Unit M1. 2 (All About) Mechanical Equilibrium

Readings:

CDL 1.6
16.001/002 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M1. 2

Through participation in the lectures, recitations, and work associated with Unit M1.2, it is intended that you will be able to.........

-apply the principle/concept of equilibrium to determine the applied and transmitted forces and moments, and related motion, for a particle, set of particles, or body
-model a body/system and external forces and moments acting on such
-apply the concept of equipollent force systems to model a set of forces

The concept of equilibrium is the first of the 3 Great Concepts of solid mechanics we will consider.

For a structure, need to consider the general case. But let's build up to this by considering the simplest case.

Equilibrium of a particle

A particle is a body whose mass is concentrated at a point
Figure M1.2-1 Forces acting on a particle produce acceleration

Newton's law gives:

$$
\sum_{i} \underline{F}^{(i)}=m \underline{a}
$$

Rewrite this as:

$$
\underbrace{\sum_{i} \underline{F}^{(i)}}_{\text {external }}-\underbrace{m \underline{a}}_{\begin{array}{c}
\text { inertial } \\
\text { forces }
\end{array}}=0
$$

forces

--> "D'Alembert's Principle"

- ma treated as "inertial force"
--> In many cases in structures, we have:

$$
\underline{a}=0 \quad \text { (Statics })
$$

So this reduces to:

$$
\sum \underline{F}^{(i)}=0
$$

using vector notation:

$$
\sum \underline{F}^{(i)}=\sum F_{m}^{(i)} \underline{i}_{m}=0
$$

This can be written as:

$$
\sum_{i} F_{m}^{(i)}=0
$$

(Static) Equilibrium
which represents three equations:
3 scalar
equations $\left\{\begin{array}{ll}\sum_{i} F_{1}^{(i)}=0 & \text { sum of forces in } x_{1}=0 \\ \sum_{i} F_{2}^{(i)}=0 & \text { sum of forces in } x_{2}=0 \\ \sum_{i} F_{3}^{(i)}=0 & \text { sum of forces in } x_{3}=0\end{array}\right\}$
--> Example of static equilibrium versus general case:
Elevator...find cable tension
Figure M1.2-2 Case of no motion

Model as point mass:

$$
\begin{gathered}
\sum F=0 \Rightarrow \uparrow+\quad \text { (give positive direction) } \\
\Rightarrow T-500 \mathrm{~kg}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=0 \\
\Rightarrow T=\underline{\underline{4900 \mathrm{~N}}}
\end{gathered}
$$

(Note: Work/answers not correct without units!)
Figure M1.2-3 Case of accelerating upwards at $\mathbf{3} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$

inertial force ($a=3 \mathrm{~m} / \mathrm{s}^{2}$) in opposite direction from acceleration
Same model but now also model acceleration as inertial force

$$
\begin{aligned}
& \sum \mathrm{F}=0 \\
& \begin{array}{l}
T-500 \mathrm{~kg}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)-500\left(3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=0 \\
\quad \Rightarrow T=\underline{\underline{6400 \mathrm{~N}}}
\end{array}
\end{aligned}
$$

Let's move up one level and consider...

Equilibrium of a System of Particles

Look at...
Figure M1.2-4 A system of particles with forces, $\mathbf{P}^{(i)}$, acting on particle \boldsymbol{i}

"Isolate" particle 1...
--> What other forces act on particle 1 besides external force $\underline{P}^{(1)}$

- reaction (internal) forces in connection
- inertial forces

So for particle 1 draw a "Free Body Diagram" (will discuss this more in Unit M1.5)
Figure M1.2-5 Free Body Diagram for Particle 1

Notes:

- $\underline{R}^{(\mathrm{ij})}$ represents reaction in connection between particles i and j
- Draw reactions initially in tension (+) (convenient convention). If they come out (-), they are in compression, but you "take care of this" through sign
- Newton's law of action-reaction says $\underline{R}^{(\mathrm{ij})}=-\underline{R}^{(\mathrm{ij})}$ (must point in opposite directions but are of equal magnitude)

Figure M1.2-6

So apply equilibrium:

$$
\underline{P}^{(1)}+\underline{R}^{(12)}+\underline{R}^{(13)}=m_{1} \underline{a}_{1}=0 \quad \text { Statics }
$$

Similarly for particles 2 and 3 :
Figure m1.2-7 Free Body Diagram for Particle 2

Figure M1.2-8 Free Body Diagram for Particle 3

$$
\underline{P}^{(3)}+\underline{R}^{(31)}+\underline{R}^{(32)}=m_{3} \underline{a}_{3}=0
$$

Recalling $\underline{R}^{(\mathrm{j})}=-\underline{R}^{(\mathrm{ji)}}$ and summing these gives:

$$
\underline{P}^{(1)}+\underline{P}^{(2)}+\underline{P}^{(3)}=\sum_{i} m_{i} a_{i}=0 \quad \text { Statics }
$$

For statics, this is simply:

$$
\underline{\sum_{i} \underline{P}^{(i)}=0 \quad \text { (as before) }}
$$

--> Is this enough?
We have dealt with no linear acceleration. What else can a system of particles/body do?

ROTATE
So there is a second set of equilibrium requirements.....

Moment Equilibrium

For there to be no rotation, the moments about a (any) point/axis must be zero
--> Why any?
Pure moment...magnitude does not change as point changes!
--> Consider each particle and the moments acting on it. Take moments about some "convenient" point:
Figure M1.2-9 Moment for Particle 1

See that

$$
\underline{r}^{(1)} \times\left(\underline{P}^{(1)}+\underline{R}^{(12)}+\underline{R}^{(13)}\right)=0
$$

Similarly for particles 2 and 3:

$$
\begin{array}{ll}
r^{(2)} \times\left(\underline{P}^{(2)}+R^{(21)}+R^{(23)}\right)=0 & \text { Particle 2 } \\
\underline{r}^{(3)} \times\left(\underline{P}^{(3)}+\underline{R}^{(31)}+\underline{R}^{(32)}\right)=0 & \text { Particle 3 }
\end{array}
$$

--> again use Newton's Law of Action-Reaction

$$
\left(\underline{R}^{(i j)}=-\underline{R}^{(j i)}\right)
$$

--> and we must further note that:
Figure M1.2-10 Pairs Act Along the Same Line of Action

Thus, the perpendicular distance from the point about which we take the moment to the line of action is the same.

So using both pieces of info:

$$
\begin{aligned}
\underline{r}^{(1)} \times \underline{R}^{(13)}+\underline{r}^{(3)} \times \underline{R}^{(31)} & =0 \\
& \left(\Rightarrow \begin{array}{l}
\text { pairs give equal but opposite } \\
\\
\text { moments! })
\end{array}\right.
\end{aligned}
$$

So take the three equilibrium equations, add them, and use this general concept:

$$
\underline{r}^{(i)} \times \underline{R}^{(i j)}+\underline{r}^{(j)} \times \underline{R}^{(j i)}=0
$$

to get:

$$
\begin{aligned}
& \sum_{n} \underline{r}^{(n)} \times \underline{P}^{(n)}=0 \quad \begin{array}{c}
\begin{array}{c}
\text { (+ any inertial } \\
\text { considerations) }
\end{array} \\
\underline{\text { or } \quad \sum M^{(n)}=0} \\
\text { moment on particle }(\mathrm{n}) \text { due to force on }(\mathrm{n})
\end{array}
\end{aligned}
$$

=> Equilibrium requires the moments of the external forces to be zero

What about for a general body?

Particles vs. Body/Equilibrium of a Body

A body can be considered to be a system of particles. In the limit, a body is an infinite set of infinitesimal masses/particles.

So can generalize the equations of equilibrium into two sets:
General Equations of Equilibrium:

$$
\begin{aligned}
& \sum_{n} \underline{F}^{(n)}=0 \\
& \sum_{n} \underline{r}^{(n)} \times \underline{F}^{(n)}=0
\end{aligned} \quad \text { Force Equilibrium }
$$

Figure M1.2-11 Forces acting on a general body

--> Deals with external forces only.
--> Gives two necessary and sufficient conditions for equilibrium ($\mathbf{\underline { 6 }}$ scalar equations total)

Let's now consider these concepts in two-dimensions (2-D) so that we can more easily represent (and comprehend) them. In addition, many force systems can be well-represented as a:

Planar Force System:

This is a force system where all forces act in one plane.

Example: Airplane in straight and level flight

Figure M1.2-12 A model of an airplane

$m g=W$	Weight
L_{w}	Lift at "aerodynamic center" of wing
D	Drag
T	Thrust
L_{T}	Lift on tail (could be downwards for "trim")
	This is a "Free Body Diagram"

Important dimensions/distances:
a - distance thrust acts off c.g. line (in x_{3})
b-distance drag acts off c.g. line ($a-c$ to $c-g$ in x_{3})
e-distance wing lift acts off c.g. (a-c to $c-g$ in x_{1})
d-distance tail lift acts off c.g. (in x_{1})
Write out equations of equilibrium:

$$
\begin{align*}
& \sum F_{1}=0 \underset{\uparrow}{\stackrel{+}{\leftarrow}} \Rightarrow T-D=0 \tag{A1}\\
& \text { show + direction! } \\
& \sum F_{2}=0 \quad 0=0 \tag{A2}\\
& \begin{array}{r}
\sum F_{3}=0 \uparrow+L_{w}+L_{T}-W=0 \\
\sum M_{1}=0 \quad \text { no forces out of } x_{1}-x_{3} \text { plane } \\
\quad \Rightarrow 0=0
\end{array} \tag{A3}
\end{align*}
$$

$$
\begin{align*}
& \sum M_{2}=0 \underset{\text { use c.g. }}{+}-T a+D b-L_{w} e+L_{T} d=0 \tag{A5}\\
& \text { indicate point/axis } \\
& \sum M_{3}=0 \quad 0=0
\end{align*}
$$

(no forces out of $x_{1}-x_{3}$ plane)
Note that $\underline{\underline{3}}$ equations $\left(\sum F_{2}, \sum M_{1}, \sum M_{3}\right)$ are automatically satisfied since this is a planar system.

So two force equations (along axis which define plane) and one moment equation (about axis out of plane) remain for equilibrium.

Notes:

1. If aerodynamic center is behind c.g., tail lift must be negative for trim. Look at
$\sum M_{2}=0 \quad a$ and b are small

$$
\Rightarrow-L e+L_{T} d=0
$$

But if e is negative $=>L_{T}$ must be negative!
2. Always check to see that units are consistent!

Question: What is this L_{w} ?
Is there really only one for a vector on a wing?
NO
Air moves by and pressure differential over entire area causes lift.

So how do we get L_{w} ?

We need the concept of.....

Equipollent forces

--> Definition: Two force systems are equipollent (equally powerful) if they have the same total force and total moment about the same arbitrary point.

Figure M1.2-13 Example of equipollent force systems

Why?

$$
\begin{aligned}
& \text { A B } \\
& F_{A}=F_{1}=F_{B}=F_{1} \\
& M_{A}=F_{1} d=M_{B}=F_{1} d \\
& \\
& \quad \begin{array}{l}
\text { Not equilibrium }\left(\sum=0\right) \text { but } \\
\text { equipollence (sums the same) }
\end{array}
\end{aligned}
$$

--> Generalize to 3-D:
Must have $\sum F_{i}$ (exterior) and $\sum M_{i}$ (exterior) the same for both cases.
Figure M1.2-14 Example of wing

Same total force and moment about aerodynamic center
Figure M1.2-15 Example of center of gravity (of 2-mass system)

$$
\begin{aligned}
& \sum F_{1}=0 \\
& \sum F_{2}=m_{1} g+m_{2} g
\end{aligned}
$$

Find point where: $\sum M_{3}=0$

$$
\Rightarrow m_{1} g e=m_{2} g(e-d)
$$

Solve for e
or can show by taking moments about origin:

$$
\begin{aligned}
& \sum M_{3}=0+\underset{2}{+} \Rightarrow m_{1} g \ell_{1}+m_{2} g \ell_{2} \\
& \Rightarrow m_{1} g \ell_{1}+m_{2} g \ell_{2}=\text { total moment }
\end{aligned}
$$

Figure M1.2-16 Place total weight and total moment at center of gravity for equipollence

Recall for center of gravity in general:

$$
\begin{aligned}
x_{1 c} & =\frac{\sum m_{1} x_{1}^{(i)}}{\sum m^{(i)}} \\
x_{2 c} & =\frac{\sum m^{i} x_{2}^{(i)}}{\sum m^{(i)}}
\end{aligned}
$$

Important Note:

"Equipollent Force Systems" useful for idealizations. They produce:
(a) Same reactions for statics
(b) Same rigid body motion for dynamics

BUT, will produce different deformations.

several small people on bench
vS.

one big person on bench (in middle)

Equipollent, but big guy causes bigger deflection
Thus, equipollent but not equivalent!

Next move on to see how external force are "reacted" in a body/through a body to achieve equilibrium.

