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1. Introduction to CSPs and DCSPs
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• Formal definition: a Constraint Satisfaction 
Problem (CSP) is a triple (X, D, C), where
– X is a list of variables x1, x2, …, xn

– D is a list of finite, discrete value domains 
D1, D2, …, Dn assigned to the variables

– C is a set of constraints C1, C2, …, Cn on the 
variables, a constraint being a predicate: 

• A solution to the problem is an assignment 
to the variables that satisfies all the 
constraints

1. Introduction to CSPs and DCSPs

Ck : Dk1
× Dk2

× ...× Dk j
→ true, false{ }



• Many AI problems can be formulated as CSPs
• Example of a multi-agent scheduling 

problem*:  

1. Introduction to CSPs and DCSPs

* K. Sycara, S. Roth, N. Nadeh and M. Fox, Distributed Constrained Heuristic Search, 
IEEE Transactions on Systems, Man, and Cybernetics, VOL. 21, NO. 6, Nov/Dec 1991

tA1 tA2

tA3 tA4 tA5

tB1 tB2

Activity A1 Activity A2

Activity A3 Activity A4 Activity A5

Activity B1 Activity B2

Agent A

Agent B

R1 R2 R3
Shared resources

dA1 dA2

dA5dA4dA3

dB1 dB2

• Split the problem in coupled sub-problems: distribute 
the variables AND the constraints among the agents
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• Centralized method: one leader agent 
gathers all the information from other 
agents and solves the problem
– Prohibitive cost of collecting information
– Security/Privacy reasons 
– Not computationally efficient  
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• Synchronous Backtracking method:   
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2. The Asynchronous Backtracking 
Algorithm

2. Asynchronous Backtracking

• Assumptions: 
– Given priority order on the agents
– An agent must be able to send messages to any 

other agent 
– Each agent has exactly ONE single variable  

• Key ideas: 
– Agents work concurrently (= “asynchronously”), 

exchanging messages to collect required 
information

– Conflict-directed search
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The agent selects a value for its variable
satisfying the constraints whose enforcement 
it is responsible for 
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If there is at least one value satisfying the constraints, 
the agent picks one and changes the assignment
to its variable

2. Asynchronous Backtracking



Try 
to choose 

value

Change value

Send OK? messages

possible

The agent communicates its new assignment
to its children through “OK?” messages
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The agent then waits for answers to his OK?
messages from its children (and for other 
OK? messages from its parents)
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If the agent receives an OK? message from 
one of its parents, it updates its “view”, i.e. its 
knowledge of the values of the other variables
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The agent then checks its view, making sure that
the new values do not violate any constraint it
is responsible for

Try 
to choose 

value

Change value

Send OK? messages

possible

OK? message Wait

check
view

Update view

2. Asynchronous Backtracking

B
C
D
E
F
G
H

1
?
3
4
?
?
?

A’s view



If all the constraints it is responsible for are still
satisfied, the agent keeps waiting for messages
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If the agent detects violated constraints, it tries
to change the value of its variable to resolve 
all the violations
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If the agent finds no satisfying value for its variable, 
it extracts and records a list of conflicts (a conflict 
being a partial assignment violating at least 
one constraint)
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If one of the conflicts is the empty set, this means 
any overset of {} is a conflict, so that there is 
no solution to the DSCP. The agent broadcasts a 
NO_SOLUTION message and terminates. 
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Otherwise, for each new conflict, the agent sends a 
BACKTRACK message describing the conflict to the 
lowest priority agent whose variable is involved in 
the conflict. Then it waits for this agent to send back 
the new assignment to its variable. 
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If the agent receives a BACKTRACK 
message, but the conflict and the 
agent’s view do not match, one of 
them must be obsolete; then it
ignores the  BACKTRACK 
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Otherwise, it records the conflict as 
a new constraint it must enforce
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If the agent receives a 
NO_SOLUTION message, 
it terminates
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2. Asynchronous Backtracking: The Graph Coloring Example
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Agent x2 records the conflict as a new constraint

(BACKTRACK, 
{x1=B, x2=G})

Constraints: 
x2≠x1

{x1≠B or x2≠G}

Record new constraint

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example



B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View: 

x1=B

Agent x3 checks its view, and discovers that
one constraint (the new one) is violated

check
view

Constraints: 
x2≠x1

{x1≠B or x2≠G}

G, B, R

x2
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View: 

x1=B

Agent x2 tries to change its value to B, 
but it would violate the first constraint

Try 
to choose 

value

Constraints: 
x2≠x1

{x1≠B or x2≠G}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example



B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View: 

x1=B

Agent x2 tries to change its value to R
Try 

to choose 
value

Constraints: 
x2≠x1

{x1≠B or x2≠G}

G, B, R
x2
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View: 

x1=B

The constraint is no longer violated, so Agent x2

chooses value R and communicates it to its children
Send OK? messages

(OK?, x2=R)

Constraints: 
x2≠x1

{x1≠B or x2≠G}

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

(O
K?, x

2
=R)



B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

(OK?, x2=R)

View: 

x1=B, x2=R, x3=R

Agent x3 and Agent x4 receive the messages 
and update their views

Update view

View: 

x1=B, x2=R

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

(O
K?, x

2
=R)

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View: 

x1=B, x2=R, x3=R

View: 

x1=B, x2=R

Agent x3 and Agent x4 check their view against 
their constraints, and no violation is discovered 

check
view

SOLVED!

Constraints: 
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

Constraints: 
x4≠x3, x4≠x2, x4≠x1

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example



Weaknesses of the Asynchronous 
Backtracking Algorithm

• How to better choose the assignments?
→Use a heuristic to make better choices

• The authors prove the algorithm always 
reaches a stable state within a finite number 
of steps, BUT it still lacks a termination 
procedure
→Use a “Distributed Snapshot” external 

procedure
K. M. Chandy and L. Lamport, Distributed Snapshots: Determining Global States of 
Distributed Systems, ACM Transactions on Computer Systems, 1985

Weaknesses of the Asynchronous 
Backtracking Algorithm (cont.)

• Need of a judicious priority ordering among 
the agents
→Do it beforehand? (might be difficult + need of 

a centralizing agent…)

→Dynamic priority ordering: let the agents come 
up with a judicious ordering themselves, as they 
encounter conflicts



Weaknesses of the Asynchronous 
Backtracking Algorithm (cont.)

• How to extract conflicts? 
→Open to all conflict extraction policies

→There is a trade off between taking the time to 
extract minimal conflicts, and trying to speed 
up the algorithm by using the agent’s view as a 
super-conflict but wasting time by backtracking 
more often

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send 

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint 
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

3. The Asynchronous Weak-
Commitment Search Algorithm



3. The Asynchronous Weak-
Commitment Search Algorithm

• Use a local min-conflict heuristic to guide 
the choices of assignments

• Judiciously change the priority ordering 
every time the search needs to backtrack

3. The Asynchronous Weak-
Commitment Search Algorithm (cont.)

• “Weak-Commitment” Search: 
– A partial assignment to the variables is constructed step 

by step by extending it to variables with lower priority 
– The group of agents “weakly commits” itself to the 

partial assignment because the partial assignment is 
abandoned as soon as the algorithm needs to backtrack

– The priority ordering is then modified so that the agent 
which failed to find a value to its variable consistent 
with the constraints “promotes itself” (i.e. it changes its 
priority value to locally become the agent with the 
highest priority)



3. The Asynchronous Weak-
Commitment Search Algorithm (cont.)

• ATTENTION! Tricky point: 
– Every time an agent discovers a known conflict in its 

view, it will abandon the partial solution
– However, if, due to message delays, the agent’s view is 

obsolete, it will abandon the partial assignment too 
early and perform an unnecessary change in its priority 
value

– To avoid reacting to such unstable situations, the agent 
records the conflicts it has already sent, and it will 
temporarily ignore a conflict if it has already sent it 
before

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Send priority along 
with the assignment

Send the message to
the parents too

Record new constraint

3. Weak-Commitment Search



3. Weak-Commitment Search
Try 

to choose 
value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Include the priority
of the neighbors in 
the agent’s view

Record new constraint

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint
Only backtrack if the
conflict has never been
sent before

3. Weak-Commitment Search



Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Promotion

Compute the maximum
priority of all neighbors
and set current priority
to an even higher value 
(only for NEW conflicts)

Communicate the new
priority value to all 
neighbors (only for 
NEW conflicts)

Record new constraint

3. Weak-Commitment Search

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint

Promotion

NOTE: agents must 
now be aware of ALL 
constraints involving
their variable 
(OMISSION?!)

Guide the choice by 
minimizing the number
of constraint violations
with lower priority
agents 

3. Weak-Commitment Search



Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

need
link?

NEW_LINK yes

no

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint

Promotion

3. Weak-Commitment Search

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send 

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record new constraintAdd child

NEW_LINK

Send OK?

Promotion

Every time a new 
constraint is created, 
inform all involved 
agents through 
NEW_CONST messages

3. Weak-Commitment Search



Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send 

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint 
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

Upon reception of a 
NEW_CONST message,
record new constraint 
and new neighbor (if a
new link is needed)

Every time a new 
constraint is created, 
inform all involved 
agents through 
NEW_CONST messages

3. Weak-Commitment Search

Try 
to choose 

value

Change value

Extract & record 
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send 

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast 
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint 
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

3. Weak-Commitment Search



B, R

x1

G, B, R

x2

G

x4

B, R

x3

≠

≠

≠

≠

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

G, B, R

x2

G

x4

B, R

x3
Constraints: 

x4≠x3, x4≠x2, x4≠x1

Constraints: 
x2≠x1, x2≠x4

≠

≠

≠

≠

Constraints: 
x1≠x2, x1≠x4

Constraints: 
x3≠x4

3. Weak-Commitment Search: The Graph Coloring Example



B, R

x1

G, B, R

x2

G

x4

B, R

x3

Initial priority values are all set to 0. Two agents 
with identical priorities are ordered with respect
to their index

0

0 0

0

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

B, R

x1

G, B, R

x2

G
x4

B, R

x3

Each agent chooses an assignment to its variable
(at the first time step, we cannot use the heuristic
because agents still have empty views)

Try 
to choose 

value

0

0 0

0

3. Weak-Commitment Search: The Graph Coloring Example



B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

Each agent sends OK? messages to ALL of
its neighbors

Send OK? messages

(O
K

?,
 x

1=
(B

, 0
))

(OK?, x1=(B, 0))

(O
K?, 

x 2
=(G

, 0
))

(OK?, x3=(B, 0))

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(O
K?, x

4
=(G

, 0
))

(OK?, x4=(G, 0))

(O
K

?,
 x

4=
(G

, 0
))

3. Weak-Commitment Search: The Graph Coloring Example

View: 
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

All agents update their viewUpdate view

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

(O
K

?,
 x

1=
(B

, 0
))

(OK?, x1=(B, 0))

(O
K?, 

x 2
=(G

, 0
))

(OK?, x3=(B, 0))

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(O
K?, x

4
=(G

, 0
))

(OK?, x4=(G, 0))

(O
K

?,
 x

4=
(G

, 0
))

View: 

x4=(G, 0)

View: 
x2=(G, 0), x4=(G, 0)

View: 
x1=(B, 0), x4=(G, 0)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

All agents check their view against the 
constraints they are responsible for,  
and Agent x4 discovers a violation 

check
view

B, R

x1

B, R

x3

Constraints: 
x4≠x3, x4≠x2, x4≠x1

Constraints: 
x2≠x1, x2≠x4

0

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

View: 
x1=(B, 0), x4=(G, 0)

Constraints: 
x1≠x2, x1≠x4

Constraints: 
x3≠x4
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Constraints: 
x4≠x3, x4≠x2, x4≠x1

0

0 0

0

G, B, R

x2

Agent x4 tries to change its assignment, 
which is impossible 

Try 
to choose 

value

View: 
x1=(B, 0), x2=(G, 0)

x3=(B, 0)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

Agent x4 extracts and records the conflictsExtract & record 
conflicts

Conflicts: 
{x1=B, x2=G, x3=B}

View: 
x1=(B, 0), x2=(G, 0)

x3=(B, 0)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

Conflicts: 
{x1=B, x2=G, x3=B}

{} is not among the new conflicts, and no new
conflict has already been sent, so Agent x4

sends BACKTRACK messages

Send BACKTRACK messages

(BACKTRACK, 
{x1=B, x2=G, x3=B})
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK, 
{x1=B, x2=G, x3=B})

Promotion Agent x4 promotes itself, changing its priority
value from 0 to 1

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK, 
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

Agent x4 communicates its new priority value to
ALL its neighbors

Send OK? messages
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK, 
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

match?

CONCURRENTLY, Agent x3 receives the 
BACKTRACK message and checks the conflict 
against its view

View: 

x4=(G, 0)

3. Weak-Commitment Search: The Graph Coloring Example

Constraints: 
x3≠x4

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK, 
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

Agent x3 records the conflict as a new constraint
it will be responsible for

Record new constraint

{x1≠B or x2≠G or x3≠B}

View: 

x4=(G, 0)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

CONCURRENTLY, all agents receive the OK?
messages and update their view

Update view

View: 
x1=(B, 0), x4=(G, 1)

View: 

x4=(G, 1)

View: 
x2=(G, 0), x4=(G, 1)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x4=(G, 1)

(Only the priority changed, so no new violation
is discovered) 

check
view

View: 

x4=(G, 1)

View: 
x2=(G, 0), x4=(G, 1)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Send 
NEW_CONST

messages

CONCURRENTLY, Agent x3 sends NEW_CONST
messages to all agents involved in the new constraint

(NEW_CONST, 

{x1≠B or x2≠G or x3≠B})

(NEW
_CONST, 

{x
1 ≠B or x

2 ≠G or x
3 ≠B})

Constraints: 
x3≠x4

{x1≠B or x2≠G or x3≠B}
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Agents x1 and x2 receive NEW_CONST messages
and record new constraint and new neighbor

(NEW_CONST, 

{x1≠B or x2≠G or x3≠B})

(NEW
_CONST, 

{x
1 ≠B or x

2 ≠G or x
3 ≠B})

Record constraint 
and neighbor

New neighbor:

Agent x3

New neighbor:

Agent x3

Constraints: 
x2≠x1, x2≠x4

Constraints: 
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}{x1≠B or x2≠G or x3≠R}
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Agents x1 and x2 respond to the NEW_CONST
through OK? messages

New neighbor:

Agent x3

New neighbor:

Agent x3

Constraints: 
x2≠x1, x2≠x4

Constraints: 
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}{x1≠B or x2≠G or x3≠R}

Send OK? messages

(OK?, x2=(G, 0))

(OK?, x
1 =(B, 0))
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(OK?, x
1 =(B, 0))

Agent x3 receives messages and updates its viewUpdate view

View: 
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
Agent x3 checks its view, and discovers that
one constraint it is responsible for (the new one) 
is violated

check
view

Constraints: 
x3≠x4

{x1≠B or x2≠G or x3≠B}
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
Agent x3 tries to change its value to R, deleting all 
violations of constraints it is responsible for, and
minimizing the number of violations of others

Try 
to choose 

value

Constraints: 
x3≠x4

{x1≠B or x2≠G or x3≠B}
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
There is no more violations of constraints it is
responsible for, so Agent x3 communicates its 
new value to ALL neighbors

Send OK? messages

(OK?, x3=(R, 0))

(OK?, x3=(R, 0))
Constraints: 

x3≠x4

{x1≠B or x2≠G or x3≠B}
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(OK?, x
3 =(R, 0))

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

(OK?, x3=(R, 0))

(OK?, x3=(R, 0))

All agents receive the OK? messages 
and update their view

Update view

View: 
x1=(B, 0), x2=(G, 0)

x3=(R, 0)

View: 
x3=(R, 0), x4=(G, 1)

View: 
x1=(B, 0), x4=(G, 0)

x3=(R, 0)
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(OK?, x
3 =(R, 0))



B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View: 
x1=(B, 0), x2=(G, 0)

x3=(R, 0)

View: 
x3=(R, 0), x4=(G, 1)

View: 
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

Agent x1, x2 and x4 check their view against the 
constraints they are responsible for, and 
Agent x2 discovers a violation 

check
view

Constraints: 
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}

Constraints: 
x2≠x1, x2≠x4

{x1≠B or x2≠G or x3≠R}

Constraints: 
x4≠x3, x4≠x2, x4≠x1
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

View: 
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

{x1≠B or x2≠G or x3≠R}

Agents x2 tries to change its value to R, deleting all 
violations of constraints it is responsible for, and
minimizing the number of violations of others

Try 
to choose 

value

Constraints: 
x2≠x1, x2≠x4
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

View: 
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

{x1≠B or x2≠G or x3≠R}

There is no more violations of constraints it is
responsible for, so Agent x3 communicates its 
new value to ALL neighbors

Send OK? messages

(OK?, x2=(R, 0))
(O

K?, x
2
=(R

, 0
))

(OK?, x2=(R, 0))
Constraints: 

x2≠x1, x2≠x4
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

(OK?, x2=(R, 0))
(O

K?, x
2
=(R

, 0
))

(OK?, x2=(R, 0))

All agents receive the OK? messages 
and update their view

Update view

View: 
x1=(B, 0), x2=(R, 0)

x3=(R, 0)

View: 
x2=(R, 0), x3=(R, 0)

x4=(G, 1)

View: 
x1=(B, 0), x2=(R, 0)

x4=(G, 1)
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B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

Agents x1, x3 and x4 check their view against the 
constraints they are responsible for, and no new
violation is discovered

check
view

View: 
x1=(B, 0), x2=(R, 0)

x3=(R, 0)

View: 
x2=(R, 0), x3=(R, 0)

x4=(G, 1)

View: 
x1=(B, 0), x2=(R, 0)

x4=(G, 1)

Constraints: 
x1≠x2, x1≠x4

Constraints: 
x4≠x3, x4≠x2, x4≠x1

{x1≠B or x2≠G or x3≠R}

Constraints: 
x3≠x4

{x1≠B or x2≠G or x3≠B}

SOLVED!

3. Weak-Commitment Search: The Graph Coloring Example

4. Conclusion

• Perform much better than the trivial 
algorithms
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4. Conclusion

• Perform much better than the trivial 
algorithms

W.-M. Shen and B. Salemi, Distributed and Dynamic Task 
Reallocation in Robot Organizations

• Single-variable agents => Task 
Allocation Problem
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