LECTURE #8

HOW, FALL 98

DIGITAL CONTROL - PART 1

· OUR CONTROL PICTURE SO FAR:

- YOU CAN IMPLEMENT THIS CONTROLLER USING ANALOG CIRCUITS EXAMPLES IN BOOK
 - => EXCELLENT CHOICE FOR VERY HIGHBANDWITH CONTROLLERS.
- MANY ADVANTAGES IF WE IMPLEMENT G.(S)
 USING A DIGITAL COMPUTER.
 - INCREASED FLEXIBILITY (EASIER TO MODIFY)
 - CAN EASILY INCLUDE LOGIC
 - EASIER TO HANDLE NONLINEARITIES.

DIGITAL CONTROL MECHANICS

- DIGITAL DISCRETE CONTROL RUNS ON A CLOCK

 ⇒ ONLY USES THE SIGNALS AT DISCRETE

 INSTANTS IN TIME.
 - CONTINUOUS (E) SAMPLED AT FIXED

 PERIODS IN TIME (KTs)

 Ts SAMPLING PERIOD (FIXED)

 K INTEGER.
- MUST ALSO GET INFORMATION INTO AND OUT OF COMPUTER \rightarrow A/O, D/A

· AID - 2 STEPS

- i) CONVERT PHYSICAL SIGNAL (VOLTAGE) TO A BINARY NUMBER
 - AN APPROXIMATION SINCE WE TYPICALLY ONLY HAVE 12-16 BITS TO COVER ±10V RANGE.
- i) SAMPLE CONTINUOUS SIGNAL Y(t) EVERY TS
 SECONOS Y(t) -> Y(K)

$$y(t)$$
 $\xrightarrow{T_s}$ $y(k)$

- SAMPLER CLEARLY IGNORES MUCH OF CTS SIGNAL Y(t).

• DIA - 2 STEPS AS WELL

- i) BINARY TO ANALOG
- ii) DISCRETE (ONLY AT KTS) TO CONTINUOUS.

ult) ?

EASIEST WAY IS TO JUST HOLD ULK) FOR PERIOD TS

- · CALLED A ZERO ORDER HOLD (ZOH)

 SINCE FUNCTION HELD WITH A ZEROTH ORDER

 POLYNOMIAL.
- · WE MUST DETERMINE WHAT IMPACT THIS
 "SAMPLE AND HOLD" WILL HAVE ON THE
 LOOP TRANSFER FUNCTION
- SET $\Gamma(t) = 0$, CONTROL LAW = 1 $\left[u(k) = y(k) \right]$ $A/O \rightarrow SAMPLE$ $O|A \rightarrow HOLO$ (ZOH)

SAMPLE AND HOLD

 $y(t) \longrightarrow zoH \longrightarrow u(t)$

- MOST BASIC PIECE OF DIGITAL CONTROL

 ANALYSIS E207 A
- CAN INVESTIGATE TRANSFER FUNCTION U(S)

 ANALYTICALLY.
- ALSO INSIGHTFUL TO LOOK AT THE CHANGE TO BASIC SIGNALS.

- U(t) HAS STANDARD BOX CAR SHAPE - SO "SMOOTHED" U(t) BY CONNECTING MID-POINTS - U(t)
 - SAMPLE + HELD y(t) LOOKS LIKE y(t), BUT DELAY OBVIOUS.

- EFFECTIVE DELAY OF SAMPLE AND HOLD ~ Ts ON AVERAGE.
 - -> BIG PROBLEM IF TO LARGE.
 - SO WHY NOT MAKE TO SMALL?
- COMPUTE THE CONTROL COMMAND GIVEN
 THE MEASUREMENTS WE MAKE

- USUALLY "WAIT" PERIOD IS SHORT, BUT LENGTH

OF CALC *1, CALC *2, A/O, D/A OPERATIONS

DEPEND ON COMPLEXITY OF ALGORITHM AND

QUALITY OF COMPUTER EQUIPMENT.

1 QUALITY => 1 COST !!

WE WILL TYPICALLY ASSUME THAT WS = 20 WBW

SAMPLING FREQUENCY.

CONTROL LAW

• BASIC COMPENSATOR
$$G_c = K_c \left(\frac{S+Z}{S+A} \right) = \frac{U(S)}{e(S)}$$

- EQUIVALENT TO DIFFERENTIAL EQUATION
$$\dot{u} + \rho u = K_c (\dot{e} + Ze)$$

$$\dot{u}$$
 $\simeq \frac{1}{T_s} \left[u \left((k+1)T_s \right) - u \left(kT_s \right) \right] = \frac{u_{k+1} - u_k}{T_s}$

- FORWARD APPROXIMATION, OTHERS EXIST.

- . RECURSIVE SO GOOD TO DO ON A COMPUTER
- · CALLED A DIFFERENCE EQUATION

COMPUTER CODE

- 1) GIVEN PREVIOUS INFORMATION UK, CK
 AND NEW INFORMATION (YK+1, TK+1) CK+1
- 2) USE DIFFERENCE EQUATION TO FIND UK+1

LET
$$U_{0L0} = (1 - PTs) U_K - K_c(1 - ZTs) e_K$$

$$\Rightarrow U_{KH} = K_c e_{KH} + U_{0L0}$$

• DEFINE $X_1 = 1 - PT_S$ $X_2 = -(1 - ZT_S) K_C$

INITIALIZE

CODE

START LOOP

SAMPLE A10'S

COMPUTE exti = [Kti - Ykti

UPDATE Uxti = Kc exti + Uolo

OUTPUT TO DIA'S

{READ Ykti, [Kti]}

READ Ykti, [Kti]

UPDATE UOLD = &, UK+1 + &2 EK+1

WAIT

END LOOP

OUTPUT CONTROL AS SOON AFTER READ AS POSSIBLE.

COULD WRITE UKHI AT END OF THE WAIT SO THE

DELAY IS LONGER, BUT FIXED.

SUMM ARY

- 1) USING DIGITAL COMPUTER INTRODUCES SOME EXTRA - SAMPLE + HOLD ~ TS/Z DELAY IMP. DELAY

 - HOLDING U(K) TO END OF LOOP ~ TO DELAY
 - > DELAY ~ Ts ←> 3Ts
- 2) WITH WS = 20 WBW , DELAY EFFECTS ARE SMALL AND CTS/ DISCRETE CONTROLLERS ARE VERY SMILAR.
- 3) CZOM.M OFFERS SIMPLE WAY TO DISCRETIZE G(S).

EMULATION

- FIND DESIRED SYSTEM CHARACTERISTICS 0 We, PM, &, &WA, WBW, ... > PICK Ws = ZTT
- ADD THE TS DELAY TO YOUR SYSTEM GP(S) **②** TO ACCOUNT FOR ZOH. => Gp(s) = e-5Ts/2 Gp(s) > USUALLY MEANS ADDING TO PM (WeTs. 180°) > Wc. 180° ws.
- DESIGN GC(S) TO MEET SPECS WITH Gp(S) (3)
- (4) CONVERT GC(S) TO DIFFERENCE EQUATION
 - URITE COOE. **(**S)