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LEARNING OBJECTIVES FOR UNIT M1.4

Through participation in the lectures, recitations, and work
associated with Unit M1.4, it is intended that you will be
able to………

• ….model a truss structure through the use of a Free
Body Diagram

• ….calculate the reaction forces for a statically
determinate truss structure

• ….determine the loads carried in each bar of a truss
through the use of the Method of Joints and the
Method of Sections
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A truss is a very useful structural configuration in which bars
are connected at joints and the overall configuration carries
load through axial force in the bars.

Uses of trusses

Generally trusses are three-dimensional (3-D) although, they can be
reduced to two-dimensional (2-D) form as we shall see…..

Figure M1.4-1  Bridges Figure M1.4-2  Buildings

•  Cranes
•  Others?
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Figure M1.4-3  Early days of aircraft

main load carrying members covered by light skin
Now:  semi-monocoque (egg shell)

-->  load-carrying members with load-carrying skin
•  Space station, other space structure

As previously noted, these are generally 3-D, but let’s
consider the

Idealized Planar Truss

(concepts and techniques developed here can be
extended/applied to the 3-D case)
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Let’s first define an idealized planar truss (this is a model)
1. All bars are straight
2. Bar joints are frictionless pins
3. Bars are massless and perfectly rigid (for loading

analysis)
4. All loads and reactions are applied at the joints
5. Loads in members are colinear (axial -- aligned with long

axis of bar)
Thus:

Bars carry only axial forces
Figure M1.4-4  Consideration of load transfer at pin

Fbar_

Fpin_

Fbar_ Fpin_= (by equilibrium)
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Pin bears or pulls on bar and only axial force can result

So we now “have” an idealized planar truss.

The first step in the analysis is…..

Determination of reactions

The fact that the structural body is a truss does not change the procedure:
-  Draw Force Body Diagram
-  Is it Statically Determinate (?)
-  If so, proceed, if not…(wait til future units!)
-  Apply planar equations of equilibrium

(purpose of analysis:  determine reaction forces and the internal
   load/forces in bars)
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Figure M1.4-5  Example of a “simplest” truss (3-member)

C

200 N

B

A

5 m

10 m

-->  Draw FBD
x2

x1

C

200 N

10 m

5 m

~

~

H A

H B
VB~

- Is this statically determinate?
YES 3  reactions  =  3  degrees of freedom

(lateral in x1, lateral in x2, rotation about x3)



Unit M1.4 - p. 8Paul A. Lagace © 2007

MIT - 16.001/16.002 Fall, 2008

=>  Proceed
- Apply planar equations of equilibrium:

3 (3 degrees of freedom = 3 reactions)

+

+

+

⇒ HB =  400Nabout point A

And using          gives:F1∑  =  0          ⇒ HA +  HB =  0

F2∑  =  0          ⇒ vB +  200N =  0
Summarizing:

F1∑  =  0          ⇒ HA +  HB =  0

F2∑  =  0          ⇒ VB +  200N =  0

HA =  − 400N

M3(A )∑   

⇒VB =  − 200N
⇒ (200N)(10 m) −  HB 5 m( )  =  0

HA =  − 400N
HB =  400N
VB =  − 200N
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Figure M1.4-6  Redrawing Free Body Diagram with reactions determined

x2

x1

200 N

C

200 N

10 m

5 m

~

~

~

400 N

400 N

A

B

check by taking                           …must also be zero+

√ checks

Once the reactions are determined, we move on to determining the
internal forces in the bars.

M3(B)∑
−  400N( )(5 m) +  200N( )(10 m) =  0

These are two methods:
-  Method of Joints
-  Method of Sections
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Let’s first explore the…

Method of Joints
Basically isolate each joint and draw a free body diagram and analyze it.
Work progressively along the truss.

So once reactions are known, the procedure is:
-  isolate a joint by “cutting” bars
-  “replace” “cut” bars by tensile internal forces pulling away
   from joint coincident with bar
-  calculate and show orthogonal components of force for
   each bar (use geometry)
-  apply equations of planar equilibrium
-  positive forces are tensile; negative forces are
   compressive

-->  do this at joints progressively from end of truss

This is best illustrated through an example…
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Figure M1.4-7  Example of 3-bar truss (from before)
x2

x1

200 N

C

200 N

10 m

5 m

~

~

400 N

400 N

A

B

Start by “isolating” joint C

~Recall:

 on a bar represents a “cut”~

So we “cut” bars CB and CA and “replace” them by their associated
internal forces FCB and FCA.

Figure M1.4-8  Isolation of joint C
x2

x1

C

200 N

~
~FCA

FCB
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FCB is at an angle. Thus, need to find components along x1 and x2
Using geometry:

5 m

10 m

θ

θ =  tan −1  5m
10m

Figure M1.4-9  Geometry of angle of bars (at joint C)

x2

x1

C

200 N

~
~

FCA

FCB 0.45 FCB

0.89 FCB

Figure M1.4-10  Redrawing of joint C with components of FCB illustrated

⇒  tan −1  1
2

 ≈  27°

⇒  x1 − component of FCB =  FCB cos  27° =  0.89 FCB
⇒  x2 − component of FCB =  FCB cos  27° =  0.45 FCBsin
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--> Now apply planar equilibrium

F1∑            ⇒  − 0.89 FCB −  FCA =  0

F2∑            ⇒  0.45 FCB +  200N =  0⇒  FCB =  − 444N
M3∑       Nothing creates moment about joints!

+

+

+

F1∑            ⇒  − 0.89 FCB −  FCA =  0

F2∑            ⇒  0.45 FCB +  200N =  0

Using FCB in             gives:F1∑ FCA =  395N  

Figure M1.4-11  Redrawing of joint C with values of force

x2

x1
C

200 N

~
~

444 N

395 N

C

200 N

~
~

– 444 N

395 N
or

compression since
arrow points in
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Figure M1.4-12  Isolation of joint B

x2

x1

200 N

~400 N

~ ~

FBC = FCB = – 444 NFBA

0.89 FBC

0.45 FBC

~

Note:  FCB  = FBC
Note:  Sense of FCB “turns around” at
other end of bar

-->  Apply equilibrium
+

⇒  FBA =  0

-->  Now move on to next joint (joint B)

F2∑  =  0          ⇒  - 200N −  FBA −  0.45 FCB =  0
⇒  FBA =  - 200N −  0.45 (- 444N)
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Check using

Have all bar loads, but use final joint as a check
⇒  400N −  390N =  0

Figure M1.4-13  Isolation of joint A

~
400 N

A

x2

x1 ~
~

FAC = 395 N

FAB = 0 N

By inspection, is this in equilibrium?
F1∑   gives:   395N −  400N =  − 5N

Why?

F1∑  =  0   
⇒  400N +  0.89 FBC( ) =  0
⇒  400N +  0.89 −444N( ) =  0

?
+

?

?
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Finally, draw truss with bar forces written above corresponding bar
(+)  tension
(–)  compression

Figure M1.4-14  Representation of truss with all bar loads

x2

x1

200 N

C
10 m

5 m
~

~

400 N

400 N

~

200 N0 N
– 444 N

395 N
(~ 400 N)

-->  Also notice that bar forces are much like the Rij forces we used in
             Unit U4 when considering a group of particles

This worked quite well for a truss with only a few bars or if we want the
load in each bar, then we march progressively through the truss.
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But, what if we have a bigger truss (one with more members/”bays”) and
we want only one of few bar loads? Go to the….

Method of Sections

Uses equilibrium of a section of the truss which contains two or more
joints.

Again, begin by determining reactions, then isolate a section by….
-  “cutting” the truss into sections (take a cut through the truss)
-  (again) “replace” “cut” bars by tensile internal forces pulling
   away from joint coincident with bar
-  (again) calculate and show orthogonal components of force
   for each bar (use geometry)
-  (again) apply equations of planar equilibrium
-  (again) positive forces are tensile; negative forces are
   compressive
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-->  Do this at any point of interest
Notes:

•  Moment equilibrium equation will be of use
   here

(Why?  Not considering joint)
•  can only have 3 unknown bar forces at a
   time

(Why?  Only 3 equations of equilibrium)

Again, this is best illustrated by an
Figure M1.4-15a  Example of analysis of truss using method of sections

2P

A C

E

B

D

10’ 10’

5’
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First draw Free Body Diagram

2P

A C

E

B

D

10’ 10’

5’

x2

x1

~

H A ~VA
~ VC

Solving for the reactions:

+

+

+

⇒  VC   =   − P  “about point A”

We are interested in bar EB, so we redraw the Free Body Diagram
and take an appropriate “cut”

From F2        VA∑  =  − P

F1∑  =  0       ⇒  HA  =  0

F2∑  =  0       ⇒  VA +  VC +  2P =  0

M3(A ) =  0∑       ⇒  2P 10'( )  +   VC 20'( )  =  0   
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Figure M1.4-16  Truss with “cut” through section of interest

2P

A C

E

B

D

10’ 10’

5’

x2

x1

~

~

~

P

~

P

Cut

0

Now redraw the “cut” section:
Figure M1.4-17   Free Body Diagram of “cut” section

A

E

~

P

~
~

~

FAB

FEB

FED
x2

x1
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Find the components of FEB:
Figure M1.4-18   Use of geometry to determine components of FEB

5’
θ

5’
gives: θ = 45°

FEB

θ
FEB cos θ

FEB sin θ

So:
Figure M1.4-19   Free Body Diagram of “cut” section with resolution of FEB

A

E

~

P

~
~

~

FAB

FEB

FED x2

x1
0.707 FEB

0.707 FEB
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Now use the equations of equilibrium:

+

+

+

and

chose E to isolate FEB ⇒  FAB  =   − P 

Using these results in          gives:F1∑
-P -  P +  FED =  0 

So can show:

F1∑  =  0       ⇒  FAB  +  0.707 FEB  +  FED =  0

F2∑  =  0       ⇒  − P  −  0.707 FEB =  0
⇒  FEB =  −1.414 P  

M3(E ) =  0∑       ⇒  FAB 5'( )  +   P 5'( )  =  0   

⇒  FED =  + 2P 
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Figure M1.4-20  Truss redrawn with loads for bars of interest

2P

A C

E

B

D x2

x1

~

P

~

P

2P

– P

– 1.414 P

Figure M1.4-21  Many possible “cuts” through truss depending upon
                    section/bar(s) of interest

Can go on with more sections as desired.

etc.
More generally can draw closed surface and consider all forces that
cross surface to get information…..
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Figure M1.4-22  Illustration of closed surface drawn through truss and
                    resulting free body diagram

2P

A C

E

B

D

10’ 10’

5’

x2

x1

~

~
P

~
P

0

2P

A B

D x2

x1

~

~

P

Closed surface
“cut”

~ ~ ~
~

~
FAE

FBE

FDE

FDC

FBC
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-->  Both the Method of Joints and the Method of Sections are approaches
       to determining internal equilibrium
As a final note, this was a model (idealized truss).  Consider
some…

Joint Realities
There are naturally no such things as frictionless pins.  Joints are
generally more restrained.
Figure M1.4-23   Some possible bar joints

weld

gusset
plate

solid piece
(e.g. wrapped
composite)
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Some space joints are closer to pinned in effect because bars
(components) are long and slender

When the ends are constrained, moments can be taken and we must
also consider beam behavior (more next term).

Joints are a key limitation of this idealized truss analysis

We’ve done a lot with equilibrium, but let’s now explore what
happens when we need more than equilibrium and deal with
statically indeterminate sections.


