Fluids – Lecture 13 Notes

1. Bernoulli Equation
2. Uses of Bernoulli Equation

Reading: Anderson 3.2, 3.3

Bernoulli Equation

Derivation – 1-D case
The 1-D momentum equation, which is Newton’s Second Law applied to fluid flow, is written as follows.

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \rho g_x + (F_x)_{\text{viscous}}$$

We now make the following assumptions about the flow.

- Steady flow: $\partial/\partial t = 0$
- Negligible gravity: $\rho g_x \approx 0$
- Negligible viscous forces: $(F_x)_{\text{viscous}} \approx 0$
- Low-speed flow: ρ is constant

These reduce the momentum equation to the following simpler form, which can be immediately integrated.

$$\rho u \frac{du}{dx} + \frac{dp}{dx} = 0$$

$$\frac{1}{2} \rho \frac{d(u^2)}{dx} + \frac{dp}{dx} = 0$$

$$\frac{1}{2} \rho u^2 + p = \text{constant} \equiv p_o$$

The final result is the one-dimensional Bernoulli Equation, which uniquely relates velocity and pressure if the simplifying assumptions listed above are valid. The constant of integration p_o is called the stagnation pressure, or equivalently the total pressure, and is typically set by known upstream conditions.

Derivation – 2-D case
The 2-D momentum equations are

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \rho g_x + (F_x)_{\text{viscous}}$$

$$\rho \frac{\partial v}{\partial t} + \rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \rho g_y + (F_y)_{\text{viscous}}$$

Making the same assumptions as before, these simplify to the following.

$$\rho u \frac{du}{dx} + \rho v \frac{du}{dy} + \frac{dp}{dx} = 0 \quad (1)$$

$$\rho u \frac{dv}{dx} + \rho v \frac{dv}{dy} + \frac{dp}{dy} = 0 \quad (2)$$
Before these can be integrated, we must first restrict ourselves only to flowfield variations along a streamline. Consider an incremental distance ds along the streamline, with projections dx and dy in the two axis directions. The speed V likewise has projections u and v.

Along the streamline, we have

$$\frac{dy}{dx} = \frac{v}{u}$$

or

$$u \, dy = v \, dx \quad (3)$$

We multiply the x-momentum equation (1) by dx, use relation (3) to replace $v \, dx$ by $u \, dy$, and combine the u-derivative terms into a du differential.

$$\rho u \, \frac{\partial u}{\partial x} \, dx + \rho v \, \frac{\partial u}{\partial y} \, dy + \frac{\partial p}{\partial x} \, dx = 0$$

$$\rho u \left(\frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy \right) + \frac{\partial p}{\partial x} \, dx = 0$$

$$\rho u \, du + \frac{\partial p}{\partial x} \, dx = 0$$

$$\frac{1}{2} \rho \, d\left(u^2 \right) + \frac{\partial p}{\partial x} \, dx = 0 \quad (4)$$

We multiply the y-momentum equation (2) by dy, and performing a similar manipulation, we get

$$\rho u \, \frac{\partial v}{\partial x} \, dy + \rho v \, \frac{\partial v}{\partial y} \, dy + \frac{\partial p}{\partial y} \, dy = 0$$

$$\rho v \left(\frac{\partial v}{\partial x} \, dx + \frac{\partial v}{\partial y} \, dy \right) + \frac{\partial p}{\partial y} \, dy = 0$$

$$\rho v \, dv + \frac{\partial p}{\partial y} \, dy = 0$$

$$\frac{1}{2} \rho \, d\left(v^2 \right) + \frac{\partial p}{\partial y} \, dy = 0 \quad (5)$$

Finally, we add equations (4) and (5), giving

$$\frac{1}{2} \rho \, d\left(u^2 + v^2 \right) + \frac{\partial p}{\partial x} \, dx + \frac{\partial p}{\partial y} \, dy = 0$$

$$\frac{1}{2} \rho \, d\left(u^2 + v^2 \right) + dp = 0$$
which integrates into the general Bernoulli equation
\[\frac{1}{2} \rho V^2 + p = \text{constant} \equiv p_o \] (along a streamline) \hspace{1cm} (6)

where \(V^2 = u^2 + v^2 \) is the square of the speed. For the 3-D case the final result is exactly the same as equation (6), but now the \(w \) velocity component is nonzero, and hence \(V^2 = u^2 + v^2 + w^2 \).

Irrotational Flow

Because of the assumptions used in the derivations above, in particular the streamline relation (3), the Bernoulli Equation (6) relates \(p \) and \(V \) only along any given streamline. Different streamlines will in general have different \(p_o \) constants, so \(p \) and \(V \) cannot be directly related between streamlines. For example, the simple shear flow on the left of the figure has parallel flow with a linear \(u(y) \), and a uniform pressure \(p \). Its \(p_o \) distribution is therefore parabolic as shown. Hence, there is no unique correspondence between velocity and pressure in such a flow.

![Parallel Rotational flow](image1)

![Nonparallel Irrotational flow](image2)

However, if the flow is irrotational, i.e. if \(\vec{V} = \nabla \phi \) and \(V^2 = |\nabla \phi|^2 \), then \(p_o \) takes on the same value for all streamlines, and the Bernoulli Equation (6) becomes usable to relate \(p \) and \(V \) in the entire irrotational flowfield. Fortunately, a flowfield is irrotational if the upstream flow is irrotational (e.g. uniform), which is a very common occurrence in aerodynamics. From the uniform far upstream flow we can evaluate

\[p_o = p_\infty + \frac{1}{2} \rho V_\infty^2 \equiv p_{o\infty} \]

and the Bernoulli equation (6) then takes the more general form.

\[\frac{1}{2} \rho V^2 + p = p_{o\infty} \] (everywhere in an irrotational flow) \hspace{1cm} (7)

Uses of Bernoulli Equation

Solving potential flows

Having the Bernoulli Equation (7) in hand allows us to devise a relatively simple two-step solution strategy for potential flows.

1. Determine the potential field \(\phi(x, y, z) \) and resulting velocity field \(\vec{V} = \nabla \phi \) using the

\[\frac{1}{2} \rho V^2 + p = p_{o\infty} \]
governing equations.

2. Once the velocity field is known, insert it into the Bernoulli Equation to compute the pressure field \(p(x, y, z) \).

This two-step process is simple enough to permit very economical aerodynamic solution methods which give a great deal of physical insight into aerodynamic behavior. The alternative approaches which do not rely on Bernoulli Equation must solve for \(\vec{V}(x, y, z) \) and \(p(x, y, z) \) simultaneously, which is a tremendously more difficult problem which can be approached only through brute force numerical computation.

Venturi flow

Another common application of the Bernoulli Equation is in a *venturi*, which is a flow tube with a minimum cross-sectional area somewhere in the middle.

Assuming incompressible flow, with \(\rho \) constant, the mass conservation equation gives

\[
A_1 V_1 = A_2 V_2
\]

(8)

This relates \(V_1 \) and \(V_2 \) in terms of the geometric cross-sectional areas.

\[
V_2 = V_1 \frac{A_1}{A_2}
\]

Knowing the velocity relationship, the Bernoulli Equation then gives the pressure relationship.

\[
p_1 + \frac{1}{2} \rho V_1^2 = p_o = p_2 + \frac{1}{2} \rho V_2^2
\]

(9)

Equations (8) and (9) together can be used to determine the inlet velocity \(V_1 \), knowing only the pressure difference \(p_1 - p_2 \) and the geometric areas. By direct substitution we have

\[
V_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho \left[(A_1/A_2)^2 - 1 \right]}}
\]

A venturi can therefore be used as an *airspeed indicator*, if some means of measuring the pressure difference \(p_1 - p_2 \) is provided.