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LEARNING OBJECTIVES FOR UNIT M3.2

Through participation in the lectures, recitations, and work
associated with Unit M3.2, it is intended that you will be
able to………

• ….explain the meaning of the elasticity and compliance
tensors and analyze their mathematical details

• ….describe the behavior of a material in terms of
constitutive response

• ….discuss engineering/elastic constants, their
measurement, and their relationship to tensors

• ….employ a continuum version of the constitutive law
of elasticity
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Will look at the model to relate stress and strain and consider
how we manipulate this mathematically and determine the
properties/characterization experimentally.

To orient ourselves, let’s first look at how actual materials
behave and examine…

Uniaxial Stress-Strain

Consider a…
Figure M3.2-1   Bar pulled by a force F

F F

Area = A

L δ
such that there is only uniaxial (σ11) stress:

σ11 =  F
A
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and the relative elongation is:

  
ε11 =  δ

l
Such a load is generally applied via a testing machine to obtain σ
versus ε experimentally (recall truss experiment).

Different types of material exhibit different stress-strain behavior.
There are two general categories:
Figure M3.2-2a   Illustration of brittle behavior (e.g., glass, ceramics)

σ

ε

x
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Figure M3.2-2b   Illustration of ductile behavior (e.g., metals)
σ

ε

x

yield unload path

linear elastic
region

plastic
region

-->  In elastic region, return path is to origin
-->  In plastic region, return path is parallel to original linear
       portion ⇒ permanent strain remains

-->  Let’s concentrate on the linear portion and model that behavior.

We look to work done in 1676 proposed by Hooke and consider:
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(Generalized) Hooke’s Law
Hooke said that force and displacement and also stress and strain
are linearly related:

σ = Eε --Hooke’s Law

(also think of F = kx)

Thus, the slope of the uniaxial stress-strain response in the linear
region is:

(as we’ve seen before)

σ
ε

 =  E Modulus of Elasticity
force / length2[ ]
psi[ ]  Pa[ ]
ˆ M  106( )   ˆ G  109( )

Units:

Note:

force / length2[ ]
psi[ ]  Pa[ ]
ˆ M  106( )   ˆ G  109( )

force / length2[ ]
psi[ ]  Pa[ ]
ˆ M  106( )   ˆ G  109( )

  
σ =  F

A
,   ε =  δ

l

force / length2[ ]
psi[ ]  Pa[ ]
ˆ M  106( )   ˆ G  109( )

force / length2[ ]
psi[ ]  Pa[ ]
ˆ M  106( )   ˆ G  109( )

  
⇒  F / A

δ / l
 =  E    ⇒  δ Fl

AE  
⇒  F / A

δ / l
 =  E    ⇒  δ Fl

AE
=
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We need to generalize this concept in order to relate general stress (a
second-order tensor) to general strain (a second-order tensor).  We arrive
at…..

-->  Generalized Hooke’s Law

the elasticity tensor
This is a fourth-order tensor which is needed to
related two second-order tensors

σmn  =  Emnpq   ε pq

Write out for a sample case (m = 1, n = 1)
σ11 =  E1111 ε11 +  E1112 ε12 +  E1113 ε13
               +  E1121 ε21 +   E1122 ε22 +  E1123 ε23
               +  E1131 ε31 +   E1132 ε32 +  E1133 ε33

(p = 1, sum on q)
(p = 2, sum on q)
(p = 3, sum on q)
(sum on p)

Collect like terms (e.g. εmn = εnm) to get:
σ11 =  E1111 ε11 +  E1122 ε22 +  E1133 ε33
               +  2E1112 ε12 +   2E1113 ε13 +  2E1123 ε23

(Note:  recall 2’s for tensorial strain)
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But in order to consider this 3-D stress-strain relation in its entirety, we
need to consider the…

Elasticity and Compliance Tensors
Emnpq is the “Elasticity Tensor”

How many components does this appear to have?
m, n, p, q = 1, 2, 3
⇒ 3 x 3 x 3 x 3 = 81 components

But there are several symmetries:
1.  Since  σmn = σnm (equilibrium/energy considerations)

⇒ Emnpq = Enmpq

2.  Since  εpq = εqp (geometrical considerations) 

(symmetry in switching first two 
     indices)

⇒ Emnpq = Emnqp (symmetry in switching last two 
     indices)

3.  From thermodynamic considerations 
⇒ Emnpq = Epqmn

(1st law of thermo)
(symmetry in switching pairs of indices)
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Note that:
•  since  σmn = σnm , the apparent 9 equations for stress 
     are only 6

With these symmetrics, the resulting full 3-D stress-strain equations 
are (in matrix form):
σ11
σ22
σ33
σ23

σ13

σ12

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

 =  

E1111 E1122 E1133 2E1123 2E1113 2E1112
E1122 E2222 E2233 2E2223 2E2213 2E2212
E1133 E2233 E3333 2E3323 2E3313 2E3312
E1123 E2223 E3323 2E2323 2E1323 2E1223
E1113 E2213 E3313 2E1323 2E1313 2E1213
E1112 E2212 E3312 2E1223 2E1213 2E1212
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ε12
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σ13

σ12

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

 =  

E1111 E1122 E1133 2E1123 2E1113 2E1112
E1122 E2222 E2233 2E2223 2E2213 2E2212
E1133 E2233 E3333 2E3323 2E3313 2E3312
E1123 E2223 E3323 2E2323 2E1323 2E1223
E1113 E2213 E3313 2E1323 2E1313 2E1213
E1112 E2212 E3312 2E1223 2E1213 2E1212

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

 =  

ε11
ε22
ε33
ε23
ε13
ε12

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

•  2’s come out automatically since εpq =  εqp and 
       Emnpq = Emnqp terms like Emnpq εpq +  Emnqp εqp = 2Emnpq εpq 

(factor of 2!)

Note:  2’s come naturally here

-->  as we saw for case of m = 1, n = 1
-->  don’t put them in ε~
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This results in 21 independent components of the elasticity tensor
• Along diagonal (6)
• Upper right half of matrix (15)

[don’t worry about 2’s]
The components of the Emnpq can be placed into 3 groups:

• Extensional strains to extensional stresses

e.g.,    σ11 = … E1122 ε22 … 

• Shear strains to shear stresses
E1212 E1213
E1313 E1323
E2323 E2312

E1111 E1122
E2222 E1133
E3333 E2233

or:
σ =  E  ε;  σmn  =  Emnpq ε pq~ ~ ~

e.g.,    σ12 = … 2E1223 ε23 … 

σ =  E  ε;  σmn  =  Emnpq ε pq
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E1112 E2212 E3312
E1113 E2213 E3313
E1123 E2223 E3323

• Coupling terms:  extensional strains to shear stresses or 
shear strains to extensional stresses

e.g.,    σ12 = …E1211 ε11…
σ11 = …2E1123 ε23…

A material which behaves in this 
manner is “fully” anisotropic

The Compliance Tensor
Just as there is a general relationship between stress and strain:

σmn  =  Emnpq   ε pq

Need to consider a “companion” to the elasticity tensor…
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there is an inverse relationship between strain and stress:

where:             is the compliance tensor
Using matrix notation:

σ = E ε
⇒

with:  ε = S σ

~ ~ ~

~ ~ ~

E-1 σ  = ε~ ~ ~
inverse

comparing the two gives:

E-1 = S~ ~

⇒ E S = I~ ~ ~
⇒The compliance matrix is the
    inverse of the elasticity matrix

εmn =  Smnpq σ pq

Smnpq



Unit M3.2 - p. 13Paul A. Lagace © 2008

MIT - 16.001/16.002 Fall, 2008

• Compliance term Smnpq:  amount of strain (εmn) caused by the 
                                                           stress (σpq) 

Meaning of the tensors and their components:

• Elasticity term Emnpq:       amount of stress (σmn) caused by/related 
                                                           to the deformation/strain (εpq)

-->  Final note…Transformations
These are fourth order tensors and thus require 4 direction cosines to
transform:

~ ~ ~ ~

~ ~ ~ ~

~

~
  

Emnpq =  lmr  lns lpt lqu Erstu
Smnpq =  lmr  lns lpt lqu Srstu

Note:  the same symmetries apply to Smnpq as
           to Emnpq
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Classes of Stress-Strain Behavior
(e.g., anisotropy, orthotropy, isotropy)

-->  Good reference for this:
Bisplinghoff, Mar, and Pian, “Statics

of Deformable Solids”, Addison,
Wesley, 1965, Ch. 7.

Start out by making a table of the classes of material stress-strain
behavior and the associated number of independent components of
Emnpq:

Not all materials require all 21 components to describe their  behavior.  We
therefore consider…..
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2Isotropic

3Cubic

5“Transversely Isotropic”*

6Tetragonal

9Orthotropic

13Monoclinic

21Anisotropic

# of Independent
Components of Emnpq

Class of Stress-Strain
Behavior

Useful
Engineering

Materials

Composite
Laminates

Basic
Composite

Ply

Metals
(on average)
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Consider some key cases:
-->  Anisotropic

•  21 independent components
•  Nonorthogonal crystals
•  Currently no useful engineering materials

1. Someday, we may have useful fully anisotropic materials
(certain crystals now behave that way) Also, 40-50 years ago,
people only worried about isotropy

2. It may not always be convenient to describe a structure (i.e.,
write the governing equations) along the principal material axes,
but may use loading axes.

Why, then, do we bother with anisotropy?
Two reasons:

In these other axis systems, the material may appear to have “more”
elastic components.  But it really doesn’t.

(you can’t “create” elastic components just by describing a material in
a different axis system, the inherent properties of the material stay the
same).
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Example of unidirectional composite (transversely
isotropic) in two different axis systems

Figure M3.2-3

No shear / extension coupling Shears with regard to loading
axis but still no inherent
shear/extension coupling

In order to describe full behavior, need to do
…TRANSFORMATIONS
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-->  Orthotropic
•  Limit of current useful engineering materials
•  Needed for composite analysis
•  No coupling terms in the principal axes of the material

e.g., E1112 = 0

− No shear strains arise when extensional stress is applied and 
          vice versa)

(total of 9 terms are now zero)
− No extensional strains arise when shear stress is applied (and 
         vice versa)

(same terms become zero as for
     previous condition)

− Shear strains (stresses) in one plane do not cause shear strains 
        (stresses) in another plane

E1223 , E1213 , E1323  =  0

E1112 ,  E1113 ,  E1123,  E2212 ,  E2213 ,  E2223 , 
        E3312 ,  E3313 ,  E3323 =  0
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With these additional terms being zero, we end up with 9 independent
components:

(21 - 9 - 3 = 9)
and the resulting equations are:

For other cases, no more terms become zero, but the terms are not
Independent.

σ11
σ22
σ33
σ23

σ13

σ12

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

 =  

E1111 E1122 E1133 0 0 0
E1122 E2222 E2233 0 0 0
E1133 E2233 E3333 0 0 0

0 0 0 2E2323 0 0
0 0 0 0 2E1313 0
0 0 0 0 0 2E1212
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E1111 E1122 E1133 0 0 0
E1122 E2222 E2233 0 0 0
E1133 E2233 E3333 0 0 0

0 0 0 2E2323 0 0
0 0 0 0 2E1313 0
0 0 0 0 0 2E1212
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ε33
ε23
ε13
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-->  9 independent components
(3 orthogonal axes with different responses
along each)
(e.g., orthogonal crystals, woods, composites)
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For example, consider….
-->  Isotropic

•  No further zero terms (after orthotropic)
•  Components of elasticity tensor are related
•  Only 2 independent constants

• E1111 = E2222 = E3333 
• E1122 = E1133 = E2233

• E2323 = E1313 = E1212 
• And there is one other equation relating 
     E1111 , E1122 and E2323 

•  Behavior of most metals, polymers
-->  elastic response the same in all
       directions

To better consider these cases we need to discuss:
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It is important to remember that generalized Hooke’s Law is a model of
the stress-strain response.  So the components must be measured
experimentally.

The components of the tensors cannot be directly measured, but
we characterize materials by their…

“Engineering Constants”
(or, Elastic Constants)

What we can physically measure for orthotropic materials
    (inclusive), there are 3 types:

1. Longitudinal (Young’s) (Extensional) Modulus:  relates

(3 of these)

extensional strain in the direction of loading to stress in the
direction of loading.

(Measurement of) Engineering Constants
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Examples:
1.  Longitudinal Modulus

Figure M3.3a   Apply σ11 only to a bar, measure ε11 and ε22:

σ11

ε11

slope = E1
σ11

σ11

ε11

ε22

E1 =  σ11
ε11

 =  Ex

2. Poisson’s Ratio:  relates extensional strain in the loading

(6 of these…only 3 are independent)
direction to extensional strain in another direction.

3. Shear Modulus:  relates shear strain in the plane of shear
(3 of these)
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1) E11 or Exx or E1 or Ex 
2) E22 or Eyy or E2 or Ey

3) E33 or Ezz or E3 or Ez

In general: due to σmm applied only

(no summation on m)

Emm =  σmm
εmm

Figure M3.3b   Consider ratio of two longitudinal strains

2.  Poisson’s Ratios (negative ratios)

ε22

ε11

slope = - ν12

generally:
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negative ratio of ε22 to ε11 with σ11 applied only!
In general:   νmn

strain in n - direction
loading in
m - direction

generally:
1) ν12 or νxy:  (negative of) ratio of ε22 to ε11 due to σ11 
2) ν13  or νxz:  (negative of) ratio of ε33 to ε11 due to σ11 
3) ν23  or νyz:  (negative of) ratio of ε33 to ε22 due to σ22 
4) ν21  or νyx:  (negative of) ratio of ε11 to ε22 due to σ22 
5) ν31  or νzx:  (negative of) ratio of ε11 to ε33 due to σ33 
6) ν32  or νzy:  (negative of) ratio of ε22 to ε33 due to σ33 

In general: due to σnn applied only

(for n ≠ m)
Important: νnm ≠ νmn

νnm =  − εmm
εnn

ν12 =  − ε22
ε11

 =  νxy
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However, these are not all independent.  There are relations
known as “reciprocity relations” (3 of them) between Poisson’s
ratios and extensional moduli:

ν21 E11 =  ν12 E22

ν31 E11 =  ν13 E33

ν32 E22 =  ν23 E33

⇒  only 3 Poisson’s ratios are
       independent!

3. Shear Moduli
-->  Apply σ12 only and measure ε12

factor of 2 because it is an
engineering constant and
thus  use engineering strain

G12 =  − σ12
2ε12

 =  Gxy
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1) G12 or Gxy or G6:  contribution of (2)ε12 to σ12 
2) G13 or Gxz or G5:  contribution of (2)ε13 to σ13 
3) G23  or Gyz or G4:  contribution of (2)ε23 to σ23 

In general: due to σmn applied onlyGmn =  σmn
2εmn

factor of 2 here since it relates physical quantities

-->  one can think about doing each case separately and measuring
the effects.  Since this is linear, one can use superposition and
thereby get the overall effect.  This gives the stress-strain relations
with the engineering constant (compliance format)

generally:

shear stress
shear deformation (angular change)

 ⇒  Gmn =  τ mn
γ mn
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+3

E3

E2

E1

3

G23

G13

G12

ν23, ν32

ν13, ν31

=   93+

ν12, ν21

(same as Emnpq,  better be!)

Orthotropic
In material principal axes, there is no coupling between extension and
shear and no coupling between planes of shear, so the following
constants remain:
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matrix form:

this is, in fact, the compliance matrix
~ ~ ~

Note:  2’s now incorporated in engineering strain terms

ε1

ε2

ε3

γ 23

γ 13

γ 12

 

 

 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 

 =  

1
E1

−
ν12
E1

−
ν13
E1

0 0 0

−
ν12
E1

1
E2

−
ν32
E3

0 0 0

−
ν13
E1

−
ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

σ1

σ2

σ3

σ 23

σ13

σ12

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

  ε    =                              S                                     σ
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Note:  the reciprocity relations can be used to get the
           equations in the following form:

ε1 =  1
E1

 σ1 −  ν12σ 2 −  ν13σ3[ ]

ε2 =  1
E2

 −  ν21 σ1 +  σ 2 −  ν23σ3[ ]

ε3 =  1
E3

 −ν31 σ1 −  ν32σ2 +  σ 3[ ]

γ 23 =  1
G23

 σ23

γ 13 =  1
G13

 σ13

γ 12 =  1
G12

 σ12
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Isotropic
As we get to materials with less elastic constants (< 9) than an
orthotropic material, we no longer have any more zero terms in the
elasticity or compliance matrix, but more nonzero terms are related.

For the isotropic case:
• All extensional moduli are the same:

E1 = E2 = E3 = E
• All Poisson’s ratios are the same:

ν12 = ν21 = ν13 = ν31 = ν23 = ν32 = ν
• All shear moduli are the same:

G4 = G5 = G6 = G
• And, there is a relationship between E, ν and G:

G =  E
2 1 +  ν( )

Thus, there are only 2 independent
constants.
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ε1

ε2

ε3

γ 23

γ 13

γ 12
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1
E

−
ν
E

−
ν
E

0 0 0

−
ν
E

1
E

−
ν
E

0 0 0

−
ν
E

−
ν
E

1
E

0 0 0

0 0 0 2 1 +ν( )
E

0 0

0 0 0 0 2 1 +ν( )
E

0

0 0 0 0 0 2 1+ ν( )
E
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σ2

σ3

σ 23

σ13

σ12

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Can also write this out in full form:

This gives:
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ε1 =  1
E

 σ1 −  νσ2 −  νσ3( )

ε2 =  1
E

 −νσ1 +  σ2  −  νσ3( )

ε3 =  1
E

 −νσ1 −  νσ2  +  σ3( )

γ 23 =  σ 23

G

γ 13 =  σ13
G

γ 12 =  σ12
G

As noted, there are only 2 independent elastic constants:  E and ν

Sometimes express as/use Lamé’s constants: µ and λ
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µ =  E
2 1 +  ν( )

 =  G

λ =  νE
1 +  ν( ) 1 −  2ν( )

(can be derived by considering relationship between shear
     stress and principal stresses)

There is also another derived modulus known as the “bulk modulus”, κ:

κ =  3λ +  2µ
3

 =  E
3 1 −  2ν( )

The bulk modulus characterizes the compressibility of a material
under hydrostatic stress/pressure

hydrostatic = same on all sides
(think of submerging cube in water)
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Figure M3.4   Illustration of hydrostatic stress/pressure

p

p
p

x2

x3

x1

The volume of the block changes from V to V′

And the bulk modulus, κ, relates stress to volumetric strain:

Use this physical situation in the isotropic stress-strain equations:

⇒ Δ =  volumetric strain =  ΔV
V

 =  V −  V
V
′

σ1 =  σ 2 =  σ3 =  − p 

p  =  κ Δ
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gives:

each side of the cube changes length related to strain from L to:

So the new volume is:

since ε is small (order of 0.01 - 0.02), we neglect higher order terms:

Now:

′ L  =  L 1 −  ε( )

′ V  =  ′ L ( )3  =  L3 1 −  ε( )3  

=  L3 1 −  3ε +  3ε 2 −  ε3( )

⇒  ′ V  =  L3 1 −  3ε( )

ε1 =  ε2 =  ε3 =  ε =  −p
E

 1 −  2ν( )

ΔV =  ′ V  −  V =  L3 1 −  3ε −  1( ) =  L3 −3ε( )

Δ =  ΔV
V

 =  − L3 3ε( )
L3

 =  − 3ε

=  3 p
E

 1 −  2ν( )
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In general, for all cases once we test and characterize the behavior, this
gives us the compliance form of the equations.  If we want to get the
components of the tensors:

-  convert to compliance tensor format
-  invert compliance matrix to get elasticity matrix and thus
   components of elasticity tensor

Finally recalling that:

κ =  p
Δ

gives:

Q.E.D.κ =  E
3 1 −  2ν( )
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This unit has been devoted to establishing the model for
stress-strain response of a material on a macroscopic basis.
But there are reasons based on the microstructure that
certain materials behave certain ways. We thus need to look
at the structure of materials to look at the physical basis for
elastic properties.


