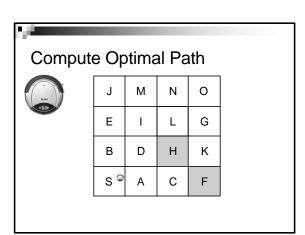


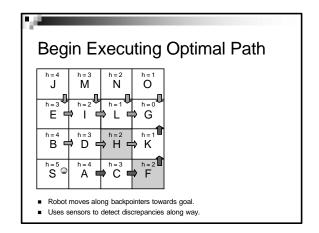
Outline

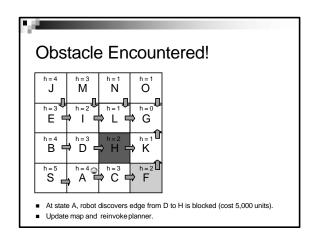
- Optimal Path Planning in Partially Known Environments.
- Continuous Optimal Path Planning
 □Dynamic A*
 □Incremental A* (LRTA*) [Appendix]

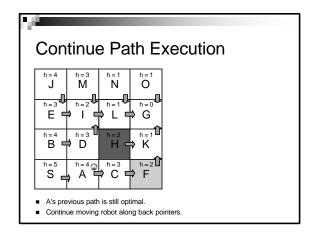
[Zellinsky, 92]

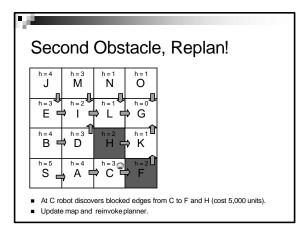
- 1. Generate global path plan from initial map.
- 2. Repeat until goal reached or failure:
- □ Execute next step in current global path plan
 - □ Update map based on sensors.
 - ☐ If map changed generate new global path from map.

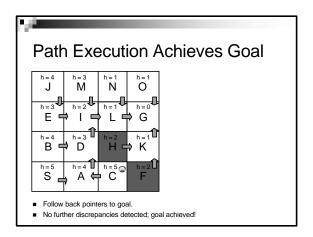












Outline ■ Optimal Path Planning in Partially Known Environments. ■ Continuous Optimal Path Planning □Dynamic A* □Incremental A* (LRTA*) [Appendix]

What is Continuous Optimal Path Planning?

- Supports search as a repetitive online process.
- Exploits similarities between a series of searches to solve much faster than solving each search starting from scratch.
- Reuses the identical parts of the previous search tree, while updating differences.
- Solutions guaranteed to be optimal.
- On the first search, behaves like traditional algorithms
- □ D* behaves exactly like Dijkstra's.
- ☐ Incremental A* A* behaves exactly like A*.

Dynamic A* (aka D*) [Stenz, 94]

- 1. Generate global path plan from initial map.
- 2. Repeat until Goal reached, or failure.
 - ☐ Execute next step of current global path plan.
 - □ Update map based on sensor information.
 - $\hfill \square$ Incrementally update global path plan from map changes .
- → 1 to 3 orders of magnitude speedup relative to a non-incremental path planner.

Map and Path Concepts

■ c(X, Y):

Cost to move from Y to X. c(X,Y) is undefined if move disallowed.

Neighbors(X):

Any Y such that c(X,Y) or c(Y,X) is defined.

■ o(G,X):

True optimal path cost to Goal from X.

• h(G,X):

Estimate of optimal path cost to goal from X.

b(X) = Y : backpointer from X to Y. Y is the first state on path from X to G.

D* Search Concepts

■ State tag t(X):

□ NEW: has no estimate h.

□ OPEN: estimate needs to be propagated.

 \square CLOSED: estimate propagated.

■ OPEN list:

States with estimates to be propagated to other states.

□ States on list tagged OPEN

□ Sorted by key function k (defined below).

D* Fundamental Search Concepts

■ k(G,X): key function

Minimum of

- \Box h(G,X) before modification, and
- □ all values assumed by h(G,X) since X was placed on the OPEN list.
- Lowered state: k(G,X) = current h(G,X),
 - ☐ Propagate decrease to descendants and other nodes.
- Raised state: k(G,X) < current h(G,X),</p>
 - □ Propagate increase to dscendants and other nodes.
 - ☐ Try to find alternate shorter paths.

Running D* First Time on Graph

Initially

- Mark G Open and Queue it
- Mark all other states New
- Run Process_States on queue until path found or empty.

When edge cost c(X,Y) changes

- If X is marked Closed, then
 - □ Update h(X)
 - ☐ Mark X open and queue with key h(X).

Use D* to Compute Initial Path

J	M	N NEW	O
E	 NEW	L	G
B	D	H	K
S ©	A	C	F

States initially tagged NEW (no cost determined yet)

Use D* to Compute Initial Path

J	M	NEW	O
E	 NEW	L NEW	h=0 G OPEN
B	D	H	K
S	A	C	F

	OPEN List
1	(0,G)

- $\begin{array}{lll} 8: & \text{if kold} = h(X) \text{ then} \\ 9: & \text{ for each neighbor Y of } X: \\ 10: & \text{ if } Y(Y) = NEW \text{ or} \\ 11: & (h(Y) = X \text{ and } h(Y) ? h(X) + c(X,Y)) \text{ or} \\ 12: & (b(Y)? X \text{ and } h(Y) > h(X) + c(X,Y)) \text{ then} \\ 13: & b(Y) = X, |\text{Insert}(Y, h(X) + c(X,Y)) \text{ then} \\ \end{array}$
- Process OPEN list until the robot's current state is CLOSED.

Process_State: New or Lowered State

- Remove from Open list , state X with lowest k
- If X is a new/lowered state, its path cost is optimal! Then propagate to each neighbor Y
 - $\hfill \square$ If Y is New, give it an initial path cost and propagate.
 - ☐ If Y is a descendant of X, propagate any change.
 - □ Else, if X can lower Y's path cost, Then do so and propagate.

M NEW J В D Н S C

OPEN List 1 (0,G)

- $\begin{array}{ll} 8: \text{ if kold} = h(X) \text{ then} \\ 9: \text{ for each neighbor Y of X:} \\ 10: \text{ if } t(Y) = h(W) \text{ or} \\ 11: \text{ } (b(Y)) = X \text{ and } h(Y) ? h(X) + c(X,Y)) \text{ or} \\ 12: \text{ } (b(Y)? X \text{ and } h(Y) > h(X) + c(X,Y)) \text{ then} \\ 13: \text{ } b(Y) = X; \text{Insert}(Y,h(X) + c(X,Y)) \end{array}$
- Add new neighbors of G onto the OPEN list

Use D* to Compute Initial Path

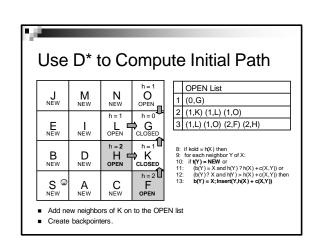
O

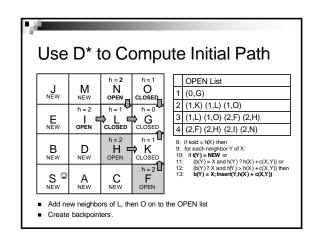
GOPEN

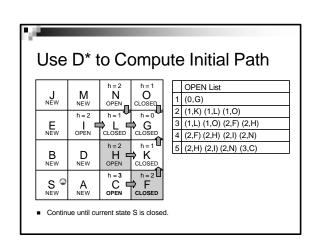
K

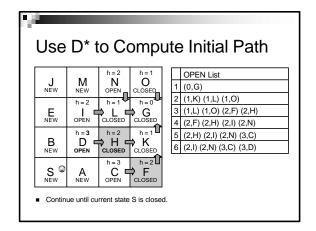
Create backpointers to G.

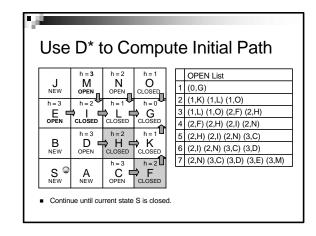
Use D* to Compute Initial Path OPEN List OPEN M 1 (0,G) h = 0 2 (1,K) (1,L) (1,O) L OPEN $\begin{array}{ll} 8: & \text{if kold} = h(X) \text{ then} \\ 9: & \text{ for each neighbor Y of } X: \\ 9: & \text{ for PalW or} \\ 11: & & \text{ (b(Y)} = X \text{ and } h(Y) ? h(X) + c(X,Y)) \text{ or} \\ 12: & & \text{ (b(Y)} = X \text{ and } h(Y) > h(X) + c(X,Y)) \text{ then} \\ 13: & & \text{ b(Y)} = X, \text{ insert(Y,h(X)} + c(X,Y)) \end{array}$ K B D H S Add new neighbors of G onto the OPEN list

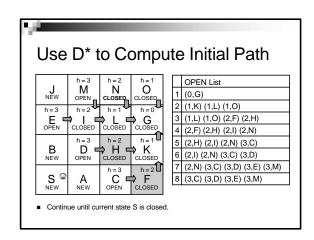


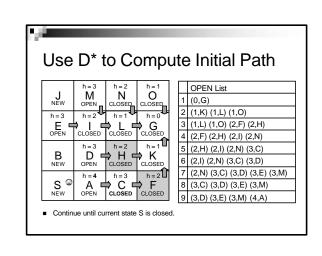


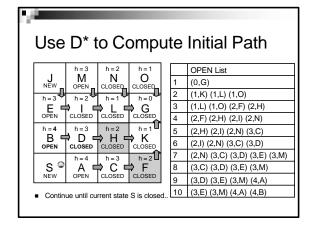


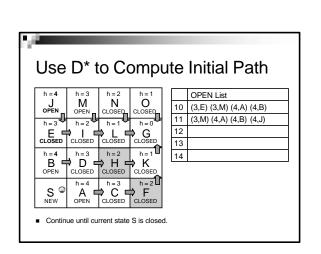


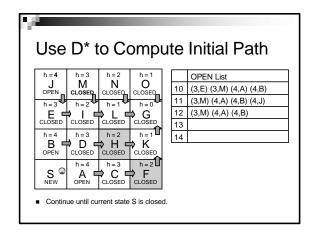


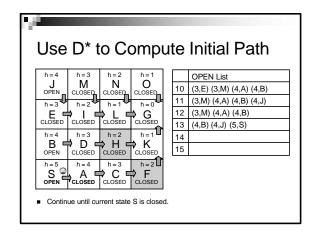


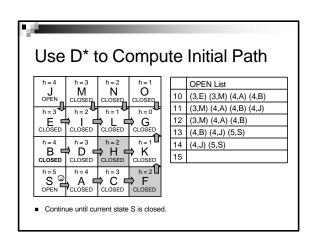


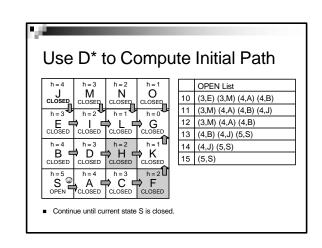


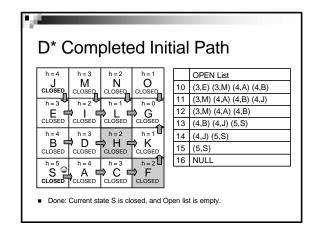


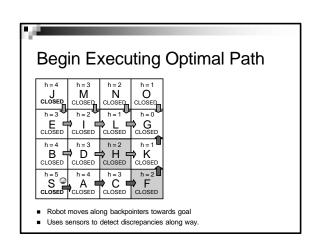


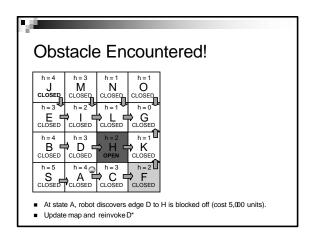








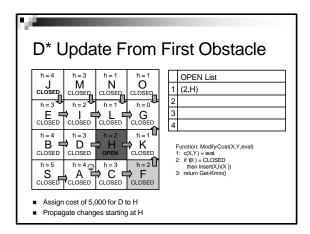


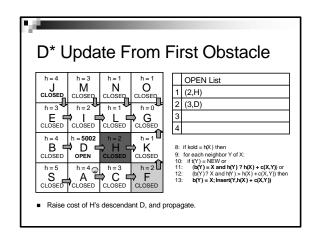


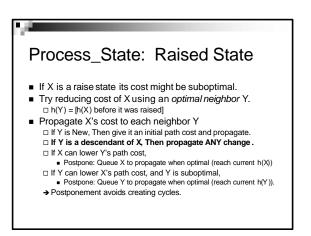
Running D* After Edge Cost Change

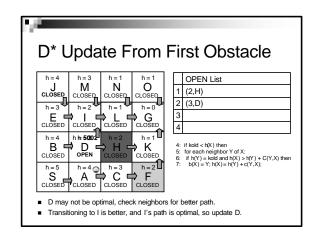
When edge cost c(X,Y) changes

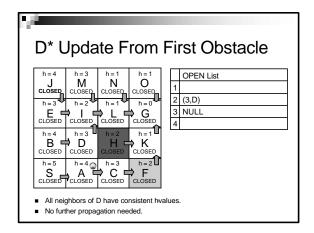
- If X is marked Closed, then
 □Update h(X)
 □Mark X open and queue, key is new h(X).
- Run Process_State on queue
 until path to current state is shown optimal,
 or queue Open List is empty.

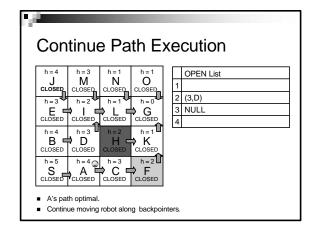


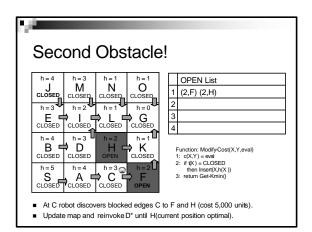


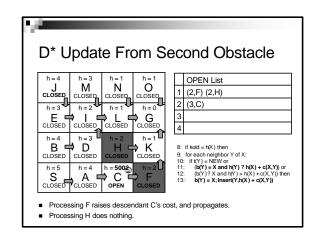


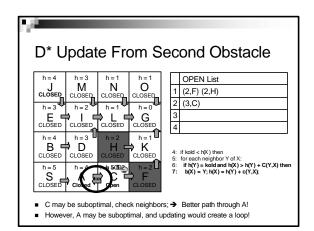


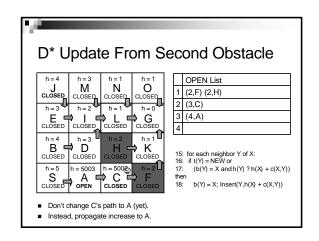


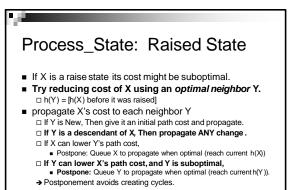


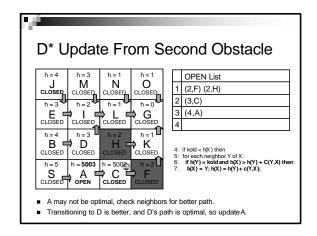


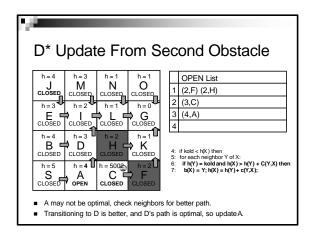


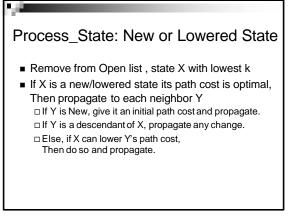


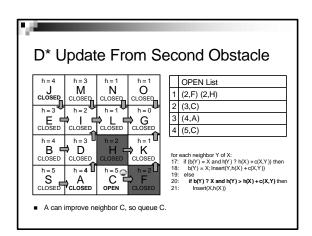


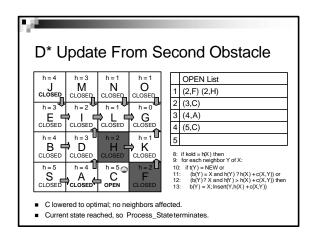


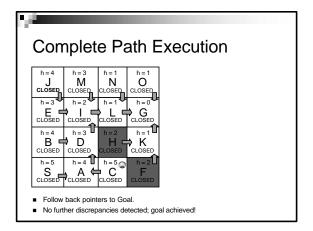












```
D* Pseudo Code

Function: Process-State()

1: X = Min-State()

2: if X-NNUL then return -1

3: kold = Get-Main(); Delete(X)

5: for each neighbor Y of X:

6: if h(Y) = kold and h(X) > h(Y) + c(Y,X) then

7: b(X) = Y, h(X) = h(Y) + c(Y,X);

8: if kold = h(X) then

10: if t(Y) = X and h(Y) > h(X) + c(X,Y)) or

10: if t(Y) = X and h(Y) > h(X) + c(X,Y)) then

11: (b(Y) = X and h(Y) > h(X) + c(X,Y)) then

12: (b(Y) = X and h(Y) > h(X) + c(X,Y)) then

13: for each neighbor Y of X:

16: if t(Y) = NBW or

17: (b(Y) = X and h(Y) > h(X) + c(X,Y)) then

18: delen

18: delen

19: if b(Y) = X and h(X) > h(Y) + c(X,Y) then

10: if s(X) = NBW or

17: (b(Y) = X and h(Y) > h(X) + c(X,Y)) then

18: delen

19: delen

10: f(X) = NBW or

17: (b(Y) = X and h(Y) > h(X) + c(X,Y) then

18: delen

19: delen

10: f(X) = NBW or

17: (b(Y) = X and h(Y) > h(X) + c(X,Y) then

18: delen

19: delen

10: delen
```

Recap: Continuous Optimal Planning

- Generate global path plan from initial map.
- 2. Repeat until Goal reached, or failure.
- Execute next step of current global path plan.
- Update map based on sensor information.
- Incrementally update global path plan from map changes.
- → 1 to 3 orders of magnitude speedup relative to a non-incremental path planner.

Recap: Dynamic A*

- Supports search as a repetitive online process.
- Exploits similarities between a series of searches to solve much faster than from scratch.
- Reuses the identical parts of the previous search tree, while updating differences.
- Solutions guaranteed to be optimal.
- On the first search, behaves like traditional Dijkstra.