16.50 Spring 2001

Problem Set #5

Assigned: 3/7/01 Due Date: 3/14/01

A Hydrazine thrustor to be used on a satellite uses a catalyst bed to decompose the Hydrazine. Schematically, the process in the catalyst bed is described by

$$N_2H_4 \rightarrow \alpha NH_3 + \beta N_2 + \delta H_2$$

It is adiabatic, and note that this assumes all the N_2H_4 decomposes. The reactants may be assumed to be at standard temperature and pressure.

We will assume that the decomposition goes to chemical equilibrium at a pressure of 20 atm. The equilibrium constant for the Ammonia, $K_p,\,_{\rm NH3}$ is defined by

$$\frac{1}{2}$$
 N₂ + $\frac{3}{2}$ H₂ \rightarrow NH₃

is given by

$$log_{10} K_p$$
, $_{NH3} = \frac{2622}{T} - 5.93$

where T is in degrees K and pressure is in Pascals.

a) First find the composition in the chamber for Chemical Equilibrium?

Note: To keep the calculation simple use constant (room temperature) C_p 's. with no vibrational excitation, even though we know this is not quite correct.

- b) Now find the effective exhaust velocities in space, assuming the nozzle expands to 0.2 atm in both cases, for:
 - 1) Frozen flow in the nozzle, and
 - 2) Equilibrium flow in the nozzle.
- c) Find the required throat area, in m², for a thrust of 100 N, assuming frozen flow from the chamber to the throat.