LPG: Local search for Planning
Graphs

Seung H. Chung

16.412J
Cognitive Robotics

I I II MHSSRCHI.ISE'ITS
GY

Outline

III]
I I MASSACHUSETTS INSTITUTE OF TECHNOLOGY
—

« Temporal Action Graph

» Walksat: Stochastic Local Search
o Better Neighbor

* Relaxed Plan

* A. Gerevini, A. Saetti, |I. Serina “Planning through
Stochastic Local Search and Temporal Action
Graphs”, to appear in Journal of Artificial Intelligence
Research (JAIR).

Overview

o Uses Strips-like operator but adds time and metric
resources to the planning description: Planning
Domain Definition Language (PDDL) 2.1

e Features:

— Uses Temporal Action graphs (TA-graphs): Similar to a
plan graph, but adds temporal representation

— Uses stochastic local search: Similar to Walksat

— Uses relaxed plan for heuristic to guide the search: similar
to FF

» LPG outperformed all general purpose planners in
the time and metric resource domains (3" |IPC)

3

Linear Action Graph (LA-graph)

CHY
—

INIT Levell Level 2 Level 3 Level 4

no-op —> no-op —>
o/ =

g g T One action
per layer

9

no-op

no-op —»@

Temporal Action Graph (TA-Graph)

I -
11 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
—

INIT Levell Level 2 Level 3 Level 4
NI O
SN E i R @
@ % @ @ B
0 50 (_) T

Q-0 @

0 120

O H@ B @

0)

@ FH-@ - i

0 0) 220 220

5

Ordering Constraint

E

INIT Levell Level 2 Level 3 Level 4
G = > no-op ‘@ > no-op * s
ST T iE e g
e lggl no-opi e [@/ 1[%0(], 160
0 so % o &
@ *|no-op Causal Constraint
0 « a,<a,
* A< ag
5 Exclusive Constraints
*Ca<a,
e a<
*axa,
0 ’

Walkplan: Stochastic Local Search

e
| L) [T————

e Walkplan(Il,max_steps,max_restarts,p)
— Input
» II1: Planning problem description
* max_steps : Maximum number of search
e max_restarts : Maximum number of restart
* p : Noise factor
— Output
» Solution TA-graph

e Idea:
— With probability p use stochastic local search to find a plan
— Search the plan space max_steps number of times

— If no plan is found, try restarting the search from the beginning up to
max_restarts number of time

7

Walkplan Algorithm

i
I nssacrusers ismimure oF rechno

Walkplan(Il,max_steps,max_restarts,p)

for 1 = 1 to max_restarts do
A = an initial TA-graph derived from II
for J = 1 to max_steps do
if A is solution then return A
6 = an 1nconsistency in A
N(c,A) = neighborhood for o

Set of TA-graphs
in which an action
was inserted or
removed to
resolve the
inconsistency

if 3A”¢ N(o,A) such that A” 1s no worse than A then
A=A’

else if random < p then
A = A’ N(o,A)

else

A = best A’e N(c,A) What is a better neighbor?
return fail

Better Neighbor?

Ut
I iinssachuserrs msmimure of rechnowsy

* A neighbor A”e N(o,A) resolves the inconsistency
o by inserting or deleting an action.

» Use evaluation function E(a)

4 . _ .

E(a)' = a-Execution_cost (a)'
+ B-Temporal_cost(a)’
+ y-Search_cost(a)’

E(a) = <

E(a)" = a-Execution_cost (a)'
+ B-Temporal_cost(a)"
L + y-Search_cost(a)’

9

Relaxed Plan

i
Il nssacruserrs ismiuTe oF recrowos

* ldea: Don't consider the mutex relation and perform
reachability analysis.

* Insert action a
— Find all actions that is required to support the preconditions of a
— Compute the maximum time duration required for all actions
— Return:
» Set of actions added: Aset(EvalAdd(a))
* Max time duration of the actions: End_time(EvalAdd(a))
 Remove action a
— Find all actions that is required to support all preconditions that were
unsupported due to removal of a
— Compute the maximum time duration required for all newly inserted
actions
— Return:
» Set of actions added: Aset(EvalDel(a))
* Max time duration of the actions: End_time(EvalDel(a))

10

Better Neighbor

i
I iinssachuserrs msmimure of rechnowsy

 Insert an action
Execution_cost (a)' = ., _aset(Evaladd) COSt@)
Temporal_cost(a)’ = End_time(EvalAdd(a))
Search_cost(a)) = |Aset(EvalAdd(a))|
+ z“a’eAset(EvaIAdd(a))Threats(a’)

e Remove an action

Execution_cost (a)"= X, aset(Evalpel(a) COSH(@’)
Temporal cost(a)’ = End_time(EvalAdd(a))
Search_cost(a)” = |Aset(EvalAdd(a))|

+ 2a’eAset(EvaIDeI(a))Threa-ts(a-’)

11

Advantages and Disadvantages

i
I essachusers msmmun

* Pros
— One of the fastest domain-independent planners
— Relatively expressive domain description languages
— Can easily be extended to be anytime algorithm

e Cons
— Algorithm is not guaranteed to be complete
— No guarantee on the quality of the plan
— Does not allow flexible time bounds

12

