
Fluids – Lecture 12 Notes

1. Stream Function

2. Velocity Potential

Reading: Anderson 2.14, 2.15

Stream Function

Definition

Consider defining the components of the 2-D mass flux vector ρ~V as the partial derivatives
of a scalar stream function, denoted by ψ̄(x, y):

ρu =
∂ψ̄

∂y
, ρv = −

∂ψ̄

∂x

For low speed flows, ρ is just a known constant, and it is more convenient to work with a
scaled stream function

ψ(x, y) =
ψ̄

ρ

which then gives the components of the velocity vector ~V .

u =
∂ψ

∂y
, v = −

∂ψ

∂x

Example

Suppose we specify the constant-density streamfunction to be

ψ(x, y) = ln
√

x2 + y2 =
1

2
ln(x2 + y2)

which has a circular “funnel” shape as shown in the figure. The implied velocity components
are then

u =
∂ψ

∂y
=

y

x2 + y2
, v = −

∂ψ

∂x
=

−x

x2 + y2

which corresponds to a vortex flow around the origin.
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y

ψ

vortex flow example
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Streamline interpretation

The stream function can be interpreted in a number of ways. First we determine the differ-
ential of ψ̄ as follows.

dψ̄ =
∂ψ̄

∂x
dx +

∂ψ̄

∂y
dy

dψ̄ = ρu dy − ρv dx

Now consider a line along which ψ̄ is some constant ψ̄1.

ψ̄(x, y) = ψ̄1

Along this line, we can state that dψ̄ = dψ̄1 = d(constant) = 0, or

ρu dy − ρv dx = 0 →
dy

dx
=

v

u

which is recognized as the equation for a streamline. Hence, lines of constant ψ̄(x, y) are
streamlines of the flow. Similarly, for the constant-density case, lines of constant ψ(x, y) are
streamlines of the flow. In the example above, the streamline defined by

ln
√

x2 + y2 = ψ1

can be seen to be a circle of radius exp(ψ1).

x

y V
d

dx

dy

−
ψ = ψ− −

1

u

vψ = 0

Mass flow interpretation

Consider two streamlines along which ψ̄ has constant values of ψ̄1 and ψ̄2. The constant
mass flow between these streamlines can be computed by integrating the mass flux along
any curve AB spanning them. First we note the geometric relation along the curve,

n̂ dA = ı̂ dy − ̂ dx

and the mass flow integration then proceeds as follows.

ṁ =
∫ B

A
ρ~V · n̂ dA =

∫ B

A
(ρu dy − ρv dx) =

∫ B

A
dψ̄ = ψ̄2 − ψ̄1

Hence, the mass flow between any two streamlines is given simply by the difference of their
stream function values.
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ψ = ψ2

dA

− −

−

− −

ψ = ψ− −
1

Continuity identity

Consider the mass flux field ρ~V (x, y) specified by some ψ̄(x, y). Computing the divergence
of this field we have

∇ ·

(

ρ~V
)

=
∂(ρu)

∂x
+

∂(ρv)

∂y
=

∂

∂x

(

∂ψ̄

∂y

)

−
∂

∂y

(

∂ψ̄

∂x

)

=
∂2ψ̄

∂y ∂x
−

∂2ψ̄

∂x ∂y
= 0

so that any mass flux field specified via ψ̄(x, y) will automatically satisfy the steady mass
continuity equation. In low speed flow, a similar computation shows that any velocity field
specified via ψ(x, y) will automatically satisfy

∇ · ~V = 0

which is the constant-density mass continuity equation. Because of these properties, using
the stream function to define the velocity field can give mathematical simplification in many
fluid flow problems, since the continuity equation then no longer needs to be addressed.

Velocity Potential

Definition

Consider defining the components of the velocity vector ~V as the gradient of a scalar velocity

potential function, denoted by φ(x, y, z).

~V = ∇φ = ı̂
∂φ

∂x
+ ̂

∂φ

∂y
+ k̂

∂φ

∂z

If we set the corresponding x, y, z components equal, we have the equivalent definitions

u =
∂φ

∂x
, v =

∂φ

∂y
, w =

∂φ

∂z

Example

For example, suppose we specify the potential function to be

φ(x, y) = arctan

(

x

y

)

which has a corkscrew shape as shown in the figure. The implied velocity components are
then

u =
∂φ

∂x
=

y

x2 + y2
, v =

∂φ

∂y
=

−x

x2 + y2
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φ

which corresponds to a vortex flow around the origin. Note that this is exactly the same
velocity field as in the previous example using the stream function.

Irrotationality

If we attempt to compute the vorticity of the potential-derived velocity field by taking its
curl, we find that the vorticity vector is identically zero. For example, for the vorticity
x-component we find

ξx ≡
∂w

∂y
−

∂v

∂z
=

∂

∂y

∂φ

∂z
−

∂

∂z

∂φ

∂y
=

∂2φ

∂y∂z
−

∂2φ

∂z∂y
= 0

and similarly we can also show that ξy = 0 and ξz = 0. This is of course just a manifestation
of the general vector identity curl(grad) = 0 . Hence, any velocity field defined in terms
of a velocity potential is automatically an irrotational flow . Often the synonymous term
potential flow is also used.

Directional Derivative

In many situations, only one particular component of the velocity is required. For example,
for computing the mass flow across a surface, we only require the normal velocity component.
This is typically computed via the dot product ~V · n̂. In terms of the velocity potential, we
have

~V · n̂ = ∇φ · n̂ =
∂φ

∂n

where the final partial derivative ∂φ/∂n is called the directional derivative of the potential
along the normal coordinate n. The figure illustrates the relations.

∆φ

nφ = φ
φ = φ

φ = φ

1φ = φ
2

3

4

V  n =. ^ 6φ
6n

V =

In general, the component of the velocity along any direction can be obtained simply by
taking the directional derivative of the potential along that same direction.
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