Unit M1.5-Example Statically Indeterminate Systems-AN EXAMPLE (Handout - \#M-3)

Readings:
CDL 2.1, 2.3, 2.4, 2.7
16.001/002 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Look at another example and consider, more generally......

Deflection of Trusses:

Figure M1.5-13 Example of three-bar truss

All bars are of same material (E) and area (A) First.....

Figure M1.5-14 Draw the Free Body Diagram for the truss

Now apply the approach
--> Step 1: Apply equilibrium
At all the support points:
at \underline{A} :

$$
\begin{aligned}
\sum F_{H}=0 \xrightarrow{\boldsymbol{+}} \Rightarrow & H_{A}+P_{A} \cos (90-\beta)=0 \\
& \Rightarrow H_{A}=-P_{A} \cos (90-\beta) \\
\sum F_{V}=0 \uparrow+\Rightarrow & V_{A}-P_{A} \sin (90-\beta)=0 \\
& \Rightarrow V_{A}=P_{A} \sin (90-\beta)
\end{aligned}
$$

at B :

$$
\begin{aligned}
\sum F_{H}=0 \xrightarrow{+} & \Rightarrow H_{B}=0 \\
\sum F_{V}=0 \uparrow+\Rightarrow & V_{B}-P_{B}=0 \\
& \Rightarrow V_{B}=P_{B}
\end{aligned}
$$

at C :

$$
\begin{aligned}
\sum F_{H}=0 \xrightarrow{\boldsymbol{+}} \Rightarrow & H_{C}-P_{C} \cos (90-\beta)=0 \\
& \Rightarrow H_{C}=P_{C} \cos (90-\beta) \\
\sum F_{V}=0 \uparrow+\Rightarrow & V_{C}-P_{C} \sin (90-\beta)=0 \\
& \Rightarrow V_{C}=P_{C} \sin (90-\beta)
\end{aligned}
$$

--> We get all reactions once we know the loads in the bars $\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}\right)$
This tells us the reactions are equal to the loads in the bars (in magnitude and direction)
Proceed to consideration of the cut-off section
Figure M1.5-15 Free Body Diagram of cut-off section

Again apply equilibrium:

$$
\begin{align*}
& \sum F_{H}=0 \xrightarrow{+} \Rightarrow-P_{A} \sin \beta+P_{C} \sin \beta=0 \\
& \Rightarrow P_{A}=P_{C} \quad(1) \\
& \sum F_{V}=0 \uparrow+\quad \Rightarrow \quad P_{A} \cos \beta+P_{B}+P_{C} \cos \beta-P=0 \tag{2}
\end{align*}
$$

using (1):

$$
\begin{equation*}
2 P_{C} \cos \beta+P_{B}=P \tag{*}
\end{equation*}
$$

We have 2 equations in 3 unknowns $\left(P_{A}, P_{B}, P_{C}\right)$
So go to:
--> Step 2: Determine constitutive relations
We have bars, so from before recall:

$$
\delta=\frac{P L}{A E}+\alpha \Delta T L
$$

$$
\Delta T=0 \text { here so }
$$

$$
\Rightarrow \delta=\frac{P L}{A E}
$$

For bars A and C , length $=\frac{L}{\cos \beta}$
The bars are of the same material and cross-sectional area, so AE is a constant.

Thus:

$$
\begin{align*}
\delta_{A} & =\frac{P_{A} L}{A E \cos \beta} \tag{3}\\
\delta_{B} & =\frac{P_{B} L}{A E} \tag{4}\\
\delta_{C} & =\frac{P_{C} L}{A E \cos \beta} \tag{5}
\end{align*}
$$

This gives us 5 equations in 6 unknowns ($\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}, \delta_{\mathrm{A}}, \delta_{\mathrm{B}}, \delta_{\mathrm{C}}$)
We now go to:
--> Step 3: Enforce compatibility of displacements
From the compatibility example done earlier..... (zeroeth order solution)
Figure M1.5-16 Illustration of displacement at point D (magnified)

We know:

$$
\delta_{A} \cos \beta=\delta_{B}=\delta_{C} \cos \beta
$$

This really represents two conditions:

$$
\begin{align*}
\delta_{A} & =\frac{\delta_{B}}{\cos \beta} \tag{6}\\
\delta_{C} & =\frac{\delta_{B}}{\cos \beta} \tag{7}
\end{align*}
$$

With these two extra equations, we now have 7 equations in 6 unknowns (enough to solve, but one equation must be repetitive).
so finally....
--> Step 4: Solve the simultaneous equations
Equations (6) and (7) tell us:

$$
\delta_{A}=\delta_{C}=\delta_{B} / \cos \beta
$$

Using this in equations (3), (4) and (5) gives:

$$
\begin{equation*}
\delta_{B} / \cos \beta=\frac{P_{A} L}{A E \cos \beta} \tag{*}
\end{equation*}
$$

$$
\begin{gather*}
\delta_{B}=\frac{P_{B} L}{A E} \tag{*}\\
\delta_{B} / \cos \beta=\frac{P_{C} L}{A E \cos \beta} \tag{*}
\end{gather*}
$$

Note that equations (3^{*}) and (5^{*}) tell us $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{C}}$ (redundant from equation (1)!)
Now use equations (4*) and (5*) in these forms:

$$
P_{B}=\frac{A E \delta_{B}}{L}=P_{C}=P_{A}
$$

and in equation (2):

$$
\begin{aligned}
& 2 A E \cos \beta \frac{\delta \beta}{L}+A E \frac{\delta \beta}{L}=P \\
& \quad \Rightarrow \delta_{B}=\frac{P L}{A E} \frac{1}{1+2 \cos \beta} \text { deflection of point } D
\end{aligned}
$$

Use this in equation $\left(3^{*}\right),\left(4^{*}\right)$, and $\left(5^{*}\right)$ to get:

$$
\begin{aligned}
P_{A} & =P_{C}=\frac{P}{1+2 \cos \beta} \\
P_{B} & =\frac{P}{1+2 \cos \beta}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \delta_{A}=\delta_{C}=\frac{P L}{A E} \frac{1 / \cos \beta}{1+2 \cos ^{2} \beta} \\
& \quad \begin{array}{l}
\text { check units } \\
{\left[m^{2}\right]\left[\mathrm{N} / \mathrm{m}^{2}\right]}
\end{array}=[\mathrm{m}] \quad \sqrt{ } \text { units of deflection }
\end{aligned}
$$

Final note of the deflection for this example (and truss in general) Rotation is actually composed of extension and slight rotation.

Figure M1.5-17 Illustration of displacement at point D with magnified angle change noted

As before, must ignore small angle changes (assume deformations are small) CONSISTENT

