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LEARNING OBJECTIVES FOR UNIT M3.2

Through patrticipation in the lectures, recitations, and work
associated with Unit M3.2, it is intended that you will be

- ....explain the meaning of the elasticity and compliance
tensors and analyze their mathematical details

« ....describe the behavior of a material in terms of
constitutive response

- ....discuss engineering/elastic constants, their
measurement, and their relationship to tensors

- ....employ a continuum version of the constitutive law
of elasticity
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Will look at the model to relate stress and strain and consider
how we manipulate this mathematically and determine the
properties/characterization experimentally.

To orient ourselves, let’s first look at how actual materials
behave and examine...

Uniaxial Stress-Strain

Consider a...
Figure M3.2-1 Bar pulled by a force F
Area=A
F €— > F
- L >
such that there is only uniaxial (o,,) stress:

F
o, = —
11 A
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and the relative elongation is:

0

Such a load is generally applied via a testing machine to obtain o
versus ¢ experimentally (recall truss experiment).

Different types of material exhibit different stress-strain behavior.
There are two general categories:

Figure M3.2-2a lllustration of brittle behavior (e.g., glass, ceramics)

C A
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Figure M3.2-2b lllustration of ductile behavior (e.g., metals)

O A
yield " /unload path
yZ
4
/
5 >
YT ~ €
linear elastic plastic
region region

--> |n elastic region, return path is to origin
--> |n plastic region, return path is parallel to original linear
portion = permanent strain remains

--> Let’s concentrate on the linear portion and model that behavior.

We look to work done in 1676 proposed by Hooke and consider:
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(Generalized) Hooke’s Law

Hooke said that force and displacement and also stress and strain
are linearly related:

o = Eg |--Hooke’s Law

(also think of F = kx)

Thus, the slope of the uniaxial stress-strain response in the linear

region is:
o
— = E<+— Modulus of Elasticity

¢ 2
Units: [ force [ length ]

[psi]  [Pa]
M(10°) G (10°)

Note: o = E, E = é
A 14
— F_/A - F = 5=F—€ (as we’ve seen before)
o// AE

Unit M3.2-p. 6
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We need to generalize this concept in order to relate general stress (a
second-order tensor) to general strain (a second-order tensor). We arrive

at.....
--> (Generalized Hooke’s Law

™ the elasticity tensor

This is a fourth-order tensor which is needed to
related two second-order tensors
Write out for a sample case (m=1,n=1)

O = Ly & + B €, + B85 (p=1,sumon q)
+ B &+ B8y + Ep3€5 | (p=2, sumon Q)
+ B &5+ By 65 + B35, v (p=3,sumon q)

(sum on p)

Collect like terms (e.g. ¢,,, = €,,,,) t0 get:
O, = E &, + E,,&, + E ;&
+ 2E,,,6, + 2E ;€5 + 2E ,;¢,;

(Note: recall 2’s for tensorial strain)
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But in order to consider this 3-D stress-strain relation in its entirety, we
need to consider the...

Elasticity and Compliance Tensors

E,.npq 1S the “Elasticity Tensor”

How many components does this appear to have?
m,np,q=1,2,3
= 3 X 3 X 3 x3 =81 components

But there are several symmetries:

1. Since o, =0, (equilibrium/energy considerations)
= E e = Eumpq  (Symmetry in switching first two
indices)
2. Since ¢, =¢, (geometrical considerations)
= E e = Eme  (Symmetry in switching last two
indices)

3. From thermodynamic considerations (1st law of thermo)

= E, e = E.em  (Symmetry in switching pairs of indices)
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Note that:
« since o_. = o, , the apparent 9 equations for stress
are only 6
- 2’s come out automatically since ¢, = ¢, and
E _=E _termslkeE ¢ + E ¢ =2E ¢

With these symmetrics, the resulting full 3-D stress-strain equations

are (in matrix form):

rGH -E1111 Eq120
Ooo Ei120 Eooop
) O33 | _ E1 133 E2233
O23 Ei125 Eooos
O13 Ei113 Eo213
(O12 Ei112 Eoopo

mnpqg

E1 133
E2233
E3333
E3323
E331 3
E331 2

mngp

2E1 123
2E2223
2E3323
2E2323
2E1 323
2E1 223

mnpg —pq

2E1 113
2E2213
2E3313
2E1323
2E1313
2E1213

Note: 2’s come naturally here

Paul A. Lagace © 2008

mngp —qp

(factor of 2!)

--> as we saw forcaseofm=1,n=1
--> don’t put them in ¢

2E1112-

2E2212
2E3312
2E1223
2E1213

2E1212_

€13

(€12 ]
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or.
g = E & Ow = Emnpq €pq

This results in 21 independent components of the elasticity tensor
* Along diagonal (6)
* Upper right half of matrix (15)
[don’t worry about 2’s]

The components of the E_,, can be placed into 3 groups:

e Extensional strains to extensional stresses
E1111 E1122

Ezooo Eqyas
Essss Eozoas
eg., o,=...E¢€,..

e Shear strains to shear stresses
E1212 E1213

E1313 E1 323

Essos Ezaio
eg., o0,=...2E,.¢,;..
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* Coupling terms: extensional strains to shear stresses or
shear strains to extensional stresses

Ei112 Esp12 Easro
Ey113 E2213 Eassya
Ei123 Eooz Easses
eg., o,=...E,, ¢&,...
o, =...2E,,; €,...

A material which behaves in this
manner is “fully” anisotropic

Need to consider a “companion” to the elasticity tensor...

The Compliance Tensor

Just as there is a general relationship between stress and strain:

Oy = Emnpq €pq

Paul A. Lagace © 2008 Unit M3.2 - p- 11
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there is an inverse relationship between strain and stress:

where: §, . is the compliance tensor
Using matrix notation:
g=Eeg

= Eig=£
inverse
with: e=S o

comparing the two gives:

E'=8

=The compliance matrix is the
inverse of the elasticity matrix

Paul A. Lagace © 2008 Unit M3.2 - p- 12
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Note: the same symmetries apply to S
to E

mnpqg as

mnpqg

Meaning of the tensors and their components:

* Elasticity term E amount of stress (o,,,) caused by/related

to the deformation/strain (g,)

mnpq:

 Compliance term S ,: amount of strain (e,) caused by the

mnpqg*
stress (0,,)

--> Final note...Transformations
These are fourth order tensors and thus require 4 direction cosines to

transform:
Emnpq g%r ET/{S épt g Erstu
Smnpq f Eﬁs gpt équ Srstu
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Not all materials require all 21 components to describe their behavior. We
therefore consider.....

Classes of Stress-Strain Behavior

(e.g., anisotropy, orthotropy, isotropy)

--> Good reference for this:

Bisplinghoff, Mar, and Pian, “Statics
of Deformable Solids”, Addison,
Wesley, 1965, Ch. 7.

Start out by making a table of the classes of material stress-strain
behavior and the associated number of independent components of

Emnpq:

Paul A. Lagace © 2008 Unit M3.2 - p- 14
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Class of Stress-Strain

# of Independent

Behavior Components of E
Anisotropic 21
Monoclinic 13
Composite _
Useful
Engineering Tetragonal 6
M ial .
v Materials Basic —t Transversely Isotropic™ 5
Composite _
Ply Cubic 3
Metals— Isotropic 2

(on average)

Paul A. Lagace © 2008
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Consider some key cases:
--> Anisotropic

- 21 independent components
« Nonorthogonal crystals
 Currently no useful engineering materials

Why, then, do we bother with anisotropy?
Two reasons:
1. Someday, we may have useful fully anisotropic materials
(certain crystals now behave that way) Also, 40-50 years ago,
people only worried about isotropy

2. It may not always be convenient to describe a structure (i.e.,
write the governing equations) along the principal material axes,
but may use loading axes.

In these other axis systems, the material may appear to have “more”
elastic components. But it really doesn’t.

(you can’t “create” elastic components just by describing a material in
a different axis system, the inherent properties of the material stay the

same).
Paul A. Lagace © 2008 Unit M3.2 - p. 16
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Figure M3.2-3 Example of unidirectional composite (transversely
isotropic) in two different axis systems

A/

No shear / extension coupling Shears with regard to loading
axis but still no inherent
shear/extension coupling

In order to describe full behavior, need to do
...TRANSFORMATIONS

Paul A. Lagace © 2008 Unit M3.2 - p- 17
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--> Qrthotropic

- Limit of current useful engineering materials
« Needed for composite analysis
 No coupling terms in the principal axes of the material

E,,, E Ehm-Enu,Eﬁm,E

1113, 2223,

123312, E Essy; = 0

3313,
— No shear strains arise when extensional stress is applied and
vice versa)
e.9. Ey12=0
(total of 9 terms are now zero)

— No extensional strains arise when shear stress is applied (and
vice versa)

(same terms become zero as for
previous condition)

— Shear strains (stresses) in one plane do not cause shear strains

(stresses) in another plane
E 203 E12135 Eq23 = 0

Paul A. Lagace © 2008 Unit M3.2 - p. 18



MIT - 16.001/16.002 Fall, 2008

With these additional terms being zero, we end up with 9 independent

components:
(21-9-3=9)
and the resulting equations are:
(044 ] Ei111 E122 Eqas 0 0 0 €11
Ooo Ei120 Ezooo Eopsg 0 0 0 €22
JO33 | _ Ei133 E2233 Esass 0 0 0 J33
O23 0 0 0 2E,3,5 0 0 €03
O13 0 0 0 0 2E 313 0 €13
012 | 0 0 0 0 0 2Ei510] €12

For other cases, no more terms become zero, but the terms are not
Independent.

--> 9 independent components
(3 orthogonal axes with different responses
along each)
(e.g., orthogonal crystals, woods, composites)

Paul A. Lagace © 2008 Unit M3.2 - p. 19
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For example, consider....
--> |sotropic

* No further zero terms (after orthotropic)
- Components of elasticity tensor are related
« Only 2 independent constants

E1111 = E2222 = E3333
E1122 = E1133 = E2233

E2323 = E1313 = E1212

* And there is one other equation relating
Eq111 5 Eqq22 @nd Epgpg

« Behavior of most metals, polymers

--> elastic response the same in all
directions

To better consider these cases we need to discuss:

Paul A. Lagace © 2008 Unit M3.2 - p. 20
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(Measurement of) Engineering Constants

It is important to remember that generalized Hooke’s Law is a model of
the stress-strain response. So the components must be measured
experimentally.

The components of the tensors cannot be directly measured, but
we characterize materials by their...

“Engineering Constants”
(or, Elastic Constants)

What we can physically measure for orthotropic materials
(inclusive), there are 3 types:

1. Longitudinal (Young’s) (Extensional) Modulus: relates
extensional strain in the direction of loading to stress in the
direction of loading.

(3 of these)

Paul A. Lagace © 2008 Unit M3.2 - p- 21
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2. Poisson’s Ratio: relates extensional strain in the loading

direction to extensional strain in another direction.
(6 of these...only 3 are independent)

3. Shear Modulus: relates shear strain in the plane of shear
(3 of these)

Examples:
1. Longitudinal Modulus
Figure M3.3a Apply o,, only to a bar, measure €,, and €,,:

f O11 f o, A slope = E,

| i | \ //
1 ] /
1 1
e L
[ o
| 1 1
T~ L
€29 L
L
| I | >
(0
* 1 €11
11
E = — =E
€11
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generally:
1) E, orE,orE,orE,
2) EporE, orE,orE,
3) EgzorE,,orEjorE,

o .
In general: E.,, = —™ dueto o, applied only
Smm

(no summation on m)

2. Poisson’s Ratios (negative ratios)

Figure M3.3b Consider ratio of two longitudinal strains

f

- - -------I

€02 V¥

Paul A. Lagace © 2008 Unit M3.2 - p. 23
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E
22
’\/12 = _—— = ny

>\811
negative ratio of €,, to €,, with o,, applied only!

In general: v,

loading in  /*
m - direction strain in n - direction

generally:
1) vy orv,,: (negative of) ratio of ¢,, to ¢, due to oy,
2) v45 Orv,,: (negative of) ratio of €4, to €,, due to oy,
3) Va3 Orv,,: (negative of) ratio of g5 t0 &, due to 0,
4) v,y Orv,: (negative of) ratio of &, to ¢,, due to o,,
5) vy, Orv,: (negative of) ratio of ¢, to €5, due to oy,
6) v, Or v, (negative of) ratio of ¢,, to e53 due to og,
In general: v, = - Emm due to o,, applied only
Snn
(for n # m)

Important: v . # v,
Paul A. Lagace © 2008 Unit M3.2 - p- 24
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However, these are not all independent. There are relations
known as “reciprocity relations” (3 of them) between Poisson’s
ratios and extensional moduli:

Vot Ey1 = vio Exp

vay By = vi3 Egg

Vao Eop = Vo3 Eg3

= only 3 Poisson’s ratios are
independent!

3. Shear Moduli

--> Apply o,, only and measure €.,
O’12

G,, = -G
. 2‘912 ;

\

factor of 2 because it is an
engineering constant and
thus use engineering strain

Paul A. Lagace © 2008 Unit M3.2 - p. 25
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generally:

1) Gy, or G, or Gg: contribution of (2)e,, to oy,
2) G,;or G,, or Gg: contribution of (2)e,; 10 0,4
3) Gy or G, or G,: contribution of (2)ey; t0 0y

In general: G, = Om_ due to o,,, applied only

Smn
/!
factor of 2 here since it relates physical quantities
shear stress T,
shear deformation (angular change) Yoin

--> one can think about doing each case separately and measuring
the effects. Since this is linear, one can use superposition and
thereby get the overall effect. This gives the stress-strain relations
with the engineering constant (compliance format)

Paul A. Lagace © 2008 Unit M3.2 - p. 26
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Orthotropic

In material principal axes, there is no coupling between extension and
shear and no coupling between planes of shear, so the following
constants remain:

E, Vi2; Vo1 P
E, Vi3s V31 G,
E, Va3; Va2 G
— ——
3 + 3 + 3 =9
(same as E,,,,, better be!)

Paul A. Lagace © 2008 Unit M3.2 - p- 27
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matrix form:
& L Y% Yo ¢ o (o
L, L, L,
£ e Lo Ye g 0 o (o
El E2 E3
£ oY Loy g o o
> L = El E2 E3 1 > <
Y23 o 0 0 — 0 0] |o
G23 1 23
v.s o o0 0 0 o 0| |o,
6o o0 0 0 0 — 5
Vi2) i G, 2
£ = S Y

this is, in fact, the compliance matrix
Note: 2’s now incorporated in engineering strain terms

Paul A. Lagace © 2008 Unit M3.2 - p. 28
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Note: the reciprocity relations can be used to get the
equations in the following form:

1
& = = [Ol - V120, — V1303]
E,
1
&, = — [~ vy 00+ 0, - v,,0,]
E,
1
€y = — [_V3101 V3,0, + O'3]
L,
1
Vo3 = Oy
G,;
1
Viz = O3
Gy,
Y ! o
12 = 12
G,

Paul A. Lagace © 2008 Unit M3.2 - p. 29
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|sotropic
As we get to materials with less elastic constants (< 9) than an

orthotropic material, we no longer have any more zero terms in the
elasticity or compliance matrix, but more nonzero terms are related.

For the isotropic case:
« All extensional moduli are the same:
E,=E,=E;=E
« All Poisson’s ratios are the same:
Vio = Vo1 = V43 = V31 = Vo3 = V3 =V
« All shear moduli are the same:

G,=G;=G;,=G
- And, there is a relationship between E, v and G:
G - E
21 + v)

Thus, there are only 2 independent

constants.
Unit M3.2 - p. 30
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This gives:
. _ .
1 v v 0 0 !
. E E E
? _Y i _Y 0 0 0 0,
E E E
83 _l _1 l O O O 03
3 S E E E 3 S
= (1
Va3 0 0 0 ( ;V) 0 0 05,
0O 0 0 0 2(1+v) 0
Vi3 E O3
(1
0O 0 0 0 0 (1+v)
}/ E ;0’12
L/ 12 )

Can also write this out in full form:

Paul A. Lagace © 2008 Unit M3.2 - p. 31
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g = 1 (0, - vo, - vo,)
E

g, = 1 (-vo, + o, - vo,)
E

e, = ~ (-vo, - v, + )
E
o

Vo3 = ﬁ
o

Yiz = ?13
o

Vi2 = _GLZ

As noted, there are only 2 independent elastic constants: E and v

Sometimes express as/use Lameé’s constants: u and A

Paul A. Lagace © 2008 Unit M3.2 - p. 32
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E
=3 (1 + v) =G
VE
1 + v)(1 - 2v)
(can be derived by considering relationship between shear
stress and principal stresses)

A =

There is also another derived modulus known as the “bulk modulus”, «:

3A + 2u E
K = =
3 3(1 - 2v)

The bulk modulus characterizes the compressibility of a material
under hydrostatic stress/pressure

hydrostatic = same on all sides

(think of submerging cube in water)

Paul A. Lagace © 2008 Unit M3.2 - p. 33
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Figure M3.4 lllustration of hydrostatic stress/pressure
X3

p

v

/7 | 42-P
P X

The volume of the block changes from V to V'

. . AV V-V
= A = volumetricstran = — =
1% 1%

And the bulk modulus, «, relates stress to volumetric strain:

p = KA

Fall, 2008

Use this physical situation in the isotropic stress-strain equations:

o, = 0,

o, = —-p

Paul A. Lagace © 2008
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gives:

—P
81=82=83=8=F(1—2V)

each side of the cube changes length related to strain from L to:
L' = L(1 - ¢)

So the new volume is:
vi=(LY =0 -¢)
=L3(1—38+382—83)
since € is small (order of 0.01 - 0.02), we neglect higher order terms:
= V' =L (1 - 3¢)

Now:

AV =V - V=LQ0-3-1 =L (=3¢
A r

A=Y (338)=-3g
1% L
p

=3=(1-2
L (1 - 2v)

Paul A. Lagace © 2008 Unit M3.2 - p. 35
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Finally recalling that:

. P
A
gives:
= E Q.E.D
3(1 - 2v)

In general, for all cases once we test and characterize the behavior, this

gives us the compliance form of the equations. If we want to get the
components of the tensors:

- convert to compliance tensor format

- invert compliance matrix to get elasticity matrix and thus
components of elasticity tensor

Paul A. Lagace © 2008 Unit M3.2 - p. 36
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This unit has been devoted to establishing the model for
stress-strain response of a material on a macroscopic basis.
But there are reasons based on the microstructure that
certain materials behave certain ways. We thus need to look
at the structure of materials to look at the physical basis for
elastic properties.

Paul A. Lagace © 2008 Unit M3.2 - p. 37



