

Challenges of Autonomy in the Real

Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information

Robustness under uncertainty

Minerva

Pearl

Predicted Health Care Needs

- By 2008, need 450,000 additional nurses:
 - Monitoring and walking assistance
 30 % of adults 65 years and older have fallen this year

Cost of preventable falls: \$32 Billion US/year

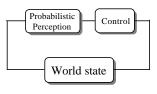
Intelligent reminding

Cost of medication non-compliance: \$1 Billion US/year

Spoken Dialogue Management

- We want...
 - Natural dialogue...
 - With untrained (and untrainable) users...
 - In an uncontrolled environment...Across many unrelated domains
- Cost of errors...
 - Medication is not taken, or taken incorrectly
 - Robot behaves inappropriately
 - User becomes frustrated, robot is ignored, and becomes
- How to generate such a policy?

Perception and Control



Probabilistic Methods for Dialogue Management

- Markov Decision Processes model action uncertainty
 - (Levin et. al, 1998, Goddeau & Pineau, 2000)
- Many techniques for learning optimal policies, especially reinforcement learning
 - (Singh et al. 1999, Litman et al. 2000, Walker 2000)

Markov Decision Processes

- A Markov Decision Process is given formally by the following:

 - a set of states $S = \{s_1, s_2, ..., s_n\}$ a set of actions $A = \{a_1, a_2, ..., a_m\}$ a set of transition probabilities $T(s_i, a, s_j) = p(s_j | a, s_i)$
 - a set of rewards R: $S \times A$? \Re a discount factor $\gamma = [0, 1]$ an initial state $s_0 \in S$
- Bellman's equation (Bellman, 1957) computes the expected reward for each state recursively,

$$J(\mathbf{s}_i) = \max_{a} \left(R(\mathbf{s}_i, a) + \gamma \sum_{j=1}^{N} p(\mathbf{s}_j | \mathbf{s}_i, a) \cdot J(\mathbf{s}_j) \right)$$

and determines the policy that maximises the expected, discounted reward

The POMDP in Dialogue Management

- State: Represents desire of user e.g. want_tv, want_meds
- This state is unobservable to the dialogue system
- Observations: Utterances from speech recogniser e.g. .I want to take my pills now.
- The system must infer the user's state from the possibly noisy or ambiguous observations
- Where do the emission probabilities come from?
- At planning time, from a prior model
 At run time, from the speech recognition engine

The MDP in Dialogue Management

- State: Represents desire of user e.g. want_tv, want_meds
- Assume utterances from speech recogniser give
 - e.g. I want to take my pills now.
- Actions are: robot motion, speech acts
- Reward: maximised for satisfying user task

Markov Decision Processes

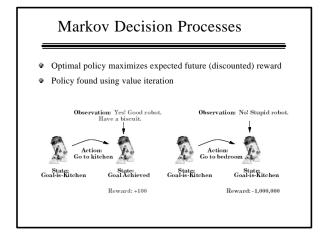
- Model the world as different states the system can be in e.g. current state of completion of a form
- Each action moves to some new state with probability p(i; j)
- Observation from user determines posterior state

Observation: "Go to kitchen" Action: Go to kitcher

State: Know nothing

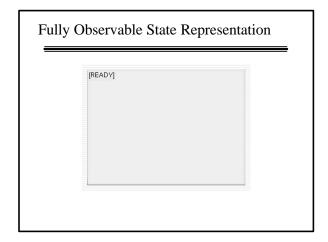
State: Goal-is-Kitchen

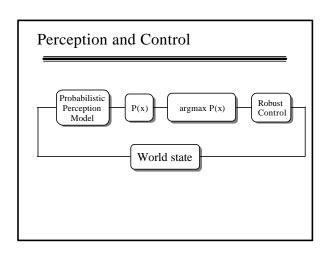
State: Goal Achieved

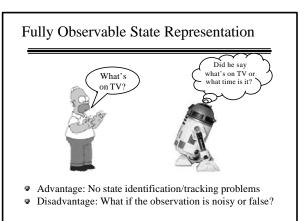


Markov Decision Processes

- Since we can compute a policy that maximises the expected reward...
- then if we have ...
- a reasonable reward function
- a reasonable transition model
- Do we get behaviour that satisfies the user?

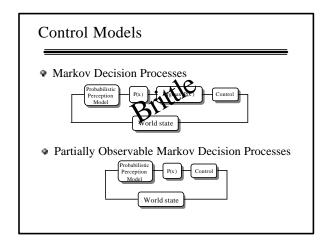


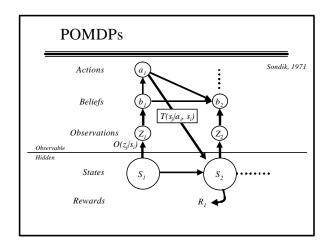


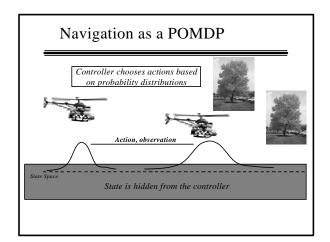


Talk Outline

- Robots in the real world
- Partially Observable Markov Decision Processes
- Solving large POMDPs
- Deployed POMDPs

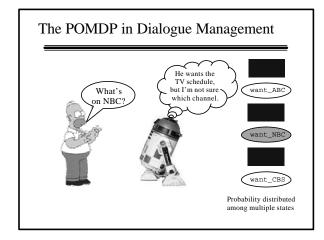


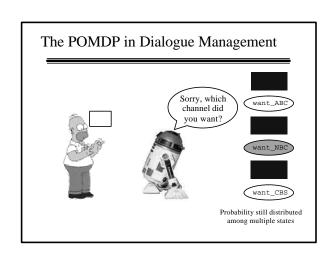


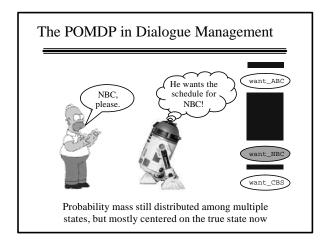


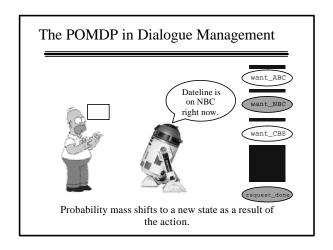
The POMDP in Dialogue Management

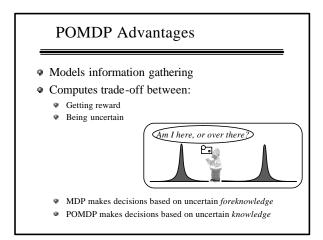
- State: Represents desire of user e.g. want_tv, want_meds
- This state is unobservable to the dialogue system
- Observations: Utterances from speech recogniser e.g. .I want to take my pills now.
- The system must infer the user's state from the possibly noisy or ambiguous observations
- Where do the emission probabilities come from?
 - At planning time, from a prior model
 - At run time, from the speech recognition engine
- Actions are still robot motion, speech acts
- Reward: maximised for satisfying user task

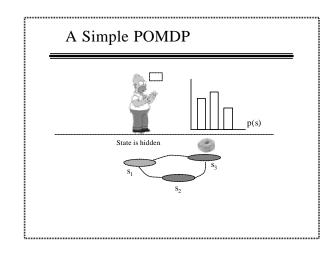


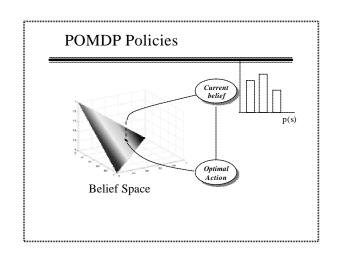


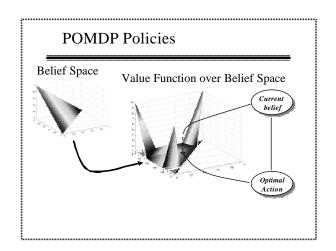


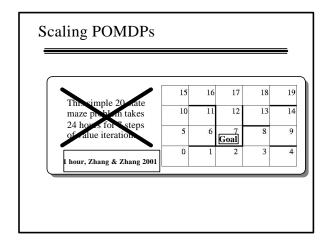


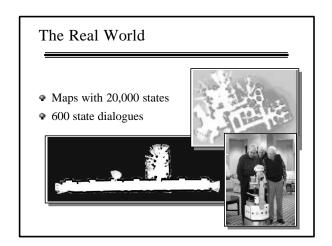








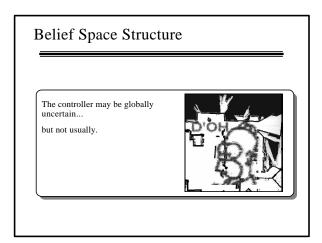




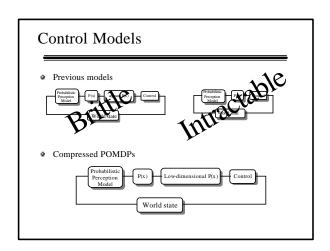
Structure in POMDPs

- Factored models

 - Boutilier & Poole, 1996
 Guestrin, Koller & Parr, 2001
- Information Bottleneck models
 - Poupart & Boutilier, 2002
- Hierarchical POMDPs
 - Pineau & Thrun, 2000
 - Mahadevan & Theocharous 2002
- Many others



Belief Compression If uncertainty has few degrees of freedom, belief space should have few dimensions Each mode has few degrees of freedom



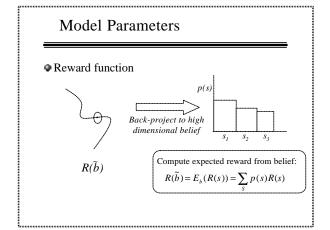
The Augmented MDP

Represent beliefs using

$$\widetilde{b} = \left\langle \underset{s}{\operatorname{arg\,max}} b(s); H(b) \right\rangle$$

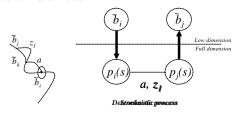
$$H(b) = -\sum_{i=1}^{N} p(s_i) \log_2 p(s_i)$$

Discretise into 2-dimensional belief space MDP



Model Parameters

Use forward model

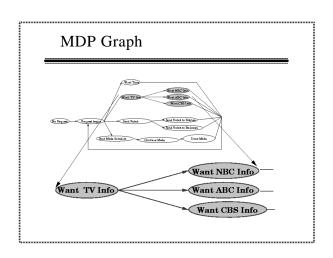


Augmented MDP

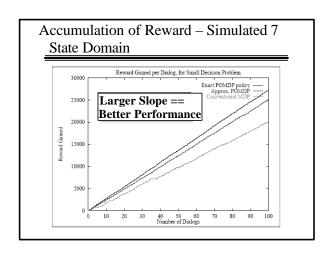
- 1. Discretize state-entropy space
- 2. Compute reward function and transition function
- 3. Solve belief state MDP

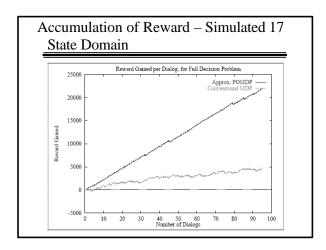
Nursebot Domain

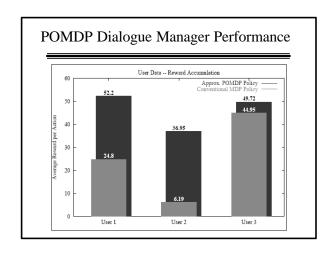
- Medication scheduling
- Time and place tracking
- Appointment scheduling
- Simple outside knowledge e.g. weather
- Simple entertainment e.g. TV schedules
- Sphinx speech recognition, Festival speech synthesis

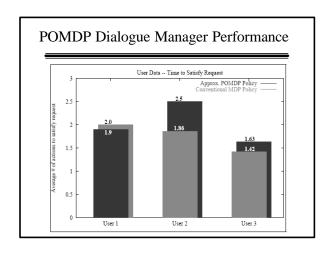


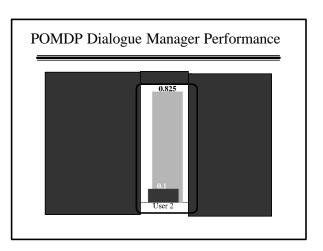
Observation	True State	Belief Entropy	Action	Reward
hello	request begun	0.406	say hello	100
what is like	start meds	2.735	ask repeat	-100
what time is it for will the	want time	0.490	say time	100
was on abc	want tv	1.176	ask which station	-1
was on abc	want abc	0.886	say abc	100
what is on nbc	want nbc	1.375	confirm channel nbc	-1
yes	want nbc	0.062	say nbc	100
go to the that pretty good what	send robot	0.864	ask robot where	-1
that that hello be	send robot bedroom	1.839	confirm robot place	-1
the bedroom any i	send robot bedroom	0.194	go to bedroom	100
go it eight a hello	send robot	1.110	ask robot where	-1
the kitchen hello	send robot kitchen	1.184	go to kitchen	100

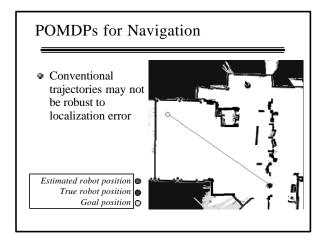


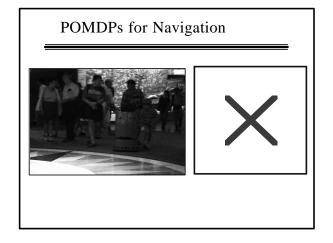


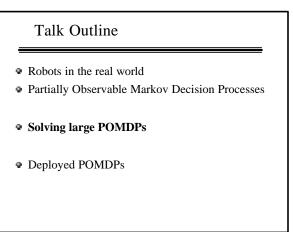


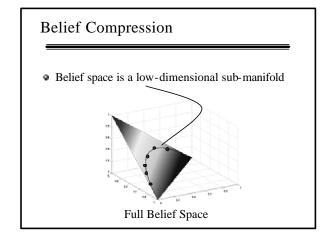


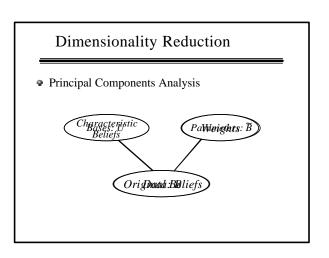






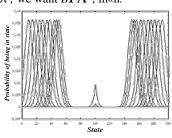






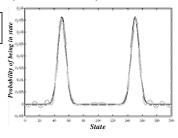
Principal Components Analysis

- \bullet Given belief $B\hat{I}$ \Re^n , we want $\tilde{B}\hat{I}$ \hat{A}^m , m«n.
- Collection of beliefs drawn from 200 state problem

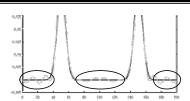


Principal Components Analysis

- Given belief $B\hat{I}$ \Re^n , we want $\tilde{B}\hat{I}$ \hat{A}^m , m«n.
- m=9 gives this representation for one sample distribution

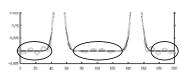


Principal Components Analysis



Many real world POMDP distributions are characterized by large regions of low probability.

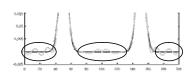
Principal Components Analysis



• PCA loss function:

$$L(b,U,\widetilde{b}) = \left\|b - U\widetilde{b}\right\|^2$$

Principal Components Analysis



PCA data likelihood:

$$-\log P(b;U\tilde{b}) = -\log N(b;U\tilde{b})$$

Data are not normally distributed

Principal Components Analysis

• Minimizing PCA loss function:

$$L(b,U,\widetilde{b}) = \left\|b - U\widetilde{b}\right\|^2$$

Equivalent to minimizing:

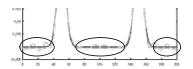
$$-\log P(b;\Theta) = -\log N(b;\Theta)$$

• Equivalent to minimizing:

$$\log P_0(b) = F(b) + B_F(b \parallel g(\boldsymbol{q}))$$

Collins, Dasgupta & Schapire, 2000

Principal Components Analysis

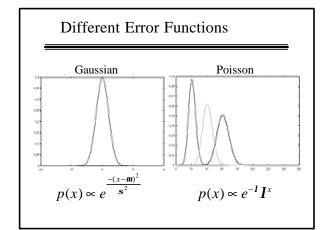


PCA data likelihood:

$$-\log P(b;U\tilde{b}) = -\log Poisson(b;U\tilde{b})$$

Use a Poisson likelihood model

Collins, Dasgupta & Schapire, 2000



Solving for Bases and Parameters

Bregman Divergence for Poisson error model:

$$B_F(b \parallel U\widetilde{b}) = e^{(U\widetilde{b})} - b \circ U\widetilde{b}$$

Solving for Bases and Parameters

Bregman Divergence for Poisson error model:

$$B_{F}(b \parallel U\widetilde{b}) = e^{(U\widetilde{b})} - b \circ U\widetilde{b}$$

$$\frac{\partial B_{F}(b \parallel U\widetilde{b})}{\partial U} = \frac{\partial}{\partial U} F(U\widetilde{b}) - b \circ U\widetilde{b}$$

$$= e^{(U\widetilde{b})} b^{T} - b\widetilde{b}^{T}$$

$$\frac{\partial B_{F}(b \parallel U\widetilde{b})}{\partial \widetilde{b}} = \frac{\partial}{\partial \widetilde{b}} F(U\widetilde{b}) - b \circ U\widetilde{b}$$

$$= U^{T} e^{(U\widetilde{b})} - U^{T} b$$

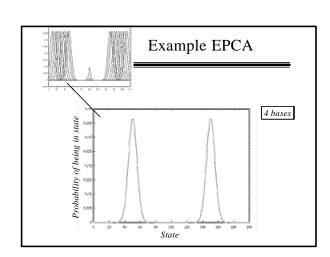
Solving for Bases and Parameters

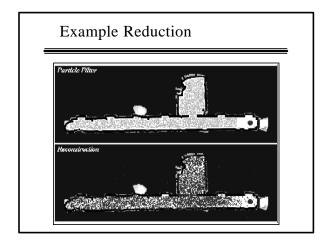
Loss function for Poisson error model:

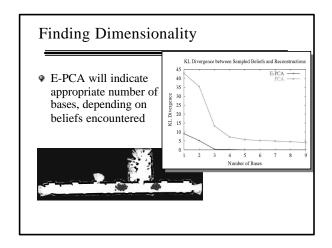
$$-\log(x;e^{1}) \propto e^{1} - x\mathbf{I}$$
 arg min
$$-\log(b;U\widetilde{b}) = \arg\min e^{\left(U\widetilde{b}\right)} - b \circ U\widetilde{b}$$

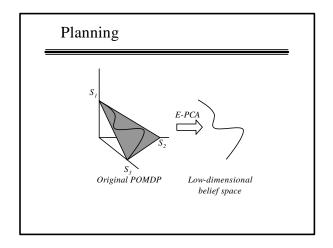
Equivalent to minimising:

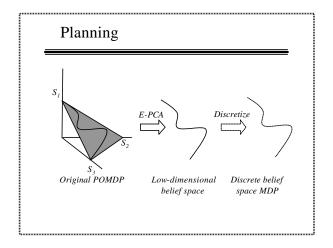
$$\arg\min \|D^{-1/2}(b-\exp(U\widetilde{b}))\|$$

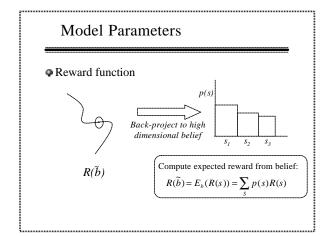


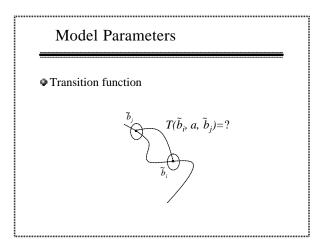




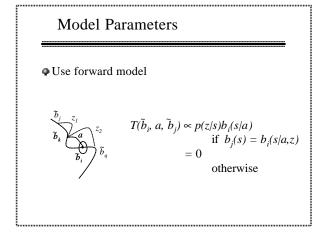






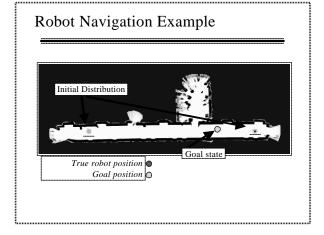


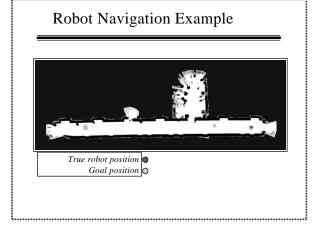
Model Parameters • Use forward model • b_i • b_j • b_j

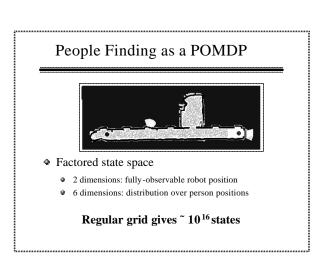


E-PCA POMDPs

- 1. Collect sample beliefs
- 2. Find low-dimensional belief representation
- 3. Discretize
- 4. Compute reward function and transition function
- 5. Solve belief state MDP

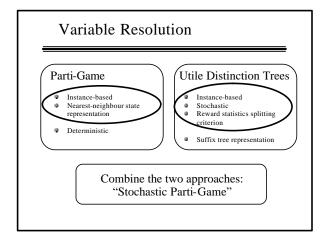






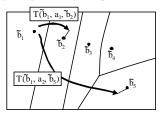
Variable Resolution Discretization

- Variable Resolution Dynamic Programming (1991)
- Parti-game (Moore, 1993)
- Variable Resolution Discretization (Munos & Moore, 2000)
- POMDP Grid-based Approximations (Hauskrecht, 2001)
- Improved POMDP Grid-based Approximations (Zhou & Hansen, 2001)



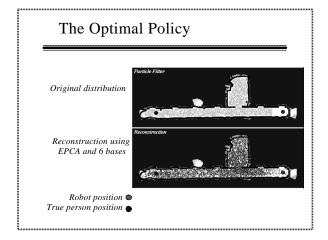
Variable Resolution

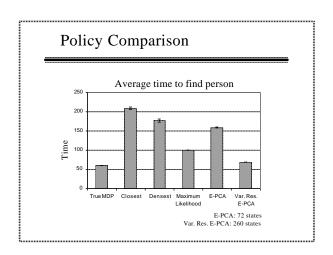
Non-regular grid using samples



• Compute model parameters using nearest-neighbour

Refining the Grid • $V(\tilde{\mathbf{b}}_1)$ • Sample beliefs according to policy • Construct new model • Keep new belief if $V(\tilde{\mathbf{b}}_1) > V(\tilde{\mathbf{b}}_1)$





Summary

- POMDPs for robotic control improve system performance
- POMDPs can scale to real problems
- Belief spaces are structured
 - Compress to low-dimensional statistics
 - Find controller for low-dimensional space

Open Problems

- Better integration and modelling of people
- Better spatial and temporal models
- Integrating learning into control models
- Integrating control into learning models