16.810 (16.682)

Engineering Design and Rapid Prototyping

Design Optimization

Structural Design Optimization

Instructor(s)

Prof. Olivier de Weck deweck@mit.edu

Dr. Il Yong Kim kiy@mit.edu

January 23, 2004

Course Concept

Course Flow Diagram

1G.810

What Is Design Optimization?

Selecting the "best" design within the available means

1. What is our criterion for "best" design?

Objective function

2. What are the available means?

Constraints

(design requirements)

3. How do we describe different designs?

Design Variables

Optimization Statement

Minimize
$$f(\mathbf{x})$$

Subject to $g(\mathbf{x}) \le 0$
 $h(\mathbf{x}) = 0$

Constraints

- Design requirements

2. Requirements

 $C \le 3.6$ \$ /part Manufacturing Cost (C):

Inequality constraints

Equality constraints

Performance $(\delta_1, \delta_2, f_1)$: Displacement $\delta_1 \le 0.078 \text{ mm}$

Displacement $\delta_2 \le 0.012 \text{ mm}$ First natural frequency $f_1 \ge 195 \text{ Hz}$

Mass (m): $m \le 0.27 lbs$

Surface Quality (Q): $Q \ge 2$

F1 = 50 lbs / F2 = 50 lbs / F3 = 100 lbsLoad Case (F):

The part has to conform to the interface requirements and geometrical boundary conditions shown on page 2 of this document. This requirement cannot be waived.

3. Priorities

Low manufacturing cost is the first priority for this product. Next, the customer cares about light-weighting (low mass) and thirdly, structural performance should be as high as possible. These priorities are shown in the Ishii-matrix below:

Attribute	Constrain	Optimize	Accept
Cost			
Performance			
Mass			

Objective Function

- A criterion for best design (or goodness of a design)

2. Requirements

Manufacturing Cost (C): $C \le 3.6$ \$ /part

Performance $(\delta_1, \delta_2, f_1)$: Displacement $\delta_1 \le 0.078 \text{ mm}$

Displacement $\delta_2 \le 0.012 \text{ mm}$ First natural frequency $f_1 \ge 195 \text{ Hz}$

 \underline{Mass} (m): $m \le 0.27$ lbs

Surface Quality (Q): $Q \ge 2$

Load Case (F): F1 = 50 lbs / F2 = 50 lbs / F3 = 100 lbs

The part has to conform to the <u>interface requirements and geometrical boundary</u> conditions shown on page 2 of this document. This requirement cannot be waived.

3. Priorities

Low manufacturing cost is the first priority for this product. Next, the customer cares about light-weighting (low mass) and thirdly, structural performance should be as high as possible. These priorities are shown in the Ishii-matrix below:

Attribute	Constrain	Optimize	Accept
Cost			
Performance			
Mass			

Objective function

Design Variables

Parameters that are chosen to describe the design of a system

Design variables are "controlled" by the designers

The position of upper holes along the design freedom line

Design Variables

For computational design optimization,

Objective function and constraints must be expressed as a function of design variables (or design vector X)

Objective function: $f(\mathbf{x})$

Constraints: $g(\mathbf{x})$, $h(\mathbf{x})$

Cost = f(design)

Displacement = f(design)

Natural frequency = f(design)

Mass = f(design)

What is "f" for each case?

Optimization Statement

Minimize
$$f(\mathbf{x})$$

Subject to $g(\mathbf{x}) \le 0$
 $h(\mathbf{x}) = 0$

f(x): Objective function to be minimized

g(x): Inequality constraints

h(x): Equality constraints

x : Design variables

Optimization Procedure

Structural Optimization

Selecting the best "structural" design

- Size Optimization
- Shape Optimization
- Topology Optimization

1G.A10

Structural Optimization

To make the structure strong
 e.g. Minimize displacement at the tip

 \longrightarrow Min. f(x)

2. Total mass ≤ M_C

1G.A10

Size Optimization

Design variables (x)

x: thickness of each beam

Number of design variables (ndv)

$$ndv = 5$$

f(x): compliance

g(x): mass

Size Optimization

1G.A10

Shape Optimization

Design variables (x)

x: control points of the B-spline (position of each control point)

f(x): compliance

g(x): mass

Number of design variables (ndv)

$$ndv = 8$$

Shape Optimization

Fillet problem

Arm problem

Shape Optimization

Multiobjective & Multidisciplinary Shape Optimization Objective function

1. Drag coefficient, 2. Amplitude of backscattered wave

Analysis

- 1. Computational Fluid Dynamics Analysis
- 2. Computational Electromagnetic Wave Field Analysis

Obtain Pareto Front

Raino A.E. Makinen et al., "Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms," International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

1G.A10

Topology Optimization

Design variables (x)

x: density of each cell

Number of design variables (ndv)

$$ndv = 27$$

f(x): compliance

g(x): mass

Topology Optimization

Short Cantilever problem

Topology Optimization

1G.AID

Topology Optimization

Bridge problem

Mass constraints: 35%

$$Obj = 4.16 \times 10^5$$

Obj =
$$3.29 \times 10^5$$

$$Obj = 2.88 \times 10^5$$

Topology Optimization

DongJak Bridge in Seoul, Korea

Structural Optimization

What determines the type of structural optimization?

Type of the design variable

(How to describe the design?)

Optimum Solution

- Graphical Representation

Optimization Methods

Gradient-based methods

Heuristic methods

Gradient-based Methods

Gradient-based Methods

Steepest Descent

UNCONSTRAINED

Conjugate Gradient

Quasi-Newton

Newton

Simplex - linear

CONSTRAINED

SLP - linear

SQP - nonlinear, expensive, common in engineering applications

Exterior Penalty - nonlinear, discontinuous design spaces

Interior Penalty - nonlinear

Generalized Reduced Gradient - nonlinear

Method of Feasible Directions - nonlinear

Mixed Integer Programming

Global optimum vs. Local optimum

No active constraints

1G.810

Heuristic Methods

- A Heuristic is simply a rule of thumb that hopefully will find a good answer.
- Why use a Heuristic?
 - Heuristics are typically used to solve complex optimization problems that are difficult to solve to optimality.
- Heuristics are good at dealing with local optima without getting stuck in them while searching for the global optimum.

Schulz, A.S., "Metaheuristics," 15.057 Systems Optimization Course Notes, MIT, 1999.

Genetic Algorithm

Principle by Charles Darwin - Natural Selection

Heuristic Methods

Heuristics Often Incorporate Randomization

3 Most Common Heuristic Techniques

- Genetic Algorithms
- Simulated Annealing
- Tabu Search

Optimization Software

- iSIGHT
- DOT
- Matlab (fmincon)

IGAID Topology Optimization Software

ANSYS

INCORPORATED STATES

Static Topology Optimization

Dynamic Topology Optimization

Electromagnetic Topology Optimization

Subproblem Approximation Method

First Order Method

Design domain

IGAID Topology Optimization Software

MSC. Visual Nastran FEA

Elements of lowest stress are removed gradually.

Optimization results

Optimization results illustration

MDO

Multidisciplinary Design Optimization

NASA Nexus Spacecraft Concept

Goal: Find a "balanced" system design, where the flexible structure, the optics and the control systems work together to achieve a desired pointing performance, given various constraints

Boeing Blended Wing Body Concept

<u>Goal</u>: Find a design for a family of blended wing aircraft that will combine aerodynamics, structures, propulsion and controls such that a competitive system emerges - as measured by a set of operator metrics.

© Boeing

Ferrari 360 Spider

<u>Goal:</u> High end vehicle shape optimization while improving car safety for fixed performance level and given geometric constraints

Reference: G. Lombardi, A. Vicere, H. Paap, G. Manacorda, "Optimized Aerodynamic Design for High Performance Cars", AIAA-98-4789, MAO Conference, St. Louis, 1998

Aircraft:

Aerodynamics
Propulsion
Structures
Controls
Avionics/Software
Manufacturing
others

Spacecraft:

Astrodynamics
Thermodynamics
Communications
Payload & Sensor
Structures
Optics
Guidance & Control

Automobiles:

Engines
Body/chassis
Aerodynamics
Electronics
Hydraulics
Industrial design
others

Do you want to learn more about MDO?

Take this course!

16.888/ESD.77

Multidisciplinary System
Design Optimization (MSDO)

Prof. Olivier de Weck

Prof. Karen Willcox

Genetic Algorithm

Do you want to learn more about GA?

Take part in this GA game experiment!

Baseline Design

Performance

Natural frequency analysis

Design requirements

Baseline Design

Performance and cost

$$\delta_1 = 0.070 \ mm$$

$$\delta_2 = 0.011 \, mm$$

$$f = 245 Hz$$

$$m = 0.224 \ lbs$$

$$C = 5.16$$
 \$

1G.A10

Baseline Design

245 Hz

421 Hz

f1=0

f2 = 0

f3 = 0

f1=245 Hz f2=490 Hz f3=1656 Hz

f4=0 f5=0 f6=0 f7=421 Hz f8=1284 Hz f9=1310 Hz

1G.AID

Design Requirement for Each Team

#	Product name	mass (m)	Cost (c)	Disp (δ1)	Disp (δ2)	Nat Freq (f)	Qual ity	F1 (lbs)	F2 (lbs)	F3 (lbs)	Const	Optim	Acc
0	Base line	0.224 lbs	5.16 \$	0.070 mm	0.011 mm	245 Hz	3	50	50	100	С	m	δ1, δ2,f
1	Family economy	20%	-30%	10%	10%	-20%	2	50	50	100	С	m	δ1, δ2,f
2	Family deluxe	10%	-10%	-10%	-10%	10%	4	50	50	100	m	С	δ1, δ2,f
3	Cross over	20%	0%	-15%	-15%	20%	4	50	75	75	m	С	δ1, δ2,f
4	City bike	-20%	-20%	0%	0%	0%	3	50	75	75	С	m	δ1, δ2,f
5	Racing	-30%	50%	0%	0%	20%	5	100	100	50	m	δ1, δ2, f	c
6	Mountain	30%	30%	-20%	-20%	30%	4	50	100	50	δ1, δ2,f	m	c
7	вмх	0%	65%	-15%	-15%	40%	4	75	100	75	δ1, δ2,f	m	c
8	Acrobatic	-30%	100%	-10%	-10%	50%	5	100	100	100	δ1, δ2,f	m	c
9	Motor bike	50%	10%	-20%	-20%	0%	3	50	75	100	δ1, δ2,f	c	m

Design Optimization

Topology optimization

Shape optimization

Design Freedom

$$\delta = 0.80 \ mm$$

Volume is the same.

$$\delta = 0.63 \ mm$$

1G.A10

Design Freedom

IG.AIn Cost versus Performance

1G.A10

Plan for the rest of the course

Class Survey

Jan 24 (Saturday) 7 am – Jan 26 (Monday) 11am

Company tour

Jan 26 (Monday): 1 pm – 4 pm

Guest Lecture (Prof. Wilson, Bicycle Science)

Jan 28 (Wednesday) : 2 pm - 3:30 pm

Manufacturing Bicycle Frames (Version 2)

Jan 28 (Wednesday) : 9 am - 4:30 pm

Jan 29 (Thursday) : 9 am - 12 pm

Testing

Jan 29 (Thursday) : 10 am - 2 pm

GA Games

Jan 29 (Thursday) : 1 pm – 5 pm

Guest Lecture, Student Presentation (5~10 min/team)

Jan 30 (Friday) : 1 pm - 4 pm

1G.A10

References

- P. Y. Papalambros, Principles of optimal design, Cambridge University Press, 2000
- O. de Weck and K. Willcox, Multidisciplinary System Design Optimization, MIT lecture note, 2003
- M. O. Bendsoe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988

Raino A.E. Makinen et al., "Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms," International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

Il Yong Kim and Byung Man Kwak, "Design space optimization using a numerical design continuation method," International Journal for Numerical Methods in Engineering, Vol. 53, Issue 8, pp. 1979-2002, March 20, 2002.

1G.A10 Web-based topology optimization program

Developed and maintained by **Dmitri Tcherniak**, Ole Sigmund, Thomas A. Poulsen and Thomas Buhl.

Features:

- 1.2-D
- 2. Rectangular design domain
- 3.1000 design variables (1000 square elements)
- 4. Objective function: compliance $(F \times \delta)$
- 5. Constraint: volume

IG. P10 Web-based topology optimization program

Objective function

-Compliance ($F \times \delta$)

Constraint

-Volume

Design variables

- Density of each design cell

IG.RID Web-based topology optimization program

No numerical results are obtained.

Optimum layout is obtained.

IG.RID Web-based topology optimization program

Absolute magnitude of load does not affect optimum solution

Web-based topology optimization program

http://www.topopt.dtu.dk

