Unit M2.2 (All About) Stress

Readings:
CDL 4.2, 4.3, 4.4
16.001/002 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M2.2

Through participation in the lectures, recitations, and work associated with Unit M2.2, it is intended that you will be able to.........

-explain the concept and types of stress and how such is manifested in materials and structures
-use the various ways of describing states of stress
-apply the concept of equilibrium to the state of stress

Thus far we've talked about loads, both external and internal. But when we talk about how a structure carries a load internally, we need to consider not just how this is carried in an aggregate sense, but how it is carried point to point. For this we need to introduce.....

The Concept of Stress

Definition: Stress is the measure of the intensity of force acting at a point
--> Think about this as follows:
Figure M2.2-1 Representation of a bar with a colinear force acting in the x_{1} direction

Now divide the x_{1} - force surface into a $n x m$ grid
Figure M2.2-2 Representation of bar cross-section divided into $\boldsymbol{n} \times \mathrm{m}$ grid

$$
\begin{aligned}
& \Delta F_{1}=\frac{F_{1}}{n \cdot m} \\
& \Delta A_{(1)}=\frac{A_{(1)}}{n \cdot m} \text { on (1) surface } \\
& \quad \begin{array}{l}
\mathrm{A}=\text { total area } \\
\Delta=\text { individual block area }
\end{array}
\end{aligned}
$$

The stress is the intensity, thus let n and m go to infinity (so $\Delta A \rightarrow 0$)

$$
\underline{\sigma}_{1}=\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \frac{\Delta F_{1}}{\Delta A_{(1)}} \quad \text { Units: } \quad\left[\frac{\text { Force }}{\left(\text { length }^{2}\right)}\right]
$$

Where $\underline{\sigma}_{1}$ is the stress at a point on the x_{1}-face

- magnitude σ_{1}
- direction \underline{i}_{1}
--> Consider a more generalized case
Figure M2.2-3 Cross-section of general body subjected to internal force

Force \underline{F} is acting on x_{1}-face (\underline{i}_{1} is normal to plane of face)
Resolve force into three components:

$$
\underline{F}=F_{1} \underline{i}_{1}+F_{2} \underline{i}_{2}+F_{3} \underline{i}_{3}
$$

Then take the limit as the force on the face is carried by a smaller set of areas (bigger grid) until we have:

$$
\lim _{\Delta A \rightarrow 0} \frac{\Delta \underline{F}}{\Delta A_{(1)}}=\underline{\sigma}_{1}
$$

This gives:

$$
\begin{aligned}
\underline{\sigma}_{1}= & \sigma_{11} i_{1}+\sigma_{12} \underline{i}_{2}+\sigma_{13} \underline{i}_{3} \\
& \frac{\stackrel{\Delta}{\Delta} F_{1}}{\Delta A_{1}} \stackrel{\stackrel{\Delta}{\Delta} F_{2}}{\Delta A_{1}}
\end{aligned} \stackrel{\stackrel{\Delta F_{3}}{\Delta A_{1}}}{ }
$$

where $\underline{\sigma}_{1}$ is the stress vector and the $\sigma_{m n}$ are the components acting in the three orthogonal directions

We can do the same on the x_{2} and x_{3} faces and get:

$$
\begin{array}{ll}
\underline{\sigma}_{2}=\sigma_{21} \underline{i}_{1}+\sigma_{22} \underline{i}_{2}+\sigma_{23} \underline{i}_{3} & \left(\text { on } \underline{i}_{2}-\text { face }\right) \\
\underline{\sigma}_{3}=\sigma_{31} \underline{i}_{1}+\sigma_{32} \underline{i}_{2}+\sigma_{33} \underline{i}_{3} & \left(\text { on } \underline{i}_{3}-\text { face }\right)
\end{array}
$$

Note that using tensor format we can write this as:

$$
\underline{\sigma}_{m}=\sigma_{m n} \underline{i}_{n}
$$

This leads us to consider the.....

Stress Tensor and Stress Types

$\sigma_{m n}$ is the stress tensor
and this has particular meaning.
Figure M2.2-4 Infinitesimal element (a cube) representing a very small piece of a body

$\sigma_{m n}$ tells the face and direction of the stress

stress acts in n-direction
stress acts on face with normal vector in the m-direction
Note: one important convention

- If face has "positive normal", positive stress is in positive direction
- If face has "negative normal", positive stress is in negative direction
--> Also note that there are two types of stress:
- Acts normal to the face = Normal/extensional stress
- Acts in-plane of face $=\underline{\text { Shear/stress }}$

What do these terms mean?
Normal/extensional -- extends element and
Shear -- caused angular changes (think of deck of cards)

So there are (at first) $\underline{9}$ components of the stress tensor

But not all of these are independent due to the

Symmetry of Stress Tensor

One needs to consider the Moment Equilibrium of the differential element
--> Note important notation/convention:

Figure M2.2-5 Consider X_{2} faces and stresses acting on such

- σ_{22} acts on one side
- length of element in x_{2} direction is $d x_{2}$
- on other side, stress is: $\sigma_{22}+\frac{\partial \sigma_{22}}{\partial x_{2}} d x_{2}$

$$
\sigma_{22} \text { is field variable: } \sigma_{22}\left(x_{1}, x_{2}, x_{3}\right)
$$

Do the same with all stresses (and all directions!)
Let's, using this concept, consider moment equilibrium about the x_{1} axis (Thus, any stresses with a subscript of 1 do not contribute since they act parallel to x_{1} or have no moment arm)
Figure M2.2-6 Differential stress element under gradient stress field

Take moments about center of cube: \dagger

$$
\sum M=0
$$

$-->$ Note that σ_{22}, σ_{33} and associated stresses act through m (no moment arm,) so they don't contribute. This leaves us with:

$$
\begin{aligned}
& \sigma_{23}\left(d x_{1} d x_{3}\right) \frac{d x_{2}}{2}-\sigma_{32}\left(d x_{1} d x_{2}\right) \frac{d x_{3}}{2} \\
& +\left(\sigma_{23}+\frac{\partial \sigma_{23}}{\partial x_{2}} d x_{2}\right)\left(d x_{1} d x_{3}\right) \frac{d x_{2}}{2} \\
& -\left(\sigma_{32}+\frac{\partial \sigma_{32}}{\partial x_{3}} d x_{3}\right)\left(d x_{1} d x_{2}\right) \frac{d x_{3}}{2}=0
\end{aligned}
$$

(Note: Form is
(stress) (area) (moment arm))

Canceling out common $d x_{1} d x_{2} d x_{3}$ and 1/2 leaves:

$$
\sigma_{23}-\sigma_{32}+\sigma_{23}+\frac{\partial \sigma_{23}}{\partial x_{2}} d x_{2}-\sigma_{32}+\frac{\partial \sigma_{32}}{\partial x_{3}} d x_{3}=0
$$

The two derivatives are "higher order terms" (HOT's) which we can disregard to first order. Why? (differential) (differential) $=$ very small

So we're left with:

$$
\begin{aligned}
\sigma_{23}-\sigma_{32} & +\sigma_{23}-\sigma_{32}=0 \\
& \Rightarrow \sigma_{23}=\sigma_{32}! \\
& \text { symmetry! }
\end{aligned}
$$

Similar moment equilibrium about the other two axes yields:
(about x_{2})
$\sigma_{13}=\sigma_{31}$
(about x_{3})
$\sigma_{12}=\sigma_{21}$

Thus, in general:

$$
\sigma_{m n}=\sigma_{n m}
$$

Stress tensor is symmetric

This leaves us with $\underline{6}$ independent components of the stress tensor

Extensional

Shear
rotation about x_{1} rotation about x_{2}
rotation about x_{3}

Thus far we've just defined the stress tensor and we've used moment equilibrium to show the symmetry of the stress tensor. But there are other relations between these stress components. As in most structural problems, we always apply equilibrium. This will give us the....

Stress Equations of Equilibrium

We can still apply the three equations of force equilibrium. This will give us three relations among the stress components

Let's do this with the x_{1}-direction. Thus, we must consider all stresses with a second subscript of 1 (implies acts in x_{1}-direction):

Figure M2.2-7 Infinitesimal stress element and all stresses acting in x_{1}-direction

Now, $\sum F_{1}=0 \quad \swarrow+$

$$
\begin{aligned}
& \text { form is (stress) (area) } \\
& i_{1} \text { - face: }\left(\sigma / \sigma_{11}^{1}+\frac{\partial \sigma_{11}}{\partial x_{1}} d x_{1}\right)\left(d x_{2} d x_{3}\right)-\left(\sigma \alpha_{11}^{1}\right)^{(1)}\left(d x_{2} d x_{3}\right) \\
& i_{2} \text { - face: }\left(\sigma \sigma_{21}^{2}+\frac{\partial \sigma_{21}}{\partial x_{2}} d x_{2}\right)\left(d x_{1} d x_{3}\right)-\left(\sigma \sigma_{21}^{2}\right)\left(d x_{1} d x_{3}\right) \\
& \left.i_{3}-f a c e: \quad\left(\sigma / 31+\frac{\partial \sigma_{31}}{\partial x_{3}} d x_{3}\right)\left(d x_{1} d x_{2}\right)-(\sigma /)_{1}^{3}\right)\left(d x_{1} d x_{2}\right) \\
& +\underbrace{f_{1}} \underbrace{d x_{1} d x_{2} d x_{3}}=0 \\
& \text { body force (acts over entire volume) }
\end{aligned}
$$

Canceling out terms and dividing through by the common $d x_{1} d x_{2} d x_{3}$ gives:

$$
\frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{21}}{\partial x_{2}}+\frac{\partial \sigma_{31}}{\partial x_{3}}+f_{1}=0 \quad x_{1} \text {-direction }
$$

Similar work in the other two directions yields:

$$
\begin{array}{ll}
\frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{32}}{\partial x_{3}}+f_{2}=0 & x_{2} \text { - direction } \\
\frac{\partial \sigma_{13}}{\partial x_{1}}+\frac{\partial \sigma_{23}}{\partial x_{2}}+\frac{\partial \sigma_{33}}{\partial x_{3}}+f_{3}=0 & x_{3} \text { - direction }
\end{array}
$$

These are the three equations of stress equilibrium.
These can be summarized in tensor form as:

$$
\frac{\partial \sigma_{m n}}{\partial x_{m}}+f_{n}=0
$$

These are the key items about stress, but we also need to talk a bit more about...

(More) Stress Notation

Thus far we've used tensor notation but other notations are used and one must be able to "converse" in all of these

Although these are a member of different notations, the most important in engineering is:
--> Engineering Notation
Here, the subscripts are the directions x, y, z rather than x_{1}, x_{2}, x_{3}

Tensor	Engineering
x_{1}	x
x_{2}	y
x_{3}	z

In using the subscripts, only one subscript is used on the extensional stresses. Thus:

Tensor	Engineering
σ_{11}	σ_{x}
σ_{22}	σ_{y}
σ_{33}	σ_{z}
σ_{23}	$\sigma_{y z}$
σ_{13}	$\sigma_{x z}$
σ_{12}	$\sigma_{x y}$

Finally, there is a
$-->$ Matrix Notation
it is sometimes convenient to represent the stress tensor in matrix form:

$$
\underset{\sim}{\sigma_{m n}=}\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

Finally we want to consider the case of

Two-Dimensional Stress

In many cases, the stresses of importance are in-plane (i.e., two dimensional). There is a reduction in equations, stress components and considerations.

The assumption is to get the "out-of-plane" stresses to zero (they may be nonzero, but they are negligible).
By convention, the "out-of-plane" stresses are in the x_{3}-direction. Thus:

$$
\begin{aligned}
& \sigma_{33}=0 \\
& \sigma_{13}=0 \\
& \sigma_{23}=0
\end{aligned}
$$

This leaves only σ_{11}, σ_{22} and σ_{12} as nonzero.
This is known as Plane Stress
(also add the condition that $\frac{\partial}{\partial x_{3}}=0$)

Many useful structural configurations can be modeled this way. more later...(and especially in 16.20)

Now that we know all about stress, we need to turn to the companion concept of strain.

