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LEARNING OBJECTIVES FOR UNIT M2.4

Through participation in the lectures, recitations, and work
associated with Unit M2.4, it is intended that you will be
able to………

• ….explain the bases for the transformations of the
states of stress, strain, and deformation

• ….cite the equations for 3-D transformations of stress,
strain, and deformation

• ….transform the states of stress, strain, and
deformation for any 2-D configuration

• ….apply the concepts associated with principal
stress/strain/axes
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Earlier, we learnt how to transform coordinates and forces.
We may want to do the same with stresses and strains.
Why?…..Recall the

Motivation

-->  We may want to describe the behavior (stress and strain) of a
structure with reference to more than one set of axes:
Figure M2.4.1   Example of loading axes on airplane

fuselage axes

wing axes
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Different “loading axes” for wing and fuselage.
Definition:  Loading axes are axes along which loading is
                  applied/oriented

Also, wing axes not oriented with fluid flow axes
     (transformation needed here)

Figure M2.4.2   Example of a fibrous composite and different axes

fiber direction

σ11

σ12

σ22
σ21 x2

x1

x1
~

x2
~

Know stresses (or strains) along loading axes but want to know
stresses in axis system referenced to fibers.
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Let’s first consider the mathematical form of the transformation:

Tensorial Form
We learnt in Unit U4 that to transform from one axis system to another, we
need the direction cosines:
Figure M2.4.3   Two different axis systems

x2

x1

x1
~

x2
~

θ

(direction) cosine of angle from xn to xm  lnm =

  xn  =  lnm  xm
-->  Axes and forces are first-order tensors (1 subscript) and require
       1 direction cosine for transformation.

-->  Stresses and strains are second-order tensors (2 subscripts)
       and require 2 direction cosines for transformation.

~ ~

~
~



Unit M2.4 - p. 6Paul A. Lagace © 2007

MIT - 16.001/16.002 Fall, 2008

  

˜ σ mn =  l ˜ m p  l ˜ n q  σ pq

˜ ε mn =  l ˜ m p  l ˜ n q  ε pq

˜ x m =  l ˜ m p  xp

˜ u m =  l ˜ m p  up

˜ E mnpq  =  l ˜ m r  l ˜ n s  l ˜ p t  l ˜ q u  Erstu  

˜ σ mn =  l ˜ m p  l ˜ n q  σ pq

˜ ε mn =  l ˜ m p  l ˜ n q  ε pq

˜ x m =  l ˜ m p  xp

˜ u m =  l ˜ m p  up

˜ E mnpq  =  l ˜ m r  l ˜ n s  l ˜ p t  l ˜ q u  Erstu

Thus:

  

˜ σ mn =  l ˜ m p  l ˜ n q  σ pq

˜ ε mn =  l ˜ m p  l ˜ n q  ε pq

˜ x m =  l ˜ m p  xp

˜ u m =  l ˜ m p  up

˜ E mnpq  =  l ˜ m r  l ˜ n s  l ˜ p t  l ˜ q u  Erstu

and for displacement:

These are the tensor equations to transform stress and strain from
the xm - system to the xn - system.~

(we won’t write this out in full until we go to two dimensions)
**Remember from before the

IMPORTANT CONCEPT:  The axis system in
    which we describe a quantity (or set thereof)
    does not change the quantity (or set thereof),
    only its description.

So, the stress state and the strain state do not change, we just describe
them differently.  In order to see this let’s consider the physical bases for
these transformations.
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Physical Bases
-->  Stress

We are looking at the same stress state as referenced to two sets of
coordinate axes/systems.

Figure M2.4.4   Infinitesimal cubes of stress in two axis systems

x2

x3

x1 x 1
~ x 2

~
x 3

~
transform

⇒

σ11

σ33

σ22

σ 11
~

σ 22
~σ 33

~
infinitesimal cube
in equilibrium

rotated infinitesimal
cube still in equilibrium

So the transformation of stresses is based on equilibrium
(we’ll prove it when we go to 2-D)
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-->  Strain
Here we are looking at the same physical deformation as referenced
to two different sets of coordinate axis/systems.
Thus, the geometry stays the same

   and
The transformation of strain is based on geometry

The transformation laws are generally in 3-D and their bases can be
proven in 3-D.  However, it is easier to consider these items by looking at
their….

Two-Dimensional Forms

And there are numerous problems which we deal with in 2-D (e.g., plane
stress)

Since we have written the tensorial forms of the transformation
equations in 3-D, we can do the same in 2-D (just use Greek
subscripts!):
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2-D forms for stress and strain

Writing the first out in full:
-->  Stress

where θ is angle from xm to xm axes (θ  +CCW)

~ ~

~ ~

~

~

~

~

σ11 =  cos2θ σ11 +  sin2θ σ 22 +  2 cosθ sinθ σ12
σ22 =  sin2θ σ11 +  cos2θ σ 22 −  2 cosθ sinθ σ12
σ12 =  − sinθ cosθ σ11 +  cosθ sinθ σ 22

                                              +  cos2 θ  −  sin2θ( ) σ12

  

˜ σ αβ =  lαθ  lβτ σθ τ

˜ ε αβ =  lαθ  lβτ εβ τθ
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Figure M2.4.5   Illustration of axis transformation

x1
~

x2
~

x3 , x3
~

x1

x2

θ

Let’s look at the physical basis for this and show where one of these
equations comes from

Consider a….
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Figure M2.4.6   Unit square (of unit depth dx3) in equilibrium

x2

x1

σ11
σ11

σ22

σ22

σ21

σ21

σ12

σ12

Now cut this diagonally or at some angle θ (more generally):
Figure M2.4.7   Cut of unit square and axes acting along each face

x2

x1

x1
~x2

~

θ

σ22

σ21

σ11

σ12

σ12
~

σ11
~

dx2

x2
~

d

π
2 - θ

θ

A
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•  Align x1 perpendicular to cut face;  x2 parallel to cut face
•  This is still of unit depth dx3
•  This must still be in equilibrium

Take                  :
form = (stress) (length) (depth)
and can see dx2 = dx2 cosθ

           A = dx2 sinθ~
~

σ11( ) dx2( ) dx3 −  σ11 cosθ( ) dx2 cosθ( ) dx3 −  σ22 sinθ( ) dx2  sinθ( ) dx3
−  σ12 sinθ( ) dx2 cosθ( ) dx3 −  σ21 cosθ( ) dx2 sinθ( ) dx3 =  0

~ ~ ~ ~

~ ~

Use this and cancel out dx3:

σ11 dx2 =  σ11 cosθ dx2  cosθ +  σ 22 sinθ dx2 sinθ~ ~ ~

~ ~

Canceling  out dx2 and combining:

same as via tensorial form!

~ ~

~

~
~

+  σ12 sinθ dx2  cosθ +  σ 21 cosθ dx2  sinθ

σ11 =  cos2θ σ11 +  sin2θ σ 22 +  2 cosθ sinθ σ12

F1 =  0∑  :~
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This can be done for σ22 and σ12 and could be done in 3-D as well!
Note:  Transformation equations for engineering
           notation form of stresses are the same
           (but can’t write it tensorially)

Now let’s consider…
--> Strain

For tensor notation, the 2-D (and 3-D) transformation equations have
the exact same form:

where θ is angle from xn to xm axes  (θ  +CCW)~

Using geometry, these equations can be shown physically.

For a “baseline feeling,” consider….

~ ~

~

~

~

ε11 =  cos2θ ε11 +  sin2θ ε22 +  2cosθ sinθ ε12
ε22 =  sin2θ ε11 +  cos2θ ε22 −  2cosθ sinθ ε12
ε12 =  − sinθ cosθ ε11 +  cosθ sinθ ε22
                                              +  cos2 θ  −  sin2θ( ) ε12
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Figure M2.4.8   Two squares drawn on a bar, one at 45° relative angle to
                   the other

undeformed
x2

x1

x1
~x2

~

deformed

One appears stretched/elongated, yet they are the same
deformation field!

Use geometry!

Note (on engineering notation):  the transformation
         equations change due to the factor of 2 in the
         shear strain.    BE CAREFUL!
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There are some important aspects associated with stress/strain
transformations.  The most important of these is:

Principal Stresses/Strains/Axes

There is a set of axes into which any state of stress (or strain) can be
resolved such that there are no shear stresses (or strains).  These are
known as the principal axes of stress (or strain) and the resolved set of
stresses (or strains) are known as the principal stresses (or strains).

Can see this readily in 2-D by considering the                       equation:σ12 or ε12( )

Set σ12 to 0 and solve for θp .  Then use θp in equations for σ11 and σ22.

~ ~

~

~ ~ ~

σ12 =  − sinθ cosθ σ11 +  sinθ cosθ σ22
                                            +  cos2θ  −  sin2 θ( ) σ12

principal
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More generally in 3-D can determine the principal stresses as the root
of the equations:

This has three roots (for τ) which we label (in decreasing numerical
order):

 σ11 −  τ( ) σ12 σ13
σ12 σ 22 −  τ( ) σ 23

σ13 σ 23 σ33 −  τ( )  
 =  0

σI, σII, σIII -- THE PRINCIPAL STRESSES 

The three directions (axes) along which these principal stresses act
can be found via:

where       are the direction cosines between the axis along which σI
acts and the original axes xn

~ ~ ~

~ ~~

~ ~ ~

~
  l In

 2
  

σ II  −  σ I( ) lI1 +  σ12 lI2 +  σ13 l I3 =  0

σ12 l I1 +  σ22 −  σ I( ) lI2  +  σ23 lI3 =  0
l I1

 2 +  lI2
 2  +  lI3

 2 =  1

 σ11 −  τ( ) σ12 σ13
σ12 σ 22 −  τ( ) σ 23

σ13 σ 23 σ33 −  τ( )  
 =  0
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-->  Similar equations can be written for the case of σII  and σIII.
The resulting equations have…

•  eigenvalues (roots) -- these are the principal stresses
•  eigenvectors -- these are the principal axes

-->  write this out explicitly for 2-D:
 σ11 −  τ σ12
σ12 σ22 −  τ   =  0

⇒σ11 σ 22 −  σ11 +  σ22( ) τ +  τ 2 −  σ122  =  0

⇒τ 2 −  τ σ11 +  σ22( ) +  σ11σ22 −  σ122( ) =  0

Solve via quadratic formula.  Roots are σI  and σII

To get θp  use:
σ I  =  cos2θp  σ11 +  sin2θ p σ 22 +  2 cosθp  sinθ p σ12

and solve for θp

or use:

⇒τ 2 −  τ σ11 +  σ22( ) +  σ11 σ 22 −  σ12
2( ) =  0
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σ12 =  0 =  − sinθ cosθ σ11 +  sinθ cosθ σ22 +  cos2θ −  sin2 θ( ) σ12 
σ12 =  0 =  − sinθ cosθ σ11 +  sinθ cosθ σ22 +  cos2θ −  sin2 θ( ) σ12 

(no shear stress in principal axes)

~

use the following trigonometric identities

cos2θ =  1
2

 1 +  cos2θ( ) 

sin2θ =  1
2

 1 −  cos2θ( )

sinθ cosθ =  1
2

 sin2θ 

⇒ 0 =  −σ11 
1
2

 sin2θ +  σ 22 
1
2

 sin2θ 

+  σ12 
1
2

 +  1
2

 cos2θ −  1
2

 +  1
2

 cos2θ
 
 
 

 
 
 

gives:
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1
2

 sin2θ σ11 −  σ 22( ) =  σ12 cos2θ( )

Could use this result in transformation equations for σ11  and σ22 to
get σI  and σII  (optionally)

~ ~

-->  There are ways to check work when doing transformation
         because of….

Invariants
(Invariant --> doesn’t vary [with axis system] )

•  (σ11  +  σ22  +  σ33)  is a constant!
Thus, sum of normal stresses is invariant

⇒ tan 2θ =  2σ12
σ11 −  σ22

⇒θp =  1
2

 tan −1 2σ12
σ11 −  σ 22
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-->  Prove in 2-D:
σ11 +  σ22 =  cos2θ σ11 +  sin2θ σ22 +  2 cosθ sinθ σ12

+ sin2θ σ11 +  cos2θ σ 22 +  2cosθ sinθ σ12
=  σ11 cos2θ +  sin2θ( )  +  σ22 sin2θ +  cos2 θ( )
+ σ12 2 cosθ sinθ −  2 cosθ sinθ( )

σ11 +  σ22 =  σ11 +  σ 22 

σ11 +  σ22 =  cos2θ σ11 +  sin2θ σ22 +  2 cosθ sinθ σ12
+ sin2θ σ11 +  cos2θ σ 22 +  2cosθ sinθ σ12
=  σ11 cos2θ +  sin2θ( )  +  σ22 sin2θ +  cos2 θ( )
+ σ12 2 cosθ sinθ −  2 cosθ sinθ( )

σ11 +  σ22 =  σ11 +  σ 22 

σ11 +  σ22 =  cos2θ σ11 +  sin2θ σ22 +  2 cosθ sinθ σ12
+ sin2θ σ11 +  cos2θ σ 22 +  2cosθ sinθ σ12
=  σ11 cos2θ +  sin2θ( )  +  σ22 sin2θ +  cos2 θ( )
+ σ12 2 cosθ sinθ −  2 cosθ sinθ( )

σ11 +  σ22 =  σ11 +  σ 22 

σ11 +  σ22 =  cos2θ σ11 +  sin2θ σ22 +  2 cosθ sinθ σ12
+ sin2θ σ11 +  cos2θ σ 22 +  2cosθ sinθ σ12
=  σ11 cos2θ +  sin2θ( )  +  σ22 sin2θ +  cos2 θ( )
+ σ12 2 cosθ sinθ −  2 cosθ sinθ( )

σ11 +  σ22 =  σ11 +  σ 22 
So:

= 1 = 1

= 0

Q. E. D.
(doesn’t vary with θ!)

Note:  all these same concepts can be done for strain:
-  principal strains
-  principal axes
-  invariants

(use same equations)

So:  (σI  +  σII  +  σIII)  =  (σ11  +  σ22  +  σ33)

~ ~

~ ~

σ11 +  σ22 =  cos2θ σ11 +  sin2θ σ22 +  2 cosθ sinθ σ12
+ sin2θ σ11 +  cos2θ σ 22 +  2cosθ sinθ σ12
=  σ11 cos2θ +  sin2θ( )  +  σ22 sin2θ +  cos2 θ( )
+ σ12 2 cosθ sinθ −  2 cosθ sinθ( )

σ11 +  σ22 =  σ11 +  σ 22 

-
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Associated with the concept of principal stresses/strains/axes, is the
concept of

Maximum (Extreme) Shear
    Stresses/Strains/Planes

These are planes along which the value(s) of the shear stresses/strains
are maximized.

(important in failure considerations)
-->  Can see what direction this is relative to the principal
          stresses/strains by considering:

σ12 =  − sinθ cosθ σ I +  sinθ cosθ σ II

(recall σ12 = 0 in principal axes)
Maximize, take derivative:

∂σ12

∂θ
 =  0 =  σ I sin

2θ −  cos2θ( )  +  − sin2θ +  cos2θ( ) σ II

⇒  0 =  σ I   −  σ II( )  sin2θ  −  cos2 θ( )
⇒  sin2θ =  cos2θ ⇒  θ =  45°

~
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Can generalize to 3-D and show that maximum shear
stresses/strains occur on planes oriented 45° to the principal axes

Values are:
σ I   −  σ II

2
,  σ II  −  σ III

2
,   σ I   −  σ III

2
  (use σ12 equation)

There is one final concept to look at with regard to transformations.
Before calculators/computers, use of geometry was made to do stress
and strain calculations.  Done via:

Mohr’s Circle
(see handout M-7 for description)

• Based on invariants (radius of circle is sum of normal
stresses/strains)

• Easy to see principal stresses/strains, important angles,
maximum shear stresses/strains

• Relatively simple for 2-D, can be extended (not easily to
3-D)

~


