
Fluids – Lecture 9 Notes

1. Momentum-Integral Simplifications

2. Applications

Reading: Anderson 2.6

Simplifications

For steady flow, the momentum integral equation reduces to the following.

©

∫∫

ρ
(

~V ·n̂
)

~V dA = ©

∫∫

−p n̂ dA +
∫∫∫

ρ~g dV + ~Fviscous (1)

Defining h as the height above ground, we note that ∇h is a unit vector which points up, so
that the gravity acceleration vector can be written as a gradient.

~g = −g∇h

Using the Gradient Theorem, this then allows the gravity-force volume integral to be con-
verted to a surface integral, provided we make the additional assumption that ρ is nearly
constant throughout the flow.

∫∫∫

ρ~g dV =
∫∫∫

−ρ g ∇h dV = ©

∫∫

−ρgh n̂ dA

We can now combine the pressure and gravity contributions into one surface integral.

©

∫∫

−p n̂ dA +
∫∫∫

ρ~g dV → ©

∫∫

−(p + ρgh) n̂ dA

Defining a corrected pressure pc = p+ρgh, the Integral Momentum Equation finally becomes

©

∫∫

ρ
(

~V ·n̂
)

~V dA = ©

∫∫

−pc n̂ dA + ~Fviscous (2)

Aerodynamic analyses using (2) do not have to concern themselves with the effects of gravity,

since it does not appear explicitly in this equation. In particular, the velocity field ~V will
not be affected by gravity. Gravity enters the problem only in a secondary step, when the
true pressure field p is constructed from pc by adding the “tilting” bias −ρgh.
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For clarity, we will from now on refer to pc simply as p. The understanding is that the
forces and moments computed using this p will not include the contributions of buoyancy.
However, buoyancy is relatively easy to compute, and can be added as a secondary step
if appropriate. It should be noted that buoyancy is rarely significant in aerodynamic flow
situations, one exception being lighter-than-air vehicles like blimps.

One situation where gravity is crucial is a flow with a free surface, like water waves past a
ship. Here, gravity enters not in equation (2), but in the free-surface boundary condition.
Free-surface flows are not relevant to most aeronautical problems.

Applications

Basic Procedures

Application of the integral momentum equation (2) uses the same basic techniques as for
the integral continuity equation. Both can use the same control volume, and both demand
that the integrals are evaluated for the entire surface of the control volume. There are three
significant differences, however:

1) Momentum is a vector. Each of the three x, y, and z components of equation (2) is
independent, and must be treated separately.

2) A volume boundary lying along a streamline now has a nonzero −pn̂ contribution.

3) A volume boundary lying along a solid surface now has a nonzero −pn̂ contribution, and
possibly also a viscous shear ~τ contribution if viscous effects are deemed significant.

Effect of body in flow

Equation (2) assumes that there is no internal force acting on the fluid other than gravity.
If there is a solid body in the flow, it is therefore necessary to construct the control volume
such that the body is on the volume’s exterior. This is easily done by placing the body in
an indentation cdefg of the volume surface, as shown in the figure for a 2D case.
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The surface integrals are now broken up into the individual pieces: the outermost part abhi,
the body surface def , and the “cut” surfaces cd and fg.

∮

( ) dA =
∫

abhi

( ) dA +
∫

def

( ) dA +
∫

cd

( ) dA +
∫

fg

( ) dA
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Surfaces cd and fg have the same flow variables, but opposite n̂ vectors, so that all their
contributions are equal and opposite, and hence cancel.

∫

cd

( ) dA +
∫

fg

( ) dA = 0

The resultant force/span ~R′ on the body is the integrated pressure and shear force distri-
bution on the body surface. Because the body surface and volume surface have opposite
normals n̂, this ~R′ is precisely equal and opposite to all the def surface integrals for the
control volume.
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An intuitive explanation is that the aerodynamic force exerted by the fluid on the body is
exactly equal and opposite to the force which the body exerts on the fluid.

Collecting the remaining integrals produces the very general result

∮

abhi

ρ
(

~V ·n̂
)

~V dA +
∮

abhi

p n̂ dA = −~R′ (3)

which gives the resultant force on the body only in terms of the surface integrals on the
entire outer surface of the volume.

Drag relations

To obtain the drag/span, we define the x direction to be aligned with ~V
∞

, and take the
x-component of equation (3).

∮

abhi

ρ
(

~V ·n̂
)

u dA +
∮

abhi

p n̂ · ı̂ dA = −D′ (4)

The pressure on the outer surface is uniform and equal to p
∞

, and hence the pressure inte-
gral is zero. The momentum-flux integral is zero on the top and bottom boundaries, since
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these are defined to be along streamlines, and hence have zero momentum flux. Only the
momentum flux on the inflow and outflow planes remain.

∫

bh

ρ2u
2

2
dA2 −

∫

ia

ρ1u
2

1
dA1 = −D′ (5)

Using the concept of a streamtube, we see that planes 1 and 2 have the same mass flows,
with

ρ1u1 dA1 = ρ2u2 dA2 = dṁ

as shown in the figure. Therefore both the plane 1 and plane 2 integrals can be lumped into
one single plane 2 integral.

D′ =
∫ b

h
ρ2u2 (u1 − u2) dA2 (6)

Equation (6) gives the drag only in terms of the freestream speed u1, and the downstream
wake “profiles” ρ2 and u2. These downstream profiles can be measured in a wind tunnel,
and numerically integrated in equation (6) to obtain the drag.

A physical interpretation of (6) can be obtained by writing it as

D′ =
∫

ṁ

(u1 − u2) dṁ

This is simply the summation of the momentum flow “lost” by all the infinitesimal stream-
tubes in the flow. The lost momentum flow appears as drag on the body.
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