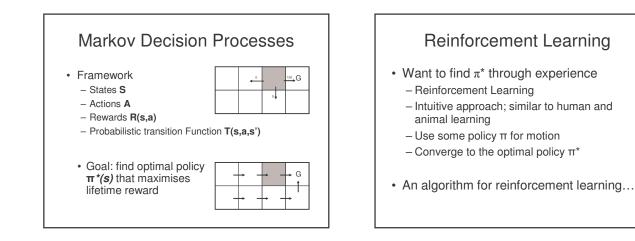
Cooperative Q-Learning

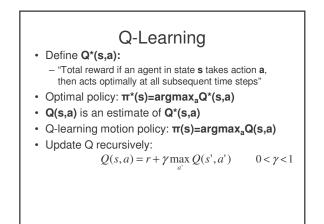
Lars Blackmore and Steve Block

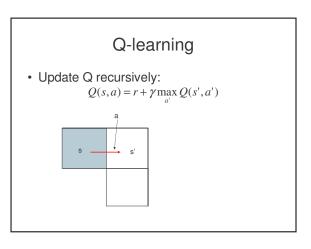
Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents Tan, M Proceedings of the 10th International Conference on Machine Learning, 1993 Expertness Based Cooperative Q-learning Ahmadabadi, MM: Asadour, M IEEE Transactions on Systems, Man and Cybernetics Part B, Volume 32, Issue 1, Feb. 2002, Pages 66–76 An Extension of Weighted Strategy Sharing in Cooperative Q-Learning for Specialized Agents Ethph, M.: Ahmadabad; M.N. Proceedings of the 9th International Conference on Neural Information Processing, 2002. Volume 1, Rages 105-110

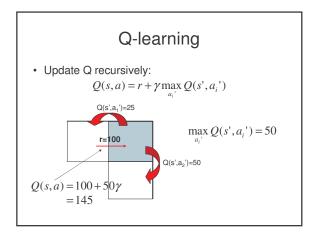
Overview

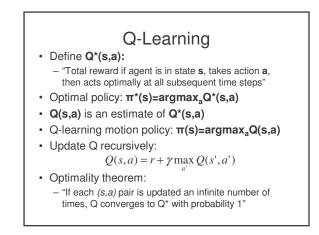
- · Single agent reinforcement learning Markov Decision Processes
 - Q-learning
- Cooperative Q-learning Sharing state, sharing experiences and sharing policy
 Sharing policy through Q-values
- Simple averaging
 Expertness based cooperative Q-learning
 Expertness measures and weighting strategies - Experimental results
- Expertness with specialised agents
 - Scope of specialisation
 - Experimental results

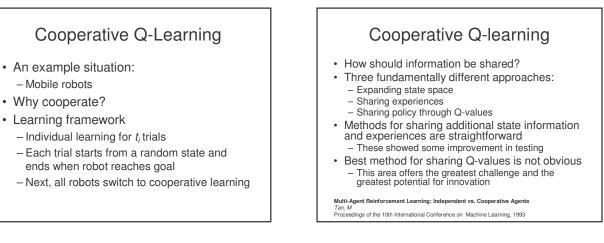












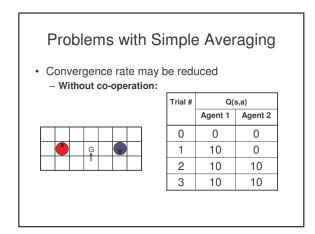
Sharing Q-values

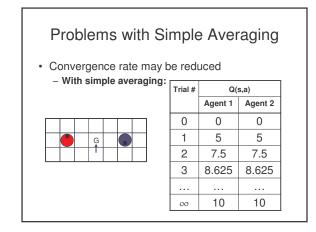
An obvious approach?

$$Q_i(s,a) = \frac{1}{n} \sum_{j=1}^n Q_j(s,a)$$

- This was shown to yield some improvement
- · What are some of the problems?

- All agents have the same Q table after sharing and hence the same policy:
 - Different policies allow agents to explore the state space differently
- Convergence rate may be reduced





Problems with Simple Averaging

- All agents have the same Q table after sharing and hence the same policy:
- Different policies allow agents to explore the state space differently
- Convergence rate may be reduced
 Highly problem specific
- Slows adaptation in dynamic environment
- · Overall performance is task specific

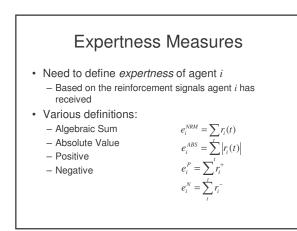
Expertness

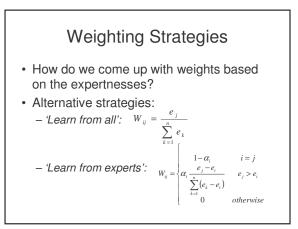
- Idea: value more highly the knowledge of agents who are 'experts'
- Expertness based cooperative Q-learning
 New Q-sharing equation:

$$Q_i = \sum_{i=1}^{n} W_{ij} \times Q_i$$

- Agent *i* assigns an importance weight W_{ij} to the Q data held by agent *j*
- These weights are based on the agents' relative expertness values e_i and e_j

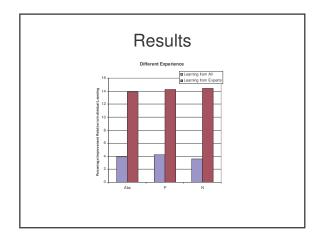
Expertness Based Cooperative Q-learning Ahmadabadi, M.N.; Asadpour, M IEEE Transactions on Systems, Man and Cybernetics Part B, Volume 32, Issue 1, Feb. 2002, Pages 66–76

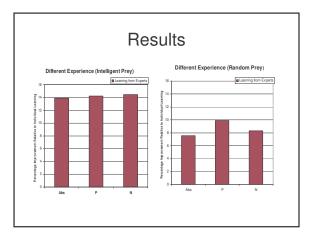




Experimental Setup

- Mobile robots in hunter-prey scenario
 Individual learning phase:
- Individual learning phase: 1. All robots carry out same number of trials
- 2. Robots carry out different number of trials
- Followed by cooperative learning
- Parameters to investigate:
 - Cooperative learning vs individual
 - Similar vs different initial expertise levels
 - Different expertness measures
 - Different weight assigning mechanisms
- Performance measured by number of steps

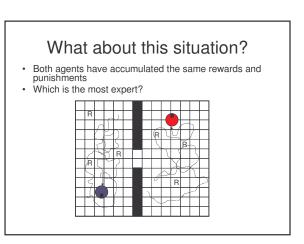




Conclusions

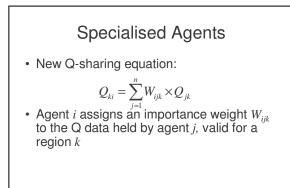
- Without expertness measures, cooperation is detrimental
- Simple averaging shows decrease in performance
- Expertness based cooperative learning is shown to be superior to individual learning
 Only two when count have continuently different.
- Only true when agents have significantly different expertness values (necessary but not sufficient)
- Expertness measures Abs, P and N show best performance

 Of these three, Abs provides the best compromise
- 'Learning from Experts' weighting strategy shown to be superior to 'Learning from All'



- An agent may have explored one area a lot but another area very little
 - The agent is an expert in one area but not in another
- Idea Specialised agents
 - Agents can be experts in certain areas of the world
 - Learnt policy more valuable if an agent is more expert in that particular area

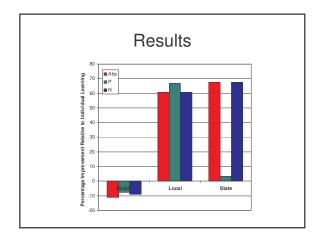
An Extension of Weighted Strategy Sharing in Cooperative Q-Learning for Specialized Agents Estigh, S.M.; Ahmadabadi, M.N. Proceedings of the 9th International Conference on Neural Information Processing, 2002. Volume 1, Pages 106-110



Experimental Setup

- Mobile robots in a grid world
- World is approximately segmented into three regions by obstacles
 One goal per region
- Individual learning followed by cooperative learning as before
- Performance measured by number of steps to reach a goal.

П	R			1				1				
	1	0	1				-		2	~	h	
П	Т		ř	D	Г		G	7	Q		Γ	Γ
		2		S			X	L.		Æ	2	
	4	£	Y.	E	2			1	1	'	1	
7	H	C	0	12	1				Y		Z	
	Ч	7	1	U	Г		6		Р	7	J	
1	5	4		h			2		E	2		2
Π.	Ω		Л	V	Г	1		Г		2	2	Γ
	1						1					
	Т											



 Correct choice of expertness measure is crucial
 Test case highlights robustness of Abs to problemspecific nature of reinforcement signals