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LEARNING OBJECTIVES FOR UNIT M2.3

Through participation in the lectures, recitations, and work
associated with Unit M2.3, it is intended that you will be
able to………

• ….explain the concept and types of strains and how
such is manifested in materials and structures

• ….use the various ways of describing states of strain
• ….describe the relationship between strain and

displacement in a body
• ….apply the concept of compatibility to the state of

strain
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We’ve just talked about how a solid continuum carries load
via stress.  Now we need to describe how such a continuum
deforms.  For this, we need to introduce

Definition:  Strain is the deformation of the continuum at a point
or

                  the percentage deformation of an infinitesimal element

To explore this concept, we need to think about the physical reality of how
items deform:

The Concept of Strain

1.  Elongation
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Figure M2.3-1   Example of one-dimensional elongation

• •p q

lund

• •P Q

ldef

FF

Consider the change in length,      :  Δl

  Δl =  ldeformed −  lundeformed 
(Note:        can be positive or negative)  Δl

Reference this to the original length:

  
Elongation =  E =  

ldeformed −  lundeformed 
lundeformed 

-->  Now consider the infinitesimal:
(Note:  small letters pertain to undeformed;
               CAPITAL LETTERS to deformed)
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undeformed length of infinitesimal:   ds  =  p  — q

• •p q

ds
deformed length of infinitesimal:   dS  =  P  — Q

• •P Q
FF

dS
Thus:

We will return to this.

The other way in which a body can deform is via…..

E =  P −  Q( ) −  p −  q( )
p −  q( ) 

⇒  E =  P −  Q( )
p −  q( ) 

 −  p −  q( )
p −  q( ) 

 =  dS
ds

 −  1
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2.  Shear
This produces an angle change in the body (with no elongations for
         pure shear)

x2

x1

undeformed

deformed

•

• •

•
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b q

a

•

• •

•
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A

Q

π
2

π
2

- φ

φ

Figure M2.3-2   Illustration of shear deformation of the infinitesimal
                   element

Consider the change in angle:
Δ∠ =  ∠deformed   −   ∠undeformed 

Would at first make sense.
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But, by convention, a reduction in angle is positive shear.  So:
Δ∠ =  ∠undeformed   −   ∠deformed

In this case:

Δ∠ =  π
2

 −  π
2

 −  φ
 
 
 

 
 
  

 

 
 

 

 
  =  φ

Also note that by keeping this in radians, this is already a
nondimensional quantity. [Units:  Nondimensional…

These give us the basic concepts of strain and that there are two types:
elongation and shear, but to deal with the full three-dimensional
configuration, we need to deal with the….

length
length

 =  "strain"  =  10.6;    µstrain = 10−6length
length

 =  "strain"  =  10.6;    µstrain = 10−6]

Strain Tensor and Strain Types

In going from the undeformed (small letters) to the deformed (capital letters)
body, we can define a displacement vector, u, for any point P.
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Figure M2.3-3   Displacement vector from undeformed to deformed body

x2

x3

x1

•p

undeformed
P•

deformed

u_

The overall displacement will have contributions from 4 basic parts:
1. Pure translation     (3 directions)
2. Pure rotation (3 planes)
3. Elongation (3 axes/directions)
4. Shear (3 planes)

So we have components of strain.
-->  For elongation, need to specify changes of length of three sides
      of body (so do relative to axes):

u =  u i1 +  v i2 +  w i3
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-->  For shear, need to specify changes in angles of three sides of
       body (use planes defined by axes):

Relate to displacement via strain-displacement relations:

Let’s see how we get this….
Formally, the strain tensor is defined by considering the diagonals of the
deformed and undeformed elements.

ε11 =  relative elongation in x1 − direction
ε22 =  relative elongation in x2 − direction
ε33 =  relative elongation in x3 − direction

ε ij =  1
2

 ∂ui
∂xj

 +  
∂uj
∂xi

 

 
 
 

 

 
 
 

ε12 +  ε21 =  total angle change in x1 − x2 plane
ε13 +  ε31 =  total angle change in x1 − x3  plane
ε23 +  ε32 =  total angle change in x2 − x3 plane
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Figure M2.3-4   Position vectors to deformed and undeformed element
                   and the associated diagonals

x2

x3

x1

undeformed
deformed

r_

dr_

R_

dR_

Take the squares of the diagonals:

r =  position vector to undeformed element
R =  position vector to deformed element
dr =  diagonal of undeformed element
dR =  diagonal of deformed element

ds( )2  =   dr ⋅  dr          dS( )2  =   dR ⋅  dR
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Ref:  Bisplinghoff, Mar and Pian, Statics of Deformable Solids, Ch. 5.

change in
magnitude

factor of 2 for angular changes!

But what good does this do us?
This general definition is needed for the most general case with “large
strains”, but in many (most engineering) cases we can consider….

Small Strains (vs. Large Strains)

With small deformations in most structures, we can put limits on strains
such that:

changes of length  <  10%
changes of angles  <  5%

Formal Definition of Strain Tensor

dS( )2  −   ds( )2  =   2εmn  dxmdxn

εmn =  Strain Tensor
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Good for range of most “engineering materials”
In such cases, higher order terms become negligible and we can
equate:

-  extensional strain with elongation
-  shear strain with angular change

x2

x1

undeformed

deformed

•

• •

•

p

b q

a

•

• •

•

P

B

A

Q

π
2

π
2

- φ

φ

for small strains:
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where:  E11 = elongation in x1 - direction

and a similar drawing can be made to include x3 so that:

In general:

shear:

where:   12  =  angular change in x1 - x2  plane

And again, drawings to include x3 will give:

elongation

φ

ε12 ≅   1
2
φ12 =   1

2
 ∠apb −  ∠APB[ ]

  
elongation strain =  lim      change in element length

element lengthelement length → 0

ε33 ≅   Ε33 =   
 PC  −   pc 

 pc 

ε11 ≅   Ε11 =    PA  −   pa 
 pa 

ε22 ≅   Ε22 =    PB  −   pb 
 pb 
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In general:
shear strain = 1/2 (angular change)

-->  we now have a definition of strain and can deal with the most useful
         case of “small strain”.  But we have not yet defined formally how
         strain and displacement are related, so we need the:

Strain - Displacement Relations

Consider first extensional strains.
We know:

ε13 ≅   1
2
φ13 =   1

2
 ∠apc −  ∠APC[ ]

ε23 ≅   1
2
φ23 =   1

2
 ∠bpc −  ∠BPC[ ]

  

ε11 ≅  elongation in x1 

≅  
ldef −  lund

lund
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Figure M2.3-5   Unit (infinitesimal) element of length dx1

x1

x2

dx1

u1 +          dx1
∂u1

 ∂x1u1

u1 +  ∂u1
∂x1

 dx1
 

 
  

 

 
   

u1 is a field variable = u1 (x1, x2, x3)
⇒  u1 is displacement of left-hand side

is displacement of right-hand side

way u1
changes
with x1

infinitesimal length
in x1 - direction

We see:

  

lundeformed =  dx1

ldeformed =  dx1 u1 +  ∂u1
∂x1

 dx1
 

 
  

 

 
   −  u1 

=  dx1 +  ∂u1
∂x1

 dx1
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So:

ε11 =  
dx1 +  ∂u1

∂x1
 dx1 −  dx1

dx1

⇒  ε11 =  ∂u1
∂x1

 

ε22 =  ∂u2
∂x2

ε33 =  ∂u3
∂x3

Similarly:  (pictures in
    x2 and x3 directions)

  

ldeformed =  dx1  +  u1 +  ∂u1
∂x1

 dx1
 

 
  

 

 
   −  u1 

=  dx1 +  ∂u1
∂x1

 dx1
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In general:  extensional strain is equal to
          the rate of change of displacement

Now consider shear strains

We know:

ε12 ≅  1
2

 angle change in x1 −  x2 plane ≅  1
2

 φ12

≅  1
2

 ∠undef −  ∠def{ } 

=  1
2

 π
2

 −  π
2

 −  0
 
 
 

 
 
 

 
 
 

 
 
 

ε12 ≅  1
2

≅  1
2

 ∠undef −  ∠def{ } 

=  1
2

 π
2

 −  π
2

 −  0
 
 
 

 
 
 

 
 
 

 
 
 φ
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Figure M2.3-6   Unit (infinitesimal) element dx1 by dx2 in the x1 - x2 plane

u2 +          dx1
∂u2

 ∂x1

x1

x2

u1 +          dx2
∂u1

 ∂x2

u1

u2

dx1

dx2

θ1

θ2

•  Using the field variables u1 (x1, x2, x3)  and  u2 (x1, x2, x3)
•  Assume small angles such that:   tan θ ≅ θ
•  Start with

φ  =  θ1 +  θ2

θ1 =  
u1 +  ∂u1

∂x2
 dx2

 

 
  

 

 
   −  u1

dx2
 =  ∂u1

∂x2

θ2 =  
u2  +  ∂u2

∂x1
 dx1

 

 
  

 

 
   −  u2

dx1
 =  ∂u2

∂x1



Unit M2.3 - p. 19Paul A. Lagace © 2007

MIT - 16.001/16.002 Fall, 2008φ  =  θ1 +  θ2

θ1 =  
u1 +  ∂u1

∂x2
 dx2

 

 
  

 

 
   −  u1

dx2
 =  ∂u1

∂x2

θ2 =  
u2  +  ∂u2

∂x1
 dx1

 

 
  

 

 
   −  u2

dx1
 =  ∂u2

∂x1
Thus:

ε12 =  
1
2

 
∂u1
∂x2

 +  ∂u2
∂x1

 

 

 
 
 
 

 

 

 
 
 
 
 =  ε21

Recall symmetry of strain tensor

Similarly:  (pictures in
        x1 - x3 and x2 - x3
        planes)

ε13 =  ε31 =  1
2

 
∂u1
∂x3

 +  ∂u3
∂x1

 

 

 
 
 
 

 

 

 
 
 
 

ε23 =  ε32 =  1
2

 
∂u2
∂x3

 +  ∂u3
∂x2
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These can be written in general tensor form as:

ε ij =  1
2

 
∂ui
∂x j

 +  
∂uj
∂xi

 

 

 
 
 
  

 

 

 
 
 
  

where:
u =  u1 i1 +  u2 i2 +  u3 i3 

with 6 independent components:

ε13 =  ε31 =  1
2

 
∂u1
∂x3

 +  ∂u3
∂x1

 

 

 
 
 
 

 

 

 
 
 
 

ε23 =  ε32 =  1
2

 
∂u2
∂x3

 +  ∂u3
∂x2

 

 

 
 
 
 

 

 

 
 
 
 

and

Strain-Displacement
Relations

extensional shear
ε11
ε22
ε33

ε12 =  ε21
ε13 =  ε31
ε23 =  ε32
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Note:  These relations are developed for small
    displacements only.  As displacements get
    large, must include higher order terms.

It looks like we’re done, but not quite.  There is one more concept known as:

Compatibility

One cannot independently describe 3 displacement fields {u1 (x1, x2, x3),
u2 (x1, x2, x3), u3 (x1, x2, x3)}  by 6 strains

The strains must be related by equations in order for them to be
“compatible”.

Can derive by:  (e.g., ε11, ε22, ε12)

        •  take second partial of each
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∂ 2ε11
∂x2

2  =  ∂3u1
∂x1∂x2

2         ∂
2ε22
∂x1

2  =  ∂ 3u2
∂x1

2∂x2

∂2ε12
∂x1∂x2

 =  1
2

 ∂3u1
∂x1∂x2

2  +  ∂3u2
∂x1

2∂x2

 

 
  

 

 
  

•  substitute first two in latter to get:
∂ 2ε11
∂x2

2  +  ∂
2ε22
∂x1

2  −  2 ∂2ε12
∂x1∂x2

 =  0

In general this can be written in tensor form:

  

∂2εnk
∂xm∂xl

 +  ∂
2εml

∂xn∂xk
 −  ∂

2εnl
∂xm∂xk

 −  ∂
2εmk

∂xn∂xl

 =  0

gives 6 equations (3 conditions)

Are we done?  NO…we again need to address…
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(More) Strain Notation
Just as in the case of stress, we also need to be familiar with other
notations, particularly

-->  Engineering Notation

The subscript changes are the same, but there is a fundamental
difference with regard to strain

Engineering shear strain = total angle change
Tensorial shear strain = 1/2 angular change

BEWARE:  The factor of 2

-->  always ask:  tensorial or
             engineering shear strain?

Thus:
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1/2 εyz

1/2 εxz

1/2 εxy

εz

εy

εx

Engineering

ε23

ε13

ε12

ε33

ε22

ε11

Tensor

In addition,    (gamma) is often used for the shear strains:γ
γ xy =  γ yx =  εxy =  ε yx
γ xz =  γ zx =  ε xz =  εzx
γ yz =  γ zy =  εyx  =  εzy

Finally, can also use….

-->  Matrix Notation

εyz
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εmn =  
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 

 

 
 
 

 

 

 
 
 

symmetric matrix
Finally…

Deformation/Displacement Notation

P(x1, x2, x3)

p(x1, x2, x3),   

um = p(xm) - P(xm)

       small p
(deformed position)

Capital P 
(original position)

Figure M2.3-7   Displacement Notation

x2

x3

x1

~
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-->  Compare notations

xuu1

yvu2

zwu3

Direction in
EngineeringEngineeringTensor


