	0.5
0.693	0.693	0.5	0.5	0.5
0.693	3	0.5	0.5	0.5
	2.693 0.693	0.693 0.693 0.693 0.693	Occupation 0.693 0.5 0.693 0.693 0.693 0.5	0.693 0.693 0.5 0.5

Occupat	Occupation Grid:			
0.5	0.5	0.5		
0.5	0.5	0.5		
0.5	0.5	0.5		



Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004



Entropy map:

0.693	0.693	
0.693	0.693	0.0
0.693	0.693	0.0

Occupation Grid:

0.5	0.5	0.0
0.5	0.5	0.0
0.5	0.5	0.0

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Solution: Maximize gain in explored map

□ Total expected information gain from doing a specific action:

$$\hat{I}_{S_j}(x_i|z_k) = \sum_{i \in S_j} I_i(x_i|z_k) \text{ = sum of information gain for each explored cell}$$

- Where S_i are the cells covered by scan.
- After you have done an action you update entropy map with measurements.

- Motivation
- Introduction
- Related work
- Defining problem and model
- □ Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Combined Information Utilities

☐ Constructed by linear combination:

$$U_k = I_{composite}(\mathbf{x}, \mathbf{x}_c, \mathbf{u}_j(k))$$

$$= w_1 I_{SLAM}(\mathbf{x}, \mathbf{u}_j(k)) + w_2 I_{OG}(\mathbf{x}_c, \mathbf{u}_j(k))$$
(23)

$$w_1(k) = \alpha/I_{SLAM_{MAX}}(k)$$
 $w_2 = (1 - \alpha)/I_{OG_{MAX}}$

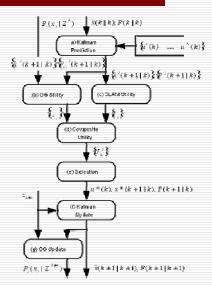
- SLAM_{MAX} is an upper bound for the SLAM covariance matrix given a number of landmarks.
- OG_{MAX} is total information of a perfectly known OG map.
- Increasing alpha increases accuracy of OG map.
 Reducing it increases amount of exploration.

- Motivation
- □ Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Integrated Adaptive Information-based Exploration Algorithm

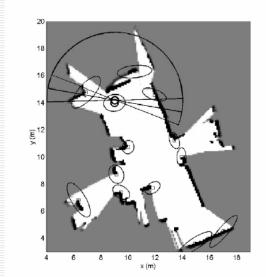


- Motivation
- Introduction
- Related work
- □ Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

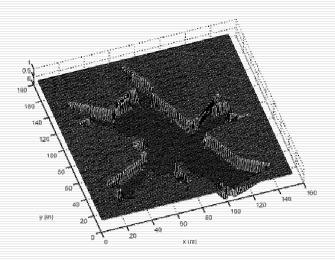
Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Results: OG map



Results: Entropy map



Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- □ Defining problem and model
- □ Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- □ Conclusion
 - Novelty
 - Problems
 - Extensions

Conclusion: Novelty

- Present an information based approach for exploration.
- Present a scheme for combining different types of information.
- Outline the Integrated Adaptive Information-based Exploration Algorithm
- Tests on an actual robot indicate the validity of these approaches.

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- □ Conclusion
 - Novelty
 - Problems
 - Extensions

Conclusion: Problems

- □ Local Minima:
 - They claim it is robust, but is it?
- ☐ Global optimization:
 - Can be used in multi-step solutions such as path planning but:
 - Computational costs grows very rapidly with amount of look-ahead.
- □ No notion of "closing the loop".

Massachusetts Institute of Technology

Author: Morten Rufus Blas, April 2004

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- □ Conclusion
 - Novelty
 - Problems
 - Extensions

Conclusion: Extensions

- ☐ Can easily be extended with other types of information metrics.
- It is certainly interesting to extend this for multi-robot systems.
- □ Further reading/different approaches:
 - R. Sim and N. Roy. "Active Exploration Planning for SLAM using Extended Information Filters". '04 Submitted to the Conference on Uncertainty in Artificial Intelligence.

Author: Morten Rufus Blas,

Massachusetts Institute of Technology April 2004