Block 2: Stress and Strain

Unit M2.1
 (More) Language for Stress and Strain

Readings:

CDL 4.1
16.001/002 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M2.1

Through participation in the lectures, recitations, and work associated with Unit M2.1, it is intended that you will be able to.........

-employ the tensor/indicial notation to express equations and relations
-recognize, explain, and apply two special parameters (Kronecker delta, permutation tensor)

Many times in engineering, a number of equations of similar form need to be written.

This will be particularly true as we look at stress and strain in this section/block.

In the earlier " U " lectures, we looked at such cases (as for vectors):

$$
\underline{R}=R_{1} \underline{i}_{1}+R_{2} \underline{i}_{2}+R_{3} \underline{i}_{3}
$$

And we have seen this written as:

$$
\underline{R}=\sum_{m=1}^{3} R_{m} \underline{\underline{i}}_{m}
$$

This suggests a "shorthand" often used in engineering known as:

Tensor (/Summation/Indicial) Notation

- "Easy" to write complicated formulae
- "Easy" to mathematically manipulate
- "Elegant", rigorous
- Use for derivations or to succinctly express a set of equations or a long equation

Example: $x_{i}=f_{i j} y_{j}$
--> Rules for subscripts
NOTE: index \equiv subscript

- Latin subscripts (m, n, p, q, ...) take on the values 1, 2,3 (3-D)
- Greek subscripts $(\alpha, \beta, \gamma \ldots)$ take on the values 1,2 (2-D)
- When subscripts are repeated on one side of the equation within one term, they are called dummy indices and are to be summed on

Thus:

$$
\begin{aligned}
f_{i j} y_{j}= & \sum_{j=1}^{3} f_{i j} y_{j} \\
\text { But } & f_{i j} y_{j}+g_{i} \ldots \text { do not sum on } i!
\end{aligned}
$$

- Subscripts which appear only once on the left side of the equation within one term are called free indices and represent a separate equation

Thus:

$$
\begin{aligned}
& x_{i}=\ldots . \\
& \Rightarrow x_{1}=\ldots \\
& x_{2}=\ldots . \\
& x_{3}=\ldots .
\end{aligned}
$$

- No subscript can appear more than twice in a single term

Thus: $x_{i}=f_{i j} y_{j}$
i = free index
j = dummy index
represents:

$$
\begin{aligned}
& x_{1}=f_{11} y_{1}+f_{12} y_{2}+f_{13} y_{3} \\
& x_{2}=f_{21} y_{1}+f_{22} y_{2}+f_{23} y_{3} \\
& x_{3}=f_{31} y_{1}+f_{32} y_{2}+f_{33} y_{3}
\end{aligned}
$$

--> To go along with tensor notation, we introduce two useful parameters

1. Kronecker delta

$$
\delta_{m n}= \begin{cases}1 & \text { when } \mathrm{m}=\mathrm{n} \\ 0 & \text { when } \mathrm{m} \neq \mathrm{n}\end{cases}
$$

Where does this come from?
Consider dot products of unit vectors:

$$
\begin{array}{ll}
\underline{\underline{i}}_{m} \cdot \underline{i}_{m}=1 & \text { (parallel) } \\
\underline{i}_{m} \cdot \underline{i}_{n}=0 & \text { (perpendicular) }
\end{array}
$$

So we see: $\quad \delta_{m n}=\underline{i}_{m} \cdot \underline{i}_{n}$
So dot product of two vectors becomes:

$$
\begin{aligned}
\underline{F} \cdot \underline{G} & =F_{\mathrm{m}} \underline{i}_{m} \cdot G_{n} \underline{i}_{n} \\
& =F_{\mathrm{m}} G_{n}\left(i_{m} \cdot \underline{i}_{n}\right) \\
& =F_{\mathrm{m}} G_{n} \delta_{m n}
\end{aligned}
$$

--> useful elsewhere as well
2. Permutation tensor

$$
\begin{aligned}
& e_{m n p}= \begin{cases}0 & \text { when any two indices are equal } \\
1 & \text { when } m n p \text { is even permutation of } 1,2,3 \\
-1 & \text { when mnp is odd permutation of } 1,2,3\end{cases} \\
& \text { (even permutation: find } 1 \text { and can progress to } \\
& \text { 2, 3) } \\
& \text { (odd permutation: can't!) } \\
& \text { - } 123 \\
& 312 \\
& 231
\end{aligned}
$$

So where does this one come from?
Consider cross products of unit vectors:

$$
\begin{array}{lll}
\underline{i}_{1} \times \underline{i}_{1}=0 & \underline{i}_{1} \times \underline{i}_{2}=\underline{i}_{3} & \underline{i}_{2} \times \underline{\underline{i}}_{1}=-\underline{i}_{3} \\
\underline{i}_{2} \times \underline{i}_{2}=0 & \underline{i}_{2} \times \underline{i}_{3}=\underline{i}_{1} & \underline{i}_{3} \times \underline{i}_{2}=-\underline{i}_{1} \\
\underline{i}_{3} \times \underline{i}_{3}=0 & \underline{i}_{3} \times \underline{i}_{1}=\underline{i}_{2} & \underline{i}_{1} \times \underline{i}_{3}=-\underline{i}_{2}
\end{array}
$$

So: $\underline{i}_{m} \times \underline{i}_{n}=e_{m n p} \underline{i}_{p}$

Example:

$$
\begin{gathered}
\underline{i}_{1} \times \underline{i}_{2}=e_{121} \underline{i}_{1}+e_{122} \underline{i}_{2}+e_{123} \underline{i}_{3} \\
N \\
0 \quad 0 \\
\Rightarrow \underline{i}_{1} \times \underline{i}_{2}=\underline{i}_{3}
\end{gathered}
$$

So a general vector cross-product can be written as:

$$
\begin{aligned}
\underline{H}=\underline{F} \times \underline{G} & =F_{m} \underline{i}_{m} \times G_{n} \underline{i}_{n} \\
& =F_{m} G_{n}\left(\underline{i}_{m} \times \underline{i}_{n}\right) \\
& =F_{m} G_{n} e_{m n p} \underline{i}_{p}
\end{aligned}
$$

So this represents a shorthand we will find quite useful.
To illustrate this via an example, let's

Revisit Transformation of Coordinates

Issue is describing the same "thing" in 2 different coordinate systems.
--> Consider this formally via the mathematics:

Figure M2.1-1 Two rectangular cartesian coordinate systems with the same origin:

\sim = "tilde" $\quad \Rightarrow$ rotated coordinate system
point p is located by the vector \underline{r} in both systems:

$$
\begin{aligned}
& \underline{r}=x_{1} \dot{i}_{1}+x_{2} \underline{i}_{2}+x_{3} \dot{i}_{3}=x_{m} \underline{i}_{m} \\
& \quad \text { and } \\
& r=\tilde{x}_{1} \tilde{i}_{1}+\tilde{x}_{2} \tilde{i}_{2}+\tilde{x}_{3} \tilde{i}_{3}=\tilde{x}_{n} \tilde{i}_{n}
\end{aligned}
$$

--> To relate x_{m} to $\widetilde{\mathrm{x}}_{\mathrm{n}}$, let's take the dot product of both sides with $\underline{\mathrm{i}}_{1}$:

$$
\widetilde{\underline{i}}_{1} \cdot x_{m} \underline{i}_{m}=\widetilde{i}_{1} \cdot \tilde{x}_{n} \widetilde{\underline{i}}_{n}
$$

use Kronecker delta: $\left(\tilde{i}_{m} \cdot \tilde{i}_{n}=\delta_{\tilde{m} \tilde{n}}\right)$

$$
\Rightarrow \tilde{\underline{i}}_{1} \cdot x_{m} \underline{i}_{m}=\tilde{x}_{n} \delta_{\tilde{1} \tilde{n}}
$$

But $\delta_{\tilde{1} \tilde{n}}$ is non zero only if $\tilde{n}=\tilde{1}$. Thus:

$$
\begin{equation*}
\tilde{x}_{1}=x_{1} \tilde{\underline{i}}_{1} \cdot \underline{i}_{1}+x_{2} \tilde{\underline{i}}_{1} \cdot \underline{i}_{2}+x_{3} \tilde{\underline{i}}_{1} \cdot \underline{i}_{3} \tag{*}
\end{equation*}
$$

Recall definition of dot product:

$$
\begin{aligned}
& \begin{array}{c}
\tilde{\tilde{i}_{1}} \cdot \dot{\underline{i}}_{1}=\left|\tilde{\tilde{i}}_{1}\right|\left|\underline{i}_{1}\right| \cos \left(\overparen{\tilde{x}_{1} x_{1}}\right) \\
1^{\prime \prime} 1^{\prime \prime}
\end{array} \\
& =\cos \overparen{\tilde{x}_{1} x_{1}}
\end{aligned}
$$

C angle from \widetilde{x}_{1} axis to x_{1} axis $=\angle \widetilde{x}_{1} x_{1}$

Generalizing get:

$$
\ell_{\tilde{n} m}=\cos {\tilde{\tilde{x}_{n}} x_{m}}=\tilde{\underline{i}}_{n} \cdot \underline{i}_{m}=\frac{\text { Direction }}{\underline{\text { Cosine }}}
$$

So (*) can be written using direction cosines and indicial notation:

$$
\tilde{x}_{1}=\ell_{\tilde{1} m} x_{m}
$$

Similarly:

$$
\begin{aligned}
\tilde{x}_{2} & =\ell_{\tilde{2} m} x_{m} \\
\tilde{x}_{3} & =\ell_{\widetilde{3} m} x_{m}
\end{aligned}
$$

We have a free index which ranges over the values $1,2,3$, so these 3 equations can be represented as:

$$
\tilde{x}_{n}=\ell_{\tilde{n} m} x_{m}
$$

Can also show the reverse

$$
x_{m}=\ell_{m \tilde{n}} \tilde{x}_{n}
$$

And can transform forces, etc. via:

$$
\tilde{F}_{n}=\ell_{\tilde{n} m} \tilde{F}_{m}
$$

