Adaptable Mission Planning
for
Kino-Dynamic Systems

Tony Jimenez,* Larry Bush,
and Brian Bairstow*

May 11, 2005

Abstract

Autonomous systems can perform tasks that are dangerous, monoto-
nous, or even impossible for humans. To approach the problem of planning
for Unmanned Aerial Vehicles (UAVs) we present a hierarchical method
that combines a high-level planner with a low-level planner. We pose the
problem of high-level planning as a Selective Traveling Salesman Problem
(STSP) and select the order in which to visit our science sites. We then
use a kino-dynamic path planner to create a large number of intermediate
waypoints. This is a complete system that combines high and low level
planning to achieve a goal. This paper demonstrates the benefits gained
by adaptable high-level plans versus static and greedy plans.

1 Introduction

1.1 Motivation

The human control of robots on Mars is difficult, partially due to large com-
munication lag times. One solution to this problem is to use robots capable of
autonomous activity. For unmanned aerial vehicles (UAVs), this capability is
a necessity, since UAVs are constantly in motion and cannot stop and wait for
instructions. Thus, UAVs will need to be able to handle low-level planning, for
example the kinematics of getting from point A to point B.

However, the question remains of how to handle higher-level planning, specif-
ically, choosing which science sites to visit and in what order. The mission plan
can be created on Earth and sent to Mars, or created by the UAV on Mars. Any

*Draper Laboratory, Cambridge, MA.
fMIT Lincoln Laboratory, Lexington, MA.
fMassachusetts Institute of Technology, Cambridge, MA.

plan sent from Earth would essentially be a static plan, since re-planning would
be impossible because of the communication lag. This can be disadvantageous
if the situation changes, for example if too much fuel is consumed or if new
sensor readings show that a site is more interesting than previously thought. If
the mission planning is performed on the UAV or otherwise in-situ, then the
potential exists for response to changes in the environment. This can be im-
plemented as continuous plan generation. Exploring the value that continuous
planning provides will give an idea of the magnitude and insights into when it
is useful.

1.2 Problem Statement

Our scenario involves a UAV on Mars traveling between science objectives. The
UAV is given a set of interesting science sites and a limited amount of fuel. The
problem is to guide the UAV to the science sites to gather as much science value
as possible within the fuel constraints.

We address the design and analysis of an autonomous exploratory planner
for a UAV. This problem involves merging an adaptable mission planner with a
kino-dynamic path planner [1], and comparing the performance with that given
by a static plan. The mission planner will adapt to new readings of the science
sites from a UAV’s long range sensors.

1.3 Previous Work

Our project is premised upon two main bodies of work, namely that done by B.
Hasegawal[2] and T. Leaute[1].

1.3.1 Continuous Observation Planning for Autonomous Exploration

The thesis by Brad Hasegawa presents a new approach for solving a robotic
navigation path-planning problem. The approach first formulates the problem
as a selective traveling salesman problem (S-TSP), then converts it to an opti-
mal constraint satisfaction problem and solves it using the Constraint Based A*
algorithm. The solver, shown in the system architecture diagram in Figure 1,
performs this key ability.

The solver is a continuous observation planner, which updates the plan when
new observations affect the candidate set (possible places to visit). The objec-
tive of the robot is to map its environment. The robot chooses to navigate to
observation locations, which will maximize information gain. Each observation
may affect the utility and cost of unvisited observation locations (candidates),
which necessitates re-planning. There is an implicit trade-off between the plan-
ning horizon and how often the candidates are updated. The planning horizon

Sensors
(Odometry and %ﬁ Feal;rljﬁﬂased = Candidate Identification and Scoring
Rangefinder)
]
g
22
sle
map Obstacle | obstackes V(';’r':"'r:"
Extraction P
Constructor
i1
_.‘s-\\,x\w
candidale
graph
O* Search Solver
rdered subset
of cand
=
2
curent robat
pose
range finder data Controller

translaticnal velocity. angular
Motors =——lranslational veloclly, angular |

welocity

Figure 1: The above diagram is the system architecture for [2]. The navigation
architecture starts with a partially complete map. Candidates and obstacles
are extracted from the map, which are used to construct a visibility graph. The
D* search is used to update the candidates. The candidates are passed to the
solver, which creates a plan (ordered candidate subset).

should mirror the expected time period between re-planning. In other words, if
we look ahead 5 tasks, we want to be able to execute those 5 tasks before we
have to re-plan. If this does not occur, then our plan is optimized for a differ-
ent planning period than it is executed for. This results in sub-optimal planning.

Ultimately, the system is making an exploration-exploitation trade-off, which
can be generalized to other tasks. The tasks must involve observation and can-
didate list utility /cost updates. This method is likely to be effective when we
have (at a minimum) a large-scale prior map of the exploration region.

The thesis [2] addresses a mapping application where the candidates fre-
quently changed due to new observations. The finite-horizon technique is more
effective when the candidates do not change frequently. Yet the mapping appli-
cation actually favors observation candidates that increase its situational knowl-
edge the most. For these reasons, the finite-horizon method is more effective
when a high-level map is known. The attributes of continuous finite-horizon
planning lend themselves to exploratory missions with a specific objective (i.e.
a science exploration application) where a prior map is known. Refining the
map will affect the cost estimate for the science tasks and the utilities of the
science tasks may change as prior successes affect the probability of future suc-
cesses. This necessitates continuous planning. However, the changes should be
sufficiently infrequent, so that a finite-horizon is more effective than a purely
greedy candidate selection strategy.

Key elements of the framework presented in [2] are shown in Table 1.3.1.

Table 1: Key attributes of the continuous observation-planning framework.

Exploration Problem: | Explore and construct a map of an environment
Exploration Method: | Feature based

Assumption: The robot knows the large-scale environment structure
Path Cost: Path length (physical distance)

Path Planner: Visibility Path Planner : F(map, candidates, pose)
Map Type: Feature based SLAM map

Pose: Robot position and heading

Candidate: An observation point bordering an unexplored area
Candidate Utility: An estimate of the observable unexplored area
Candidate Dynamics: | How do candidates change as a robot explores

1.3.2 Coordinating Agile Systems Through the Model-based Execu-
tion of Temporal Plans

The work in [1] provides a novel model-based execution of a temporally flexible
state plan (TFSP) for the purpose of UAV navigation. Its kino-dynamic con-
troller is a continuous planning framework. However, the high level planner is
not.

Our integration would enable this work to perform continuous high-level
planning. The scope of our project includes enabling the simulation framework
to accept TFSP updates. In particular, the observations would be considered
when creating the temporally flexible state plan. Continuous high-level planning
would allow the UAV to adapt its high-level goals to the observed environment.
Specifically, it adapts the additional information that it learns about its envi-
ronment (i.e. a more accurate map or the ramifications that one task has on
the utility of future tasks). Therefore, this integration would provide a system
which observes, learns and updates its higher level planning goals.

This work is further discussed in section 2.3.

2 Method
2.1 Problem Walkthrough

Our system takes a set of nodes, constructs a plan to visit a subset of those nodes,
and simulates the flight path to test the validity of the plan. Plan construction
starts in the adaptable mission planner. The adaptable mission planner takes
a set of node locations and utilities and calculates the optimal path to get the
most utility given a limited amount of fuel. This plan may not be feasible if the
estimates of fuel cost between the nodes is too low.

The plan is then fed into the kino-dynamic path planner which creates way-
points to guide the UAV to the next node. These waypoints are built on a
one-second time scale, so they represent a more finely discretized plan. These
waypoints are followed using a simulation of the environment and an autopilot
which actuates the aircraft. The simulation returns the actual fuel usage, which
may cause changes in the plan. The block diagram of the complete system is
shown in Figure 2. Each part of the system is explained in greater detail in the
following sections.

2.2 Adaptable Mission Planner

The high-level mission planner has been designed to solve the finite-horizon path
planning as a Selective Traveling Salesman Problem. This is also known as the

Actual time taken Temporally Flexible State Plan

Sites visited Current position

A

" Kino-dynamic
Path Planner

Adaptable
Mission Driver
Planner >

tpn file T 25 waypoints

Target waypoint Time taken

A

Operator
Interface

Target waypoint Position, speed
Sensor data

<

Environment

Autopilot Simulator

Actuator data

Figure 2: Block diagram of the complete system

Orienteering Problem.

The adaptable mission planner accepts a given set of utilities. This abstracts
out the sensor model and provides a framework for future system engineering in
analyzing the benefit of using an adaptable mission planner versus a static plan.

The mission planner also accepts a set of coordinates indicating the science
sites. These are the targeted positions on the map that the mission planner is
considering traveling to. The mission planner generates an traceable path of
nodes that will maximize its utility with a given distance constraint.

The following steps outline the major parts of the adaptable mission planner:

1. Create Adjacency Matrix from coordinates of nodes

2. Order list of utilities to match ordering of nodes. Starting node must be
at index 0.

Create traceable path through nodes by calling STSP Solver
Remove the next node to be traveled to from the list of considered nodes

Reduce the remaining distance by the distance to the next node

S otk @

Repeat from step 1 with an updated set of utilities from the UAV’s sensors

2.2.1 STSP Problem Formulation

The original traveling salesman problem involves a salesman trying to visit each
city on a map while traveling as little distance as possible. Essentially the prob-
lem consists of a set of nodes N = {ny,no, ni} and a set of arcs between nodes A
= {(n1,n2), (n1,n3), (nk—1,nr)}. Each arc is associated with a cost C((n;, n;)).
Thus the definition of the traveling salesman problem is to come up with an
ordered set {ng,nyp,...} which contains every member of N and minimizes the
total cost Y C = C((ng,np)) + C((np,ne)) + .. .

The Selective Traveling Salesman Problem (STSP) approaches the problem
from a different direction. It imposes a maximum cost constraint Cj,,, such
that the total cost > C < Cjnar. Furthermore, each node is assigned a utility
U(n;). The goal then is to come up with a subset of N C {ng, ny, ne, ...} which
maximizes the total utility > U = U(n,) + U(ny) + U(n.) + while meeting
the constraint > C = C((nq,ns)) + C((np;ne)) + ... < Croga-

One aspect of the system that should be noted is that the STSP will visit
each node only once, and does not need to return to the beginning node. The
intention is for the UAV to crash into the surface of the planet instead of having
to return to its starting position.

Start 5 X1

Figure 3: An example graph structure used to demonstrate an OCSP conversion

2.2.2 OCSP Problem Conversion

[2] demonstrates the capability of converting the STSP problem into an Opti-
mal Constraint Satisfaction Problem. A CSP has a set of variables with a finite
domain with a set of constraints over these variables. With an OCSP, we have
a utility function that maps all assignments of the decision variables, which is a
subset of the total set of variables. This function maps the assignments to real
numbers. A solution to the OCSP will maximize this utility while satisfying all
the constraints.

To convert an STSP to an OCSP, for each node, create a variable in the
OCSP with a domain of {0,1}. The utility of a variable with an assignment of
1 is the utility of the node from the STSP. The utility of the variable is zero
otherwise. A variable with an assignment of 1 indicates that the node for that
variable is included in the path that is being generated.

Figure 3 shows an example graph structure. The following represents the
OCSP conversion for this structure:

e Decision Variables: =1, xs, x3

Domain: {0,1}

Attribute Utility Function:
gl(x1=0)=0, gl(x1=1)=
g2(x2=0)=0, g2(x2=1)
£3(x3=0)=0, g3(x3=1)

)
9
2

e Constraint: TSP(z;=1) <L
e Highlighted graph: x1=1, x5=0, x3=1

To calculate the constraint for the OCSP, the cost of the TSP solution to the
variables with an assignment of 1 should be less than that limit, L. A standard
TSP solver, Concorde, is used in the current implementation. One will notice
that the highlighted graph contains a Hamiltonian cycle through the variables
with an assignment of 1. This is instead of a Hamiltonian path through these
variables. However, to use Concorde to generate a Hamiltonian path instead of
a Hamiltonian cycle, the graph structure needs to be converted into an asym-
metric graph. This is done by setting the return cost to the start node to zero
from all other nodes. This will cause the cost of all Hamiltonian cycles to then
be equal to the equivalent path.

The current implementation of this OCSP /STSP solver then uses Constraint-
based A* to solve the OCSP. This solution provides the Hamiltonian path
through the STSP.

2.2.3 A Straightforward STSP Solver

While a powerful method has been shown to solve the STSP using a reformula-
tion of the problem into an OCSP, our final design used a more straightforward
method of solving the STSP. Our experiments did not require the more complex
solver to handle the simulation.

We also found that in some sample problems, the OCSP/STSP solver as
used in [2] gave similar performance characteristics as the straightforward STSP
algorithm presented in this section. When the distance was restricted, the plan-
ner was not able to visit all the nodes. This aspect defines the difference be-
tween an STSP and a TSP problem. When not all the nodes were visited, the
OCSP/STSP solver ended up supplying inconsistent answers. The straightfor-
ward STSP solver was then developed for this project to address these incon-
sistencies.

The straightforward STSP solver is a recursive function that explores every
possible path within the constrained distance. It will return the path with the
highest utility. In case of any ties of the utilities, it will return the path with

the least cost.

This algorithm has a complexity of O(N!). However, this upper bound is
never realized in our simulations due to the distance constraint. Restricting the
maximum depth of the search using the distance constraint results in a complex-
ity of O((N-x)!) where N is the number of total nodes and x is the minimum
number of nodes that cannot be traversed (due to the distance constraint).
Likewise, N-x would be the maximum depth of the search. Consequently, this
algorithm is sufficient for our experiments due to the number of nodes and the
distance constraint used. This is a result of the hierarchical design of the system
where the planner only deals with the high level nodes. In our problem, these
nodes represent the science sites.

Future work can address the further development of the OCSP /STSP solver,
but the goals for this project only required a working STSP solver, which in the
future can easily be changed out of the overall system due to its object-oriented
design.

2.3 Kino-Dynamic Path Planner Details

We used the Kino-dynamic path planner by Thomas Leaute [1]. We altered
Leaute’s algorithm to take in a new plan at each high-level planning node.
Each of these nodes corresponds to a science site.

The Kino-dynamic path planner system consists of 2 main parts:

e Planner
Driver
Adaptable Mission planner

Kino-dynamic path planner

e Simulator
Operator interface
Autopilot

Environment simulator

The Planner software runs on a Linux platform. The simulator setup con-
sists of three main components which run on separate platforms(Figure 4). The
operator interface and the environment simulator run on two separate Windows
PCs. The Piccolo UAV Autopilot is a specialized piece of programmable hard-
ware. The Simulator also includes two connecting components, a CAN Bus
and a Piccolo Ground Station. The simulation system is made by Cloud Cap
Technology.

10

hUDP Nelwor}(ﬁ

\ = =
S . —=1 —=
+——— Actuator Data -—fm | =]

i Piccolo I i) Flight Gear

avionics | | M 1 |[E|[|] St ||| fone Operater

H—SensorDala-}—‘"ﬂHHHH" HHHHHHH nterrace
= Serial m—— =
A fnoooon] I - nnooono .
Simulator PC Visualization PC

i | Piccolo Ground

Station

Figure 4: Piccolo hardware-in-the-loop simulator setup made by Cloud Cap
Technology

The driver program sets up the map and parameters for the simulation. The
map consists of the locations of the map corners and obstacles. In our system,
we have 2 obstacles which represent mountains. The simulation uses the para-
meters and dynamics of a Cub aircraft, which is a light personal airplane with
a simulated airspeed of 20 meters per second.

The data flowchart of the kino-dynamic path planner is shown in Figure 6.
The driver communicates with the operator interface by sending it waypoints
through a UDP network. The waypoints are created by the kino-dynamic path
planner, which performs calculations to ensure that the way-points are feasible.
The operator interface is a graphical interface which displays the map of the
area, the set of waypoints from the kino-dynamic path planner, the current lo-
cation of the aircraft, and the science sites.

The autopilot, which is an actual UAV autopilot, handles all of the control
dynamics. The autopilot inputs the aircraft pose, velocity, and aircraft para-
meters from the environment simulator, and inputs the target waypoint from
the operator interface. The autopilot then solves the problem of how to fly the
airplane to the next waypoint, and sends actuator instructions to the environ-
ment simulator. The environment simulator calculates motion and sensor data
given the actuator data and sends this data to the operator interface and to the
autopilot as feedback. The operator interface then returns the time taken to
the driver so the driver will know how long it took to reach the waypoint.

The driver program takes in the initial high-level plan in the form of a tpn
file. This is an XML representation of a temporally flexible state plan. An ex-

11

emplar plan is shown in Figure 5. The plan has lower and upper bounds for the
duration of each activity. In our problem, the activities consist of traveling to a
science site to do a science experiment. A temporally flexible plan is designed
to allow the kino-dynamic path planner to re-plan its path without changing
the overall activity plan (visiting science sites in a given order). After reading
in the plan, the driver initializes and runs the kino-dynamic path planner.

The kino-dynamic path planner initialization consists of initializing the start
time, the CPLEX representation of the obstacles, the kino-dynamic path plan-
ning solver for a given plane, the dynamics of each plane, the CPLEX represen-
tation for each plane, and the constraints (CPLEX is a optimization software
package for solving Linear Programming and Mixed Integer Linear Program-
ming problems). It then creates the CPLEX representation of the high-level
plan. The constraints are a pointer to a vector which is passed to the vehicles,
the obstacles and the high-level plan. This vector puts all of the different types
of constraints into a data structure that is compatible with the CPLEX solver.

During the run() phase of the kino-dynamic path planner, it generates a
guided plan. This function creates a set of waypoints for the autopilot to follow
in order to reach the next science objective. The kino-dynamic path planner
plans 25 waypoints at a time to be followed over the next 25 seconds (at one
waypoint per second). It then allows the plane to fly for 18 seconds before re-
planning. A 25 second planning horizon is used, which ensures that it will not
crash within that horizon. However, since the planner does not look-ahead any
further than that, it may leave the plane in a difficult position at the end of
that horizon. For example, it may end up on a collision course with an obstacle.
While the plane is at the 18th step in that plan, it is sure to have 7 seconds of
safe travel in front of it. Therefore, if it generates a new plan at that point, it
is fairly likely that it can avoid any object that it is approaching.

As mentioned, when the plane reaches the end of its plan (the 18th way-
point) we generate a new set of waypoints. In our implementation, we changed
the code so that it is able to accept a new plan at this point. Since the adaptable
mission planner only plans for the high-level goals (the science sites) we first
check to see if the plane has reached one of the science sites. If it has not, then
the kino-dynamic path planner re-plans as usual. If it has reached a science site,
then we pass information back to the adaptable mission planner which enables
it to generate a new plan. The adaptable mission planner needs to know the
actual time that it took to get to the new science site so that it can calculate the
fuel usage. It also needs to know which science sites have been visited. Once it
knows this, it can then generate a new plan based on where the plane currently
is and how much fuel it has left to travel between science sites.

Once a new high-level plan has been created, it is then accepted by the

kino-dynamic path planner. In order to integrate the new plan into the system,
we must remove only the relevant constraints from the constraint set, and then

12

[73,+INF]
 goFromiTo(seeker_uav0, 35.135, -117.445, 100, 50, 35.1235, -117.435, 100, 50)

[65,+INF]
. goFromTo(seeker_uav0, 35.1235, -117.435, 100, 50, 35.1162, -117.423, 100, 50)

[155,+INF]

375463] \o yoFromiTo(sesker_uav0, 35,1162, -117.423, 100, 50, 35.1243, -117.392, 100, 50)

[42,+INF]
P: goFromTo(seeker_uav0, 35.1243, -117.392, 100, 50, 35.1234, -117.383, 100, 50)

[40,+INF]
P: goFromTo(seeker_uav0, 35.1234, -117.383, 100, 50, 35.1152, -117.385, 100, 50)

Figure 5: This figure shows an exemplar plan created by the adaptable mission
planner. As an implementation detail, the adaptable mission planner creates the
plan based on the estimated distance. However, certain activities’ upper bounds
must be set to infinity to allow the kino-dynamic path planner to quickly find a
solution (a set of waypoints). The kino-dynamic path planner, however, respects
the lower bounds and finds the shortest path which respects this lower bound.
The kino-dynamic path planner also respects the overall mission constraints

(upper and lower bounds).

13

re-introduce the new constraints based on the new high-level plan.

When this process has been completed, we then use that plan to create a
new set of waypoints via the kino-dynamic path planner. These waypoints are
fed into the auto-pilot. This process continues looping until the plan has been
completed or a time constraint has been violated. Normally, the plan will finish
as planned. However, though the high-level planner estimates the travel time
to each science site, the plane may encounter obstacles which cause it to take
longer than expected to get to a given science site. If the simulated travel time
takes too much longer than the estimate, then the plane will run out of fuel and
will not be able to complete the plan. In this case a constraint violation (too
much total time taken) will halt the process.

2.4 Integration of Algorithms

The framework between the kino-dynamic path planner and the simulator was
already in place, so what remained was to link the adaptable mission planner
to the rest of the system. The input format for the kino-dynamic path planner
is a tpn file, which uses an XML format. A piece of code was written to turn
the vector output of the adaptable mission planner into a TFSP in the form of
a tpn file for use by the kino-dynamic path planner. The kino-dynamic path
planner was also modified to input new tpn files after reaching each node. This
allowed for changes in the high-level plan.

3 Experiment Design

We have three different planning strategies to consider. We prepared a set of
experiments in order to compare the performances of each strategy under dif-
ferent conditions.

The first plan type is the static finite-horizon plan. This strategy creates a
plan to travel a certain distance (finite-horizon) at the beginning of a simula-
tion, and then carries out the plan without making any changes (static). In our
scenario, we have a UAV that flies until it runs out of fuel. The finite-horizon
is made to match the amount of fuel, so that the UAV will complete the plan
at the same time it runs out of fuel. This means that the finite-horizon plan
actually covers the entire mission. In practice this plan uses our STSP solver
once and feeds the result into the simulator, which then reports how much of
the plan was successfully completed.

The second planning strategy uses an adaptable finite-horizon planner. This

is similar to the static finite-horizon planner, in that it creates a plan that covers
the lifetime of the UAV. It is different in that it re-plans after reaching each sci-

14

|

Load map and

parameters

!
Sendtime | | Read tpn file
to planner from planner

A

Call kpp to
get waypoints

Completed
Plan

Send waypoint
to autopilot

A

Fly autopilot
commands

No fuel —
Finished

Figure 6: Flowchart of the Kino-dynamic System

15

ence objective, so it can react to changing assignments of utility to science sites.
In practice this plan has the simulator call the STSP solver after each waypoint
is reached. With our modifications, the simulator is then able to switch to a
new temporally flexible state plan.

The third planning strategy is the greedy approach. This is essentially a one
step receding-horizon planner. At each step it chooses the best node to travel
to and then goes there. The best node is defined using a combination of travel
cost and science utility. Our greedy planner tried to maximize utility/cost at
each step. Different weightings would be possible for a greedy planner. For
example, it could only consider distance and always fly to the closest point. It
could also only consider cost and always fly to the point with highest utility.
Different situations could be built where each of these designs performs better
than the other, but we just chose an intermediate design that slightly prefers
utility over cost.

Example 1: In Figure 7 we see a scenario with 3 nodes, A, B, and C, where
the UAV starts at A. The distance between A and B is 2, the distance between
A and C is 4, and the distance between B and C is 6. The utility of B is 3 and
the utility of C is 6. If the UAV is allowed to fly a total distance of 4, then
the utility maximizing greedy planner will be better. It will fly to C and get
a utility of 6, while the cost minimizing greedy planner will fly to B and get
a utility of 3. If the UAV is allowed to fly a total distance of 8, then the cost
minimizing greedy planner will be better. It will fly to B, then C, and get a
utility of 9, while the utility maximizing greedy planner will fly to C and get a
utility of 6. It is not difficult to construct similar situations for different sets of
greedy planners with different weightings between cost and distance.

Utility = 3 Utility = 6
Figure 7: Simple example scenario

We chose our experiments to highlight the differences between the algo-
rithms. In an unchanging environment, we would expect the adaptable finite-

16

horizon planner to make exactly the same plan as the static finite-horizon plan-
ner. This is because they would have the same knowledge at the beginning
and create the same plan, and if the environment remained unchanged then the
adaptable planner would have no reason to update its plan. In an unchanging
environment we would also expect the finite-horizon planners to outperform the
greedy planner, since they create an optimal lifetime plan.

When the assigned utilities start changing, this no longer applies. The finite-
horizon planners are expected to suffer, since they no longer have perfect knowl-
edge of the utilities. In particular, the static finite-horizon planner will be unable
to react to changes in the environment, and the more severe the changes, the
more random its performance will be. If the changes happen infrequently, we
would expect the adaptable finite-horizon planner to perform fairly well, since
it will be able to incorporate the changes into its plan. In the extreme case,
however, the utilities will be completely random at each time step, and there
will be no benefit from planning. In this case the greedy planner would perform
well, since it would hit the high utility points as they appear.

Example 2: Imagine a scenario with 3 nodes, A, B, and C, where the UAV
starts at A. The distance between A and B is 2, the distance between A and
C is 4, and the distance between B and C is 6. The utility of B is 3 and the
utility of C is 6. The UAV is allowed to fly a total distance of 8. The finite-
horizon planner will travel to B, then C, to maximize its expected reward at
9. The greedy planner will travel to C and get a reward of 6, then run out of
fuel. However, if after the first time step the situation changes so that C is only
worth 1, then the finite-horizon planner will only receive a reward of 4, while
the greedy planner will have already received its reward of 6. By incorporating
changes it is very easy to construct situations where the greedy planner will
perform better than the finite-horizon planner or vice-versa. It is also possible
to construct situations where the static finite-horizon planner actually performs
better than the adaptable finite-horizon planner. These situations basically in-
volve a highly-changing environment where the static planner gets lucky while
the adaptable planner gets unlucky.

In general, we would expect that the more frequent and significant the
changes to utility, the less well the finite-horizon planners would perform. We
would expect the greedy planner to not be especially affected by the changes, so
its performance relative to the finite-horizon planners would improve. By run-
ning each strategy under different levels of change, we could see the crossover
point of where greedy planning starts to outperform finite-horizon planning,
and see where adaptable planning outperforms static planning. This is inter-
esting because if different strategies perform better with different amounts of
change, then it becomes useful to predict the amount of change. Using a model
of expected change would allow for the adoption of the strategy that is most
appropriate.

17

Thus we chose to test each strategy under different levels of change. We
chose to implement change as a percent chance of happening to each node at
each step. When change occurs, the utility of that node is swapped with another
node at random. The reason we chose to swap utilities instead of assigning new
utilities is that it keeps the magnitudes of the utilities the same. Basically it
keeps the utilities in the range we want them without having to actively nor-
malize them.

The percent change is a continuous and quantitative variable. This makes
it possible to create relationships and plots between the change parameter and
the performances of the planning strategies. The change parameter only affects
frequency of change, and not magnitude. In order to look at magnitude, we
would need to change the initial assignment of utilities. For example, a set of
utilities with several high utilities and several low utilities would lead to large
changes in utility when a high utility node gets swapped with a low utility node.
Thus, we chose to examine a couple distributions of utility. This would allow
us to look at the effects of magnitudes of change on the performance.

3.1 Experiment Parameters

The simulation was run with two sets of utilities. The first set approximates
a Gaussian curve, so that there are several medium values and some high and
some low values. There are eleven nodes, and the values 1, 5, 5, 10, 10, 10,
10, 10, 15, 15, and 20 were distributed among them. This fairly even distri-
bution is expected to be similar to many real scenarios. The second set of
utilities was created to give high magnitudes of change. The eleven nodes were
assigned values of 5, 5, 5, 5, 5, 5, 5, 5, 100, 100, and 100. This distribution had
three “jackpots” so each time a change occurred there was the potential that one
node would drop a lot in value, while another would suddenly gain a lot of value.

The different planning strategies were run for different frequencies of change.
The levels of change used were 0%, 5%, 10%, 15%, 100%, for a total of 21 dif-
ferent change frequencies. These levels of change represent the chance for each
node to change its utility at each time step. Each of the three planning strategies
was run 25 times for each change level, and the accrued utilities were averaged
over the 25 runs.

In order to be fair to each of the three planning strategies, they were each
run using the same random numbers. This means that the changes were calcu-
lated for each step of a run, and then all three strategies were run using that
sequence of changes. This was done to keep one algorithm from getting lucky
while the other algorithms got bad runs.

18

4 Results
4.1 Solution Walkthrough

In this section, we will show the results of one specific simulation run. This
simulation run will demonstrate the benefit of the adaptable mission planning
strategy. The main idea that will be demonstrated is the benefit of re-planning
at each step in the TFSP (high level plan). A static planner constructs a TFSP
at the beginning of the mission and follows that plan throughout the mission. It
disregards the changing situation. However, an adaptable mission planner gen-
erates a new plan when necessary, which takes into account the amount of time
that it actually took to get to the science site, as well as the knowledge gained
from the visit. This knowledge is formulated as the updated set of utilities for
the science sites.

As we stated earlier, our motivation is to create an autonomous UAV to
conduct science experiments on Mars. To that end, we interfaced the adaptable
mission planner with the Mars Plane simulator. The adaptable mission planner
constructs a plan which is executed in the simulation environment. Figure 8
shows the operator interface of the simulation system. This interface displays
the location of the UAV on a (representative) map of an area of Mars. The plane
is currently hovering around the starting location, where the vehicle entered the
Mars environment. The map depicts mountainous areas which the plane wants
to fly around. It also depicts craters, rock outcroppings and cliffs. These are
sites where the plane would like to fly to and conduct science experiments. For
example, a science experiment may consist of taking and analyzing photographs
of an area. The operator interface shows the progress of the UAV as it navigates
through this environment.

The plan is constructed by the adaptable mission planner. The adaptable
mission planner takes in a set of science sites (labeled B through J), the starting
location (labeled A), a set of utilities for each science site and a maximum travel
distance (5 nautical miles). The utilities reflect the science value of a given site.
In this example, we start out with a set of utilities shown in Figure 9. The
initial utilities reflect 6 low value sites (C, E, G, H, I, J) and 3 sites of high
interest (B, D and F). The adaptable mission planner constructs the first plan
which is reflected in Figure 9. This plan shows that the plane is able to hit all
of the high value science sites. The red arrows indicate the path that the UAV
will take.

The execution of the plan starts when the adaptable mission planner sends
a TFSP to the kino-dynamic path planner. The kino-dynamic path planner
takes that plan and constructs a set of waypoints (a low-level plan) which guide
the UAV along the route designated by the TFSP. The set of waypoints are
approximately one-second apart and respect the kino-dynamics of the plane.
These waypoints are sent to the auto-pilot which essentially flies the airplane.

19

The plane flies to each waypoint in succession. To do this, the auto-pilot sends
actuator instructions to the simulator which simulates both the UAV and the
environment.

The plane initially proceeds from the Mars environment entry point (Site A)
to the first science site (Site B). When the plane reaches a waypoint, it notifies
the kino-dynamic path planner. The kino-dynamic path planner waits for the
plane to reach the 18th node. When the 18th node is reached, it sends a new
set of waypoints.

However, the kino-dynamic path planner must first check to see if a sci-
ence site has been reached. If one has, it sends the status information to the
adaptable mission planner which generates a new TFSP. Therefore, when the
plane arrives at Site B, status information is sent back to the adaptable mission
planner which uses this new information to generate a new plan. Specifically, it
receives the actual travel time to the current site as well as the updated utilities.
The travel time to a given node is estimated in the planner during plan creation.
However, the environment simulator determines the actual time, which is a re-
sult of other factors such as the kino-dynamics, the initial pose or direction, as
well as the unpredictable environment. When the plane arrives at Site B, it
turns out that it took less travel time than expected. Therefore, the adaptable
mission planner has more mission-time left than expected. Consequently, it cre-
ates a new plan (Figure 10) which is now able to travel to one extra science site.

The plane then proceeds to Site C, which is a crater. When the plane con-
ducts the science experiment at Site C, it recognizes that this site is of very high
science value. Consequently, the utility of all of the craters is increased. The
adaptable mission planner then uses these updated utilities to generate a new
plan (Figure 11) which is able to visit all of the remaining craters.

The plane then proceeds to Site G, which results in no change in the plan
(Figure 12). However, when it reaches Site H, it returns a travel time which
is lower than expected. Consequently, the adaptable mission planner is able to
create a plan which visits one additional site, shown in Figure 13. The mission
concludes when the plane travels to Sites I an J.

This walk-through demonstrates the benefit of the adaptable mission plan-
ner. In this example the plan is adapted to compensate for the actual travel
time and the additional information learned when a site is visited. When nec-
essary, the adaptable mission planner generated a new plan which took into
account the actual travel time, as well as the knowledge gained from the visit.
The result is a more effective planner.

20

8 Piccolo 251, [26774928] 20:58:02; 07 May, 2005

Telemetyy | Commands Man | Prefight | Limis |

AR[1500.85(m] TAS| 2185[m/s] Vin[120 TITIM4 RSSITT WPB [Send
o ursor posiion und talion

© Newrulipoirt | & Seect (* In | Lat| N 35129345 [deg] | Range| 1304902 fkm]

© Newauickplon | C Pan " Dul | Lon | W117.37817 [deg) | Beaing| 267.4 [dea]

 Newland plan

ede_| Deete
Request| _Send
Save. | Open

¥ Local Lo

¥ Remate

Add inage laye.
Add vector layer.
final_maptf_| rem|

¥ Auto Canter

w2

Figure 8: This is the operator interface that displays the UAV’s position on the
map with the science sites.

21

H (5) I (5)
A%) \
e
A(O) o f ‘ ¥ J(5)

\ 77777777777 D (5000)
@ B (5000) P> © E(5)
- | (5

.
F (5000)

Figure 9: The above diagram shows plan 1 of the solution walkthrough.

Plan 2
H (5) 1(5)
> \
. G(5)
A(O) . f ‘ 2 J(5)

77777777777 D (5000) I
@ B (5000) /O\ = E(5)
= e ?

F (5000)

Figure 10: The above diagram shows plan 2 of the solution walkthrough.

22

Plan 3

H (5) I (20,000)
Al

A & § ‘ ¥oJ(5)
D (5000)
© B (5000) @ & E)
| C(20,000) 4
F (5000)

Figure 11: The above diagram shows plan 3 of the solution walkthrough.

Plan 4

H (5) I (20,000)
re

YUR | L T
77777777777 D (5000)
© B (5000) ¢ L EE
- | C (20,000) 4
F (5000)

Figure 12: The above diagram shows plan 4 of the solution walkthrough.

23

Plan 5

H (5) 1 (20,000)
re
. G (20,000) &
A(O) o L T
D (5000)
© B (5000) @ & E)
- | C(20,000) 4
F (5000)

Figure 13: The above diagram shows plan 5 of the solution walkthrough.

Plan 6
H (5) | (20,000)
re
= | G(20,0000 &
AO) o L e
7777777777 D (5000)
© B (5000) ¢ L EE
- | C(20,000) 4
F (5000)

Figure 14: The above diagram shows plan 6 of the solution walkthrough.

24

4.2 Performance Metrics

When running each simulation, we end up with a total utility gained, which is
simply a sum of the utilities gained as each point was visited. We measured
(accrued) the utilities based on the current utility estimate for a given site. In
other words, it is as if they were locked in when the previous node was visited.
This means that if a point was visited when the estimated utility was 5, then
no matter how it changed later it would still be accrued (to the planner’s score)
at a value of 5. The objective of this method is to measure how well a planning
strategy works based upon what it knows. We are not attempting to measure
the accuracy of the utility estimator. Different strategies make different trade-
offs. For example, a finite horizon planner often forgoes a near-term reward
in exchange for a higher reward later. A static planner chooses to ignore new
information in favor of following its initial plan to fruition. All of these strate-
gies have merit, however, our experiments show that the adaptive finite horizon
strategy is most effective over a variety of conditions.

The main metric for comparing the performances of the different planning
strategies is the total utility. This is intended to be representative of the total
science value, which is the main goal of a mission to Mars.

4.3 Analysis

Figure 15 shows the results for the Gaussian distribution of utilities. The rate
of change is along the x-axis and the average total utility gained is on the y-
axis. The blue line is the static finite-horizon plan, the green line is the adapt-
able finite-horizon plan and the red line is the greedy plan (adaptable one-step
receding-horizon plan).

For a zero rate of change the static planner performs as well as the adapt-
able planner. This is because they are doing the same thing. The adaptable
planner takes into consideration new utilities. However, since the utilities don’t
change, this has no effect on the performance. Both of the finite-horizon plans
outperform the greedy plan (for a zero rate of change). This is because the
finite-horizon planners are optimizing over the entire mission. They trade off
near-term rewards in exchange for a higher overall gain, whereas the greedy
planner is simply doing what is best right not.

As the rate of change increases the performance of both finite-horizon plan-
ners decreases. The performance of the static planner drops most quickly. This
demonstrates the deficiencies of the static planning strategy. However, the adap-
tive finite-horizon planner performs the best during a moderate rate of change.
This highlights the strength of that strategy. After about 50% percent change,
the static planner performs worse than the greedy planner and the adaptable
finite-horizon planner performs about the same as the greedy planner. This is

25

Gaussian Distributed Utilities
a5 T T T T T T T T T

Static Plan
Adaptive Finite Horizon
Adaptive Graedy J

ao

75

-
[

Utility Score

[a2]
i

G0

55

a0 1 1 1 1 1 1 1 1 1
i} 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Rate of Change

Figure 15: Total Utilities for a Gaussian Distributed Scenario

where the greedy planner’s performance is the strongest. However, the adapt-
able finite horizon planner still performs approximately as well as the greedy
planner.

These results are very interesting. As expected, the static planner out-
performs the greedy planner under stable conditions and the greedy planner
outperforms the static planner under unstable conditions. However, the most
interesting thing that these results show is that the adaptable planning strategy
is good in all situations. It is as good as the static planner under stable con-
ditions, it is better than either planner under moderately changing conditions,
and it is approximately equal in performance to the greedy planner under very
unstable conditions.

You may notice that the results get very noisy for higher levels of change,
despite being averaged over 25 runs. This is because when the system is chaotic,
the utilities gained are very dependent on chance, especially for the static plan-
ner. As a final note, the two finite-horizon planners have curves that have some
of the same bumps at the same places. This behavior is due to the fact that
they were run using the same set of random conditions as described above.

Figure 16 shows the results for the distribution of utilities with 3 jackpots.
If we look at only the curves for the finite-horizon planners we see much the

26

Three High Utilities

400 T T T T T T T T T
Static Plan

Adaptive Finite Horizon
Adaptive Greedy

350

300

[ul
(a5}
[}

Ltility Score

B
=
[}

150

100 1 1 1 1 1 1 1 1 1
0 0.1 0z 0.3 0.4 0.5 06 07 0.8 09 1

Rate of Change
Figure 16: Total Utilities for a Scenario with three high utilities

same behavior as before, showing that they behave the same for high magni-
tudes of change as for low magnitudes of change. The adaptable planner gains
a higher utility than the static planner with higher levels of change, and both
finite-horizon planners fall and then stay fairly constant. The two finite-horizon
planners again have approximately the same shape as each other as they were
run using the same random sets of changes.

The greedy planner performs almost as well as the finite-horizon planners
for no change, and then immediately does better as change is added. This is be-
cause this problem setup is very well suited for the greedy planner. The greedy
planner can always go through and pick up the top three points. The remaining
rewards are minor in comparison. When change is added, the greedy planner
actually performs better, because it can potentially pick up the jackpots multi-
ple times as they move around. Thus the greedy planner seems to perform well
for high magnitudes of change.

This result is interesting as it shows how influential the utility distribu-
tions are on the experiment results. This corresponds to the results found in
Hasegawa’s work|[2], in that when the problem setup contains a handful of ex-
tremely high utility values relative to the rest of the graph in a changing world,
the greedy planner will outperform finite-horizon planners.

Essentially, this utility distribution is especially well suited to the greedy

27

planner. The Gaussian distributed utility problem, however, is not well suited
for the greedy planner because the planner must optimize over a greater number
of nodes in order to achieve good performance. It remains to be shown which
utility model (and planning horizon) is reflective of the real world.

5 Conclusions

5.1 Impact on community

The major contribution that this work provides is a novel application of the
above algorithms. We present a complete system that extends the kino-dynamic
path planner to handle changes to its high level goals.

We also present a framework for evaluating high-level mission planners with
different utility belief models. This framework can be used in the system engi-
neering of a UAV in evaluating the benefits of different forms of planning.

5.2 Future Work

Improvements can be made to the STSP solver that is used in the adaptable
mission planner. The current implementation of the OCSP/STSP solver re-
turns inconsistent answers when plans are generated that do not cover all of the
nodes. Once that has been completed, further improvements to the speed of
the OCSP/STSP solver can be done by using Conflict-direct A* in place of the
Constraint-based A*[3] algorithm used to solve the OCSP.

For other future work, the adaptable finite-horizon and greedy strategies
could be blended. When change occurs infrequently we would expect the adapt-
able finite-horizon plan to perform best, but it could still benefit from a little
greediness. This greediness could be implemented using discount factors. Es-
sentially a fully greedy planner uses a discount factor of 0 (full discounting),
while our finite-horizon planner uses a discount factor of 1 (no discounting).
Intermediate values would allow for varying levels of greediness, and we could
expect different levels of change in the environment to have different optimal
discount values in the planning algorithm.

An extension of this work would be the autonomous creation of new nodes
or science sites, and the decision making process necessary to decide when a
new node is justified. Also, the work can be extended to allow the continuous
re-planning as the UAV flew between nodes.

We explored how the different strategies performed under different levels of
change in utility. Another parameter that could be changed is the estimates of

28

the distances between points. One rationale for changing these distances would
be to have the initial estimates be incorrect, and become more refined over time.
Another rationale would be if the targets actually did move, for situations such
as fire-fighting UAVs on Earth. Thus an interesting topic to examine would be
the level of benefit from re-planning as the estimates of the costs change.

5.3 Summary

One of the advantages to fully autonomous robotics is the ability to do in-situ
planning. These plans can be adaptive and react to changes in the environment.
We have demonstrated that an adaptable planner performs better than a static
planner when changes in utility are modeled. We have also demonstrated that
the adaptable planning strategy performs well at all levels of change assuming
that utility distributions are Gaussian.

In order to perform adaptable planning we have used a hierarchical method
that combines a high-level planner with a low-level planner. The high-level
planner that we used was an adaptable mission planner for science site selec-
tion, while the low-level planner was a kino-dynamic path planner for vehicle
actuation. This complete planner was successfully run on a simulator, and rep-
resents a novel application of these algorithms.

References

[1] T. Leaute and B. Williams. Coordinating Agile Systems Through The Model-
based Ezecution of Temporal Plans. Massachusetts Institute of Technology,
2004, accepted to the International Workshop on Planning under Uncer-
tainty for Autonomous Systems.

[2] B. Hasegawa. Continuous Observation Planning for Autonomous Explo-
ration. Masters of Engineering Thesis, Massachusetts Institute of Technol-
ogy, 2004.

[3] B. Williams and R. Ragno. Conflict-directed A* and Its Role in Model-based
Embedded Systems. To appear in the Special Issue on Theory and Applica-
tions of Satisfiability Testing, accepted in Journal of Discrete Applied Math,
January 2003.

29

