
Distributed Constraint
Satisfaction Problems:

2 Asynchronous Algorithms

Thomas Léauté

16.412J - Cognitive Robotics

April 7, 2004

Presentation Outline

1. Introduction to CSPs and DCSPs

2. The Asynchronous Backtracking
Algorithm

3. The Asynchronous Weak-Commitment
Search Algorithm

4. Conclusion and Introduction to the Task
Allocation Problem

M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara, Distributed Constraint Satisfaction
Problem: Formalization and Algorithms, IEEE Transactions on Knowledge and Data
Engineering, VOL. 10, NO. 5, Sept/Oct 1998

1. Introduction to CSPs and DCSPs

B, R
x1

G, B, R
x2

G

x4

B, R

x3

≠

≠

≠

≠

• Formal definition: a Constraint Satisfaction
Problem (CSP) is a triple (X, D, C), where
– X is a list of variables x1, x2, …, xn

– D is a list of finite, discrete value domains
D1, D2, …, Dn assigned to the variables

– C is a set of constraints C1, C2, …, Cn on the
variables, a constraint being a predicate:

• A solution to the problem is an assignment
to the variables that satisfies all the
constraints

1. Introduction to CSPs and DCSPs

Ck : Dk1
× Dk2

× ...× Dk j
→ true, false{ }

• Many AI problems can be formulated as CSPs
• Example of a multi-agent scheduling

problem*:

1. Introduction to CSPs and DCSPs

* K. Sycara, S. Roth, N. Nadeh and M. Fox, Distributed Constrained Heuristic Search,
IEEE Transactions on Systems, Man, and Cybernetics, VOL. 21, NO. 6, Nov/Dec 1991

tA1 tA2

tA3 tA4 tA5

tB1 tB2

Activity A1 Activity A2

Activity A3 Activity A4 Activity A5

Activity B1 Activity B2

Agent A

Agent B

R1 R2 R3
Shared resources

dA1 dA2

dA5dA4dA3

dB1 dB2

• Split the problem in coupled sub-problems: distribute
the variables AND the constraints among the agents

1. Introduction to CSPs and DCSPs

* K. Sycara, S. Roth, N. Nadeh and M. Fox, Distributed Constrained Heuristic Search,
IEEE Transactions on Systems, Man, and Cybernetics, VOL. 21, NO. 6, Nov/Dec 1991

tA1 tA2

tA3 tA4 tA5

tB1 tB2

Activity A1 Activity A2

Activity A3 Activity A4 Activity A5

Activity B1 Activity B2

Agent A

Agent B

R1 R2 R3
Shared resources

dA1 dA2

dA5dA4dA3

dB1 dB2

• Centralized method: one leader agent
gathers all the information from other
agents and solves the problem
– Prohibitive cost of collecting information
– Security/Privacy reasons
– Not computationally efficient

1. Introduction to CSPs and DCSPs

• Synchronous Backtracking method:

1. Introduction to CSPs and DCSPs

tA1

tA2 tA2

…

Agent A

Agent B
tB1 tB1 tB1

…

– Sequential => not computationally efficient

Highest
Priority

Lowest
Priority

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

Record new constraint

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

2. The Asynchronous Backtracking
Algorithm

2. Asynchronous Backtracking

• Assumptions:
– Given priority order on the agents
– An agent must be able to send messages to any

other agent
– Each agent has exactly ONE single variable

• Key ideas:
– Agents work concurrently (= “asynchronously”),

exchanging messages to collect required
information

– Conflict-directed search

Try
to choose

value

The agent selects a value for its variable
satisfying the constraints whose enforcement
it is responsible for

2. Asynchronous Backtracking

Try
to choose

value

Change value

possible

If there is at least one value satisfying the constraints,
the agent picks one and changes the assignment
to its variable

2. Asynchronous Backtracking

Try
to choose

value

Change value

Send OK? messages

possible

The agent communicates its new assignment
to its children through “OK?” messages

2. Asynchronous Backtracking

The agent then waits for answers to his OK?
messages from its children (and for other
OK? messages from its parents)

Try
to choose

value

Change value

Send OK? messages

Wait

possible

2. Asynchronous Backtracking

If the agent receives an OK? message from
one of its parents, it updates its “view”, i.e. its
knowledge of the values of the other variables

Try
to choose

value

Change value

Send OK? messages

possible

OK? message Wait

Update view

2. Asynchronous Backtracking

B
C
D
E
F
G
H

1
?
3
4
?
?
?

A’s view

The agent then checks its view, making sure that
the new values do not violate any constraint it
is responsible for

Try
to choose

value

Change value

Send OK? messages

possible

OK? message Wait

check
view

Update view

2. Asynchronous Backtracking

B
C
D
E
F
G
H

1
?
3
4
?
?
?

A’s view

If all the constraints it is responsible for are still
satisfied, the agent keeps waiting for messages

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

good

OK? message

2. Asynchronous Backtracking

B
C
D
E
F
G
H

1
?
3
4
?
?
?

A’s view

If the agent detects violated constraints, it tries
to change the value of its variable to resolve
all the violations

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

2. Asynchronous Backtracking

B
C
D
E
F
G
H

1
?
3
4
?
?
?

A’s view

If the agent finds no satisfying value for its variable,
it extracts and records a list of conflicts (a conflict
being a partial assignment violating at least
one constraint)

Extract & record
conflicts

impossible
Try

to choose
value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

2. Asynchronous Backtracking

If one of the conflicts is the empty set, this means
any overset of {} is a conflict, so that there is
no solution to the DSCP. The agent broadcasts a
NO_SOLUTION message and terminates.

Extract & record
conflicts

{}?
Broadcast

NO_SOLUTION
and terminate

impossible

yes

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

2. Asynchronous Backtracking

Otherwise, for each new conflict, the agent sends a
BACKTRACK message describing the conflict to the
lowest priority agent whose variable is involved in
the conflict. Then it waits for this agent to send back
the new assignment to its variable.

Extract & record
conflicts

{}?

Send BACKTRACK messages

impossible

yesBroadcast
NO_SOLUTION

and terminate

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

no

2. Asynchronous Backtracking

If the agent receives a BACKTRACK
message, but the conflict and the
agent’s view do not match, one of
them must be obsolete; then it
ignores the BACKTRACK

Extract & record
conflicts

{}?

Send BACKTRACK messages

impossible

yesBroadcast
NO_SOLUTION

and terminate

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

no

BACKTRACK message match?
no

2. Asynchronous Backtracking

Otherwise, it records the conflict as
a new constraint it must enforce

Extract & record
conflicts

{}?

Send BACKTRACK messages

impossible

yesBroadcast
NO_SOLUTION

and terminate

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

no

BACKTRACK message match?
no

yes

Record new constraint

2. Asynchronous Backtracking

Extract & record
conflicts

{}?

Send BACKTRACK messages

impossible

yesBroadcast
NO_SOLUTION

and terminate

Try
to choose

value

Change value

Send OK? messages

possible

Wait

check
view

Update view

OK? message

good violation!

no

BACKTRACK message match?
no

yes

need
link?

NEW_LINK

Wait

yes

no

It requests a new
link if necessary

Record new constraint

2. Asynchronous Backtracking

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

match?

yes

no

Add child

NEW_LINK

Send OK?

When an agent receives a NEW_LINK
request, it adds the sender to its children
list and responds through an OK? message

Record new constraint

2. Asynchronous Backtracking

If the agent receives a
NO_SOLUTION message,
it terminates

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

match?

yes

no

Terminate

NO_SOLUTION

Add child

NEW_LINK

Send OK?

Record new constraint

2. Asynchronous Backtracking

B, R

x1

G, B, R

x2

G

x4

B, R

x3

≠

≠

≠

≠

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

G, B, R

x2

G

x4

B, R

x3
Constraints:

x4≠x3, x4≠x2, x4≠x1

Constraints:
x2≠x1

≠

≠

≠

≠

2. Asynchronous Backtracking: The Graph Coloring Example

2. Asynchronous Backtracking: The Graph Coloring Example

NAME VALUE

VIEW

KNOWN CONFLICTS

CONSTRAINTS TO ENFORCE

CHILDREN PARENTS

DOMAIN

B, R

x1

B, G, R

x2

G

x4

B, R

x3

B, R

x1

G, B, R

x2

G
x4

B, R

x3

Each agent chooses an assignment to its variable
Try

to choose
value

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

Each agent sends OK? messages to its childrenSend OK? messages

(OK?, x1=B)

(OK?, x1=B)

(OK?, x2=G)

(OK?, x3=B)

B, R

x1

B, R

x3

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

(OK?, x1=B)

(OK?, x1=B)

(OK?, x2=G)

(OK?, x3=B)

View:

x1=B, x2=G, x3=B

View:

x1=B

Agent x2 and Agent x4 update their viewUpdate view

B, R

x1

B, R

x3

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

View:

x1=B, x2=G, x3=B

View:

x1=B

Agent x2 and Agent x4 check their view against their
constraints, and Agent x4 discovers a violation

check
view

B, R

x1

B, R

x3

Constraints:
x4≠x3, x4≠x2, x4≠x1

Constraints:
x2≠x1

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

View:

x1=B, x2=G, x3=B

Agent x4 tries to change its assignment,
which is impossible

B, R

x1

B, R

x3

Try
to choose

value

Constraints:
x4≠x3, x4≠x2, x4≠x1

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

Conflicts:
{x1=B, x2=G, x3=B}

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

View:

x1=B, x2=G, x3=B

Agent x4 extracts and records the conflicts

B, R

x1

B, R

x3

Extract & record
conflicts

Constraints:
x4≠x3, x4≠x2, x4≠x1

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

{} is not among the new conflicts, so
Agent x4 sends BACKTRACK messages

B, R

x1

B, R

x3

Send BACKTRACK messages

(BACKTRACK,
{x1=B, x2=G, x3=B})

G, B, R

x2

Conflicts:
{x1=B, x2=G, x3=B}

View:

x1=B, x2=G, x3=B

Constraints:
x4≠x3, x4≠x2, x4≠x1

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

match? Agent x3 receives the message and checks
the conflict against its view

View:

{}

(BACKTRACK,
{x1=B, x2=G, x3=B})

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agent x3 records the conflict as a new constraint

Constraints:

View:

{}

{x1≠B or x2≠G or x3≠B}

Record new constraint

G, B, R

x2

(BACKTRACK,
{x1=B, x2=G, x3=B})

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agent x3 checks if it needs new links to enforce itneed
link?

Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agent x3 sends NEW_LINK requestsNEW_LINK

(NEW_LINK)

(NEW
_LINK)

Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agents x1 and x2 receive the NEW_LINK requests
and add Agent x3 to their children list

Add child

(NEW_LINK)

(NEW
_LINK)

New child:

Agent x3

New child:

Agent x3

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agents x1 and x2 send OK? to confirm new links

(OK?, x2=G)

Send OK?

New child:

Agent x3

New child:

Agent x3 (OK?, x
1 =B)

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agent x3 receives messages and updates its view

(OK?, x2=G)

(OK?, x
1 =B)

Update view

View:

x1=B, x2=G

Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Agent x3 checks its view, and discovers that
one constraint (the new one) is violated

View:

x1=B, x2=G

check
view

Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x3 tries to change its value to R

View:

x1=B, x2=G

Try
to choose

value

Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

There is no more violation, so Agent x3

communicates its new value to its children
Send OK? messages

(OK?, x3=R) Constraints:
{x1≠B or x2≠G or x3≠B}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x4 receives the OK? message
and updates its view

(OK?, x3=R)

Update view

View:

x1=B, x2=G, x3=R

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x4 checks its view against its constraints
and sees the violation has not been resolved…

View:

x1=B, x2=G, x3=R

check
view

Constraints:
x4≠x3, x4≠x2, x4≠x1

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x4 tries to change its value, but
this is impossible

View:

x1=B, x2=G, x3=R

Try
to choose

value

Constraints:
x4≠x3, x4≠x2, x4≠x1

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B, x2=G, x3=R

Agent x4 extracts and records the conflictsExtract & record
conflicts

Conflicts:
{x1=B, x2=G, x3=B}

Constraints:
x4≠x3, x4≠x2, x4≠x1

{x1=B, x2=G, x3=R}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

{} is not among the new conflicts, so
Agent x4 sends BACKTRACK messages

Send BACKTRACK messages

(BACKTRACK,
{x1=B, x2=G, x3=R})

View:

x1=B, x2=G, x3=R

Conflicts:
{x1=B, x2=G, x3=B}

Constraints:
x4≠x3, x4≠x2, x4≠x1

{x1=B, x2=G, x3=R}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3(BACKTRACK,

{x1=B, x2=G, x3=R})

match? Agent x3 receives the message and checks
the conflict against its view

View:

x1=B, x2=G

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3(BACKTRACK,

{x1=B, x2=G, x3=R})

View:

x1=B, x2=G

Agent x3 records the conflict as a new constraint

Constraints:
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

Record new constraint

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x3 needs no new link to enforce itneed
link?

Constraints:
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

check
view Agent x3 checks its view, and discovers that

one constraint (the new one) is violated

View:

x1=B, x2=G

Constraints:
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x3 tries to change its value, but no value
satisfies all the constraints

Try
to choose

value

View:

x1=B, x2=G

Constraints:
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

Agent x3 extracts and records new conflictsExtract & record
conflicts

Conflicts:

View:

x1=B, x2=G

{x1=B, x2=G}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

{} is not a new conflict, so Agent x3

sends BACKTRACK messages

Send BACKTRACK messages

(BACKTRACK,
{x1=B, x2=G})

Conflicts:
{x1=B, x2=G}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

(BACKTRACK,
{x1=B, x2=G})

match? Agent x2 receives the message and checks
the conflict against its view

View:

x1=B

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B

Agent x2 records the conflict as a new constraint

(BACKTRACK,
{x1=B, x2=G})

Constraints:
x2≠x1

{x1≠B or x2≠G}

Record new constraint

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B

Agent x3 checks its view, and discovers that
one constraint (the new one) is violated

check
view

Constraints:
x2≠x1

{x1≠B or x2≠G}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B

Agent x2 tries to change its value to B,
but it would violate the first constraint

Try
to choose

value

Constraints:
x2≠x1

{x1≠B or x2≠G}

G, B, R

x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B

Agent x2 tries to change its value to R
Try

to choose
value

Constraints:
x2≠x1

{x1≠B or x2≠G}

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B

The constraint is no longer violated, so Agent x2

chooses value R and communicates it to its children
Send OK? messages

(OK?, x2=R)

Constraints:
x2≠x1

{x1≠B or x2≠G}

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

(O
K?, x

2
=R)

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

(OK?, x2=R)

View:

x1=B, x2=R, x3=R

Agent x3 and Agent x4 receive the messages
and update their views

Update view

View:

x1=B, x2=R

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

(O
K?, x

2
=R)

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

View:

x1=B, x2=R, x3=R

View:

x1=B, x2=R

Agent x3 and Agent x4 check their view against
their constraints, and no violation is discovered

check
view

SOLVED!

Constraints:
{x1≠B or x2≠G or x3≠B}
{x1≠B or x2≠G or x3≠R}

Constraints:
x4≠x3, x4≠x2, x4≠x1

G, B, R
x2

2. Asynchronous Backtracking: The Graph Coloring Example

Weaknesses of the Asynchronous
Backtracking Algorithm

• How to better choose the assignments?
→Use a heuristic to make better choices

• The authors prove the algorithm always
reaches a stable state within a finite number
of steps, BUT it still lacks a termination
procedure
→Use a “Distributed Snapshot” external

procedure
K. M. Chandy and L. Lamport, Distributed Snapshots: Determining Global States of
Distributed Systems, ACM Transactions on Computer Systems, 1985

Weaknesses of the Asynchronous
Backtracking Algorithm (cont.)

• Need of a judicious priority ordering among
the agents
→Do it beforehand? (might be difficult + need of

a centralizing agent…)

→Dynamic priority ordering: let the agents come
up with a judicious ordering themselves, as they
encounter conflicts

Weaknesses of the Asynchronous
Backtracking Algorithm (cont.)

• How to extract conflicts?
→Open to all conflict extraction policies

→There is a trade off between taking the time to
extract minimal conflicts, and trying to speed
up the algorithm by using the agent’s view as a
super-conflict but wasting time by backtracking
more often

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

3. The Asynchronous Weak-
Commitment Search Algorithm

3. The Asynchronous Weak-
Commitment Search Algorithm

• Use a local min-conflict heuristic to guide
the choices of assignments

• Judiciously change the priority ordering
every time the search needs to backtrack

3. The Asynchronous Weak-
Commitment Search Algorithm (cont.)

• “Weak-Commitment” Search:
– A partial assignment to the variables is constructed step

by step by extending it to variables with lower priority
– The group of agents “weakly commits” itself to the

partial assignment because the partial assignment is
abandoned as soon as the algorithm needs to backtrack

– The priority ordering is then modified so that the agent
which failed to find a value to its variable consistent
with the constraints “promotes itself” (i.e. it changes its
priority value to locally become the agent with the
highest priority)

3. The Asynchronous Weak-
Commitment Search Algorithm (cont.)

• ATTENTION! Tricky point:
– Every time an agent discovers a known conflict in its

view, it will abandon the partial solution
– However, if, due to message delays, the agent’s view is

obsolete, it will abandon the partial assignment too
early and perform an unnecessary change in its priority
value

– To avoid reacting to such unstable situations, the agent
records the conflicts it has already sent, and it will
temporarily ignore a conflict if it has already sent it
before

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Send priority along
with the assignment

Send the message to
the parents too

Record new constraint

3. Weak-Commitment Search

3. Weak-Commitment Search
Try

to choose
value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK messages

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Include the priority
of the neighbors in
the agent’s view

Record new constraint

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint
Only backtrack if the
conflict has never been
sent before

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Promotion

Compute the maximum
priority of all neighbors
and set current priority
to an even higher value
(only for NEW conflicts)

Communicate the new
priority value to all
neighbors (only for
NEW conflicts)

Record new constraint

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

need
link?

NEW_LINK

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint

Promotion

NOTE: agents must
now be aware of ALL
constraints involving
their variable
(OMISSION?!)

Guide the choice by
minimizing the number
of constraint violations
with lower priority
agents

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

need
link?

NEW_LINK yes

no

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Add child

NEW_LINK

Send OK?

Record new constraint

Promotion

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record new constraintAdd child

NEW_LINK

Send OK?

Promotion

Every time a new
constraint is created,
inform all involved
agents through
NEW_CONST messages

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

Upon reception of a
NEW_CONST message,
record new constraint
and new neighbor (if a
new link is needed)

Every time a new
constraint is created,
inform all involved
agents through
NEW_CONST messages

3. Weak-Commitment Search

Try
to choose

value

Change value

Extract & record
conflicts

Send OK? messages

{}?

Send BACKTRACK IF NEW

Wait

Wait
Send

NEW_CONST
messages

check
view

Update view

possible impossible

yes

no

OK? message BACKTRACK message

good violation!

Broadcast
NO_SOLUTION

and terminate

Terminate

NO_SOLUTION

match?

yes

no

Record constraint
and neighbor

NEW_CONST

Send OK?

Record new constraint

Promotion

3. Weak-Commitment Search

B, R

x1

G, B, R

x2

G

x4

B, R

x3

≠

≠

≠

≠

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

G, B, R

x2

G

x4

B, R

x3
Constraints:

x4≠x3, x4≠x2, x4≠x1

Constraints:
x2≠x1, x2≠x4

≠

≠

≠

≠

Constraints:
x1≠x2, x1≠x4

Constraints:
x3≠x4

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

G, B, R

x2

G

x4

B, R

x3

Initial priority values are all set to 0. Two agents
with identical priorities are ordered with respect
to their index

0

0 0

0

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

B, R

x1

G, B, R

x2

G
x4

B, R

x3

Each agent chooses an assignment to its variable
(at the first time step, we cannot use the heuristic
because agents still have empty views)

Try
to choose

value

0

0 0

0

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

Each agent sends OK? messages to ALL of
its neighbors

Send OK? messages

(O
K

?,
 x

1=
(B

, 0
))

(OK?, x1=(B, 0))

(O
K?,

x 2
=(G

, 0
))

(OK?, x3=(B, 0))

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(O
K?, x

4
=(G

, 0
))

(OK?, x4=(G, 0))

(O
K

?,
 x

4=
(G

, 0
))

3. Weak-Commitment Search: The Graph Coloring Example

View:
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

All agents update their viewUpdate view

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

(O
K

?,
 x

1=
(B

, 0
))

(OK?, x1=(B, 0))

(O
K?,

x 2
=(G

, 0
))

(OK?, x3=(B, 0))

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(O
K?, x

4
=(G

, 0
))

(OK?, x4=(G, 0))

(O
K

?,
 x

4=
(G

, 0
))

View:

x4=(G, 0)

View:
x2=(G, 0), x4=(G, 0)

View:
x1=(B, 0), x4=(G, 0)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

All agents check their view against the
constraints they are responsible for,
and Agent x4 discovers a violation

check
view

B, R

x1

B, R

x3

Constraints:
x4≠x3, x4≠x2, x4≠x1

Constraints:
x2≠x1, x2≠x4

0

0 0

0

G, B, R

x2

View:
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

View:
x1=(B, 0), x4=(G, 0)

Constraints:
x1≠x2, x1≠x4

Constraints:
x3≠x4

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

Constraints:
x4≠x3, x4≠x2, x4≠x1

0

0 0

0

G, B, R

x2

Agent x4 tries to change its assignment,
which is impossible

Try
to choose

value

View:
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

Agent x4 extracts and records the conflictsExtract & record
conflicts

Conflicts:
{x1=B, x2=G, x3=B}

View:
x1=(B, 0), x2=(G, 0)

x3=(B, 0)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

0

0 0

0

G, B, R

x2

Conflicts:
{x1=B, x2=G, x3=B}

{} is not among the new conflicts, and no new
conflict has already been sent, so Agent x4

sends BACKTRACK messages

Send BACKTRACK messages

(BACKTRACK,
{x1=B, x2=G, x3=B})

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK,
{x1=B, x2=G, x3=B})

Promotion Agent x4 promotes itself, changing its priority
value from 0 to 1

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK,
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

Agent x4 communicates its new priority value to
ALL its neighbors

Send OK? messages

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK,
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

match?

CONCURRENTLY, Agent x3 receives the
BACKTRACK message and checks the conflict
against its view

View:

x4=(G, 0)

3. Weak-Commitment Search: The Graph Coloring Example

Constraints:
x3≠x4

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(BACKTRACK,
{x1=B, x2=G, x3=B})

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

Agent x3 records the conflict as a new constraint
it will be responsible for

Record new constraint

{x1≠B or x2≠G or x3≠B}

View:

x4=(G, 0)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(OK?, x4=(G, 1))

(O
K?, x

4
=(G

, 1
))

(OK?, x4=(G, 1))

CONCURRENTLY, all agents receive the OK?
messages and update their view

Update view

View:
x1=(B, 0), x4=(G, 1)

View:

x4=(G, 1)

View:
x2=(G, 0), x4=(G, 1)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

View:
x1=(B, 0), x4=(G, 1)

(Only the priority changed, so no new violation
is discovered)

check
view

View:

x4=(G, 1)

View:
x2=(G, 0), x4=(G, 1)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Send
NEW_CONST

messages

CONCURRENTLY, Agent x3 sends NEW_CONST
messages to all agents involved in the new constraint

(NEW_CONST,

{x1≠B or x2≠G or x3≠B})

(NEW
_CONST,

{x
1 ≠B or x

2 ≠G or x
3 ≠B})

Constraints:
x3≠x4

{x1≠B or x2≠G or x3≠B}

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Agents x1 and x2 receive NEW_CONST messages
and record new constraint and new neighbor

(NEW_CONST,

{x1≠B or x2≠G or x3≠B})

(NEW
_CONST,

{x
1 ≠B or x

2 ≠G or x
3 ≠B})

Record constraint
and neighbor

New neighbor:

Agent x3

New neighbor:

Agent x3

Constraints:
x2≠x1, x2≠x4

Constraints:
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}{x1≠B or x2≠G or x3≠R}

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

Agents x1 and x2 respond to the NEW_CONST
through OK? messages

New neighbor:

Agent x3

New neighbor:

Agent x3

Constraints:
x2≠x1, x2≠x4

Constraints:
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}{x1≠B or x2≠G or x3≠R}

Send OK? messages

(OK?, x2=(G, 0))

(OK?, x
1 =(B, 0))

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

(OK?, x2=(G, 0))

(OK?, x
1 =(B, 0))

Agent x3 receives messages and updates its viewUpdate view

View:
x1=(B, 0), x2=(G, 0)

x4=(G, 1)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R

x3

1

0 0

0

G, B, R

x2

View:
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
Agent x3 checks its view, and discovers that
one constraint it is responsible for (the new one)
is violated

check
view

Constraints:
x3≠x4

{x1≠B or x2≠G or x3≠B}

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View:
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
Agent x3 tries to change its value to R, deleting all
violations of constraints it is responsible for, and
minimizing the number of violations of others

Try
to choose

value

Constraints:
x3≠x4

{x1≠B or x2≠G or x3≠B}

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View:
x1=(B, 0), x2=(G, 0)

x4=(G, 1)
There is no more violations of constraints it is
responsible for, so Agent x3 communicates its
new value to ALL neighbors

Send OK? messages

(OK?, x3=(R, 0))

(OK?, x3=(R, 0))
Constraints:

x3≠x4

{x1≠B or x2≠G or x3≠B}

3. Weak-Commitment Search: The Graph Coloring Example

(OK?, x
3 =(R, 0))

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

(OK?, x3=(R, 0))

(OK?, x3=(R, 0))

All agents receive the OK? messages
and update their view

Update view

View:
x1=(B, 0), x2=(G, 0)

x3=(R, 0)

View:
x3=(R, 0), x4=(G, 1)

View:
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

3. Weak-Commitment Search: The Graph Coloring Example

(OK?, x
3 =(R, 0))

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R

x2

View:
x1=(B, 0), x2=(G, 0)

x3=(R, 0)

View:
x3=(R, 0), x4=(G, 1)

View:
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

Agent x1, x2 and x4 check their view against the
constraints they are responsible for, and
Agent x2 discovers a violation

check
view

Constraints:
x1≠x2, x1≠x4

{x1≠B or x2≠G or x3≠R}

Constraints:
x2≠x1, x2≠x4

{x1≠B or x2≠G or x3≠R}

Constraints:
x4≠x3, x4≠x2, x4≠x1

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

View:
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

{x1≠B or x2≠G or x3≠R}

Agents x2 tries to change its value to R, deleting all
violations of constraints it is responsible for, and
minimizing the number of violations of others

Try
to choose

value

Constraints:
x2≠x1, x2≠x4

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

View:
x1=(B, 0), x4=(G, 0)

x3=(R, 0)

{x1≠B or x2≠G or x3≠R}

There is no more violations of constraints it is
responsible for, so Agent x3 communicates its
new value to ALL neighbors

Send OK? messages

(OK?, x2=(R, 0))
(O

K?, x
2
=(R

, 0
))

(OK?, x2=(R, 0))
Constraints:

x2≠x1, x2≠x4

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

(OK?, x2=(R, 0))
(O

K?, x
2
=(R

, 0
))

(OK?, x2=(R, 0))

All agents receive the OK? messages
and update their view

Update view

View:
x1=(B, 0), x2=(R, 0)

x3=(R, 0)

View:
x2=(R, 0), x3=(R, 0)

x4=(G, 1)

View:
x1=(B, 0), x2=(R, 0)

x4=(G, 1)

3. Weak-Commitment Search: The Graph Coloring Example

B, R

x1

B, G, R

x2

G

x4

B, R

x3

G
x4

B, R

x1

B, R
x3

1

0 0

0

G, B, R
x2

Agents x1, x3 and x4 check their view against the
constraints they are responsible for, and no new
violation is discovered

check
view

View:
x1=(B, 0), x2=(R, 0)

x3=(R, 0)

View:
x2=(R, 0), x3=(R, 0)

x4=(G, 1)

View:
x1=(B, 0), x2=(R, 0)

x4=(G, 1)

Constraints:
x1≠x2, x1≠x4

Constraints:
x4≠x3, x4≠x2, x4≠x1

{x1≠B or x2≠G or x3≠R}

Constraints:
x3≠x4

{x1≠B or x2≠G or x3≠B}

SOLVED!

3. Weak-Commitment Search: The Graph Coloring Example

4. Conclusion

• Perform much better than the trivial
algorithms

4. Conclusion

M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara, Distributed Constraint Satisfaction
Problem: Formalization and Algorithms, IEEE Transactions on Knowledge and Data
Engineering, VOL. 10, NO. 5, Sept/Oct 1998

4. Conclusion

M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara, Distributed Constraint Satisfaction
Problem: Formalization and Algorithms, IEEE Transactions on Knowledge and Data
Engineering, VOL. 10, NO. 5, Sept/Oct 1998

4. Conclusion

• Perform much better than the trivial
algorithms

W.-M. Shen and B. Salemi, Distributed and Dynamic Task
Reallocation in Robot Organizations

• Single-variable agents => Task
Allocation Problem

References
• M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara,

Distributed Constraint Satisfaction Problem:
Formalization and Algorithms, IEEE Transactions on
Knowledge and Data Engineering, VOL. 10, NO. 5,
Sept/Oct 1998

• K. Sycara, S. Roth, N. Nadeh and M. Fox, Distributed
Constrained Heuristic Search, IEEE Transactions on
Systems, Man, and Cybernetics, VOL. 21, NO. 6, Nov/Dec
1991

• K. M. Chandy and L. Lamport, Distributed Snapshots:
Determining Global States of Distributed Systems, ACM
Transactions on Computer Systems, 1985

• W.-M. Shen and B. Salemi, Distributed and Dynamic Task
Reallocation in Robot Organizations

