Unit U-A
 The Language of Engineering

Readings:

CDL 1.4
16.001/002 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT U-A

Through participation in the lectures, recitations, and work associated with Unit U-A, it is intended that you will be able to.........

-apply the language of engineering systems (units, dimensions, coordinates)
-describe systems in different coordinate systems using transformations and other concepts

Need a number of "things" in order to describe the concepts and items associated with (Unified) Engineering.

The first of these is...

Dimensions and Units

$-->$ A dimension is a physical quantity which can be directly measured

Fundamental dimensions are:

Dimensions of other quantities are "derived"
example: Force ... use Newton's law

$$
F=M a=\left[M \frac{L}{T^{2}}\right]
$$

Note: []
bracket means "has the dimensions of"
--> A unit is used to quantify dimensions.
There are many systems of units (e.g., furlongs/fortnights) but the two used in engineering are

- Metric or SI (standard international)
--> predominant everywhere except US
- British system (English)
- Fundamental Dimensions (examples)

		SI	English Unit	Conversion
Quantity	Dimension	Unit	Ungth	L
m	$\mathrm{ft}(\mathrm{in})$	$0.305 \mathrm{~m} / \mathrm{ft}$		
Time	S	$\mathrm{s}(\mathrm{ec})$	sec	-
Mass	M	kg	slug	$14.6 \mathrm{~kg} / \mathrm{slug}$

- Derived Dimensions (examples)

Quantity	Dimension	Unit	English Unit	Conversion
Force	$\mathrm{M} \frac{\mathrm{L}}{\mathrm{T}^{2}}$	N	lb	$4.45 \mathrm{~N} / \mathrm{lb}$
Pressure	$\mathrm{M} \frac{\mathrm{L}}{\mathrm{T}^{2} \mathrm{~L}^{2}}$	Pa	psi	$6900 \mathrm{~Pa} / \mathrm{psi}$

Notes: Newton $=1 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}^{2}$
Pound $=$ slug $\mathrm{ft} / \mathrm{sec}^{2}$
Pascal $=\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{psi}=\mathrm{lb} / \mathrm{in}^{2}$
*Be careful of weight/mass confusion
--> Use units consistently
Question: If you weigh 200 lbs ., what is your mass?

Can use dimensions/units as a check:

Start of "Dimensional Analysis"

Coordinate Systems

In order to describe items which are characterized by vectors (e.g., force, velocity, acceleration), need a coordinate system.

Most commonly will use rectangular cartesian
Figure U3.1 Representation of rectangular cartesian system

In the direction of x_{1}, x_{2}, x_{3}

$$
\begin{array}{ll}
\text { Note: } & x-->x_{1} \\
& y-->x_{2} \\
& z-->x_{3}
\end{array}
$$

Other coordinate systems are used when it makes sense to describe a body/form in that manner.

Examples?

Important Concept:

The physical quantity does not change because it is described in a different coordinate system or different unit. It remains the same, only the description changes (like a different language).

Transformation of Coordinates

Oftentimes still want to use a rectangular cartesian system, but one that is oriented differently from the original set of axes.

Why?

- structural axes (natural form)
- loading axes

Examples

--> consider a swept wing:

Figure U3.2a

--> consider a space truss
Figure U3.2b

--> consider this formally via the mathematics:

Figure U3.3 Two rectangular cartesian coordinate systems with the same origin

\sim = "tilde" $\quad>$ rotated coordinate system point p is located by the vector \underline{r} in both systems:

$$
\begin{aligned}
& \underline{r}=x_{1} \underline{i}_{1}+x_{2} \underline{i}_{2}+x_{3} \underline{i}_{3}=\sum_{m=1}^{3} x_{m} \underline{i}_{m} \quad \underline{i}_{m} \text { is unit vector in } x_{m} \\
& \quad \text { and } \\
& \underline{r}=\tilde{x}_{1} \tilde{\underline{i}}_{1}+\tilde{x}_{2} \tilde{\underline{i}}_{2}+\tilde{x}_{3} \tilde{\underline{i}}_{3}=\sum_{n=1}^{3} \tilde{x}_{n} \tilde{\underline{i}}_{n} \quad \tilde{\underline{i}}_{n} \text { is unit vector in } \tilde{x}_{n}
\end{aligned}
$$

Thus: $\quad \underline{r}=\sum_{m=1}^{3} x_{m} \underline{i}_{m}=\sum_{n=1}^{3} \tilde{x}_{n} \tilde{\underline{i}}_{n}$
--> To relate x_{m} to $\widetilde{\mathrm{x}}_{\mathrm{n}}$, let's take the dot product of both sides with \underline{i}_{1} :

$$
\underline{i}_{1} \cdot \sum_{m=1}^{3} x_{m} \underline{i}_{m}=\underline{i}_{1} \cdot \sum_{n=1}^{3} \tilde{x}_{n} \tilde{\underline{i}}_{n}
$$

Only non zero term on left hand side is $\underline{i}_{1} \cdot \underline{i}_{1}$

$$
\begin{equation*}
x_{1}=\tilde{x}_{1} \underline{i}_{1} \cdot \tilde{\underline{i}}_{1}+\tilde{x}_{2} \underline{i}_{1} \cdot \tilde{\dot{i}}_{2}+\tilde{x}_{3} \underline{i}_{1} \cdot \tilde{\underline{i}}_{3} \tag{*}
\end{equation*}
$$

Recall definition of dot product:

$$
\begin{aligned}
& \begin{array}{c}
\underline{i}_{1} \cdot \tilde{i}_{1}=\left|\underline{i}_{1}\right|\left|\tilde{i}_{i_{1}}\right| \cos \left(\widetilde{x_{1} \tilde{x}_{1}}\right) \\
1^{\prime \prime} 1^{\prime \prime}
\end{array} \\
& =\cos \overparen{x_{1} \tilde{x}_{1}} \\
& C \text { angle from } x_{1} \text { axis to } \widetilde{x}_{1} \text { axis }
\end{aligned}
$$

Generalizing:

$$
\begin{aligned}
\underline{i}_{m} \cdot \tilde{\underline{i}}_{n}=\cos \widehat{x_{m} \tilde{x}_{n}} \equiv & \ell_{m \tilde{n}}^{q_{n}} \text { goes with } \widetilde{x}_{n} \\
& \text { goes with } x_{\mathrm{m}}
\end{aligned}
$$

Definition:

$$
\ell_{m \tilde{n}}=\cos \tilde{x}_{m} \tilde{x}_{n}=\underline{i}_{m} \cdot \tilde{i}_{n}=\frac{\text { Direction }}{\text { Cosine }}
$$

Returning to equation (*) and using the direction cosines:

$$
x_{1}=\ell_{1 \tilde{1}} \tilde{x}_{1}+\ell_{12} \tilde{x}_{2}+\ell_{1 \tilde{3}} \tilde{x}_{3}
$$

Note repeated index, so can write:
$x_{1}=\sum_{n=1}^{3} \ell_{1 \tilde{n}} \tilde{x}_{n}$
For the other two components (x_{2} and x_{3}) similar work gives:

$$
\begin{aligned}
& \left(\underline{i}_{2} \cdot \underline{r}\right) \rightarrow x_{2}=\sum_{n=1}^{3} \ell_{2 \tilde{n}} \tilde{x}_{n} \\
& \left(i_{3} \cdot \underline{r}\right) \rightarrow x_{3}=\sum_{n=1}^{3} \ell_{3 \tilde{n}} \tilde{x}_{n}
\end{aligned}
$$

So have 3 equations that can be expressed as:

$$
x_{m}=\sum_{\mathrm{n}=1}^{3} \ell_{\mathrm{mn}} \tilde{x}_{n} \quad(\mathrm{~m}=1,2,3)
$$

--> can also show the reverse

$$
\tilde{x}_{n}=\sum_{m=1}^{3} \ell_{\tilde{\mathrm{n} m}} x_{m} \quad(\mathrm{n}=1,2,3)
$$

In addition, can transform forces (velocity, acceleration, etc.,) the same way

$$
\tilde{F}_{n}=\sum_{\mathrm{m}=1}^{3} \ell_{\tilde{\mathrm{n} m}} F_{m} \quad(\mathrm{n}=1,2,3)
$$

Notes:

- Angle is measured Positive Counterclockwise (+CCW)
- $\ell_{\tilde{m} n}=\ell_{n \tilde{m}}$ since cos is an even function:

$$
\cos (\theta)=\cos (-\theta)
$$

- But $\ell_{\tilde{m} n} \neq \ell_{\tilde{n} m}$ since angle from \tilde{y}_{m} to y_{n} differs by 90° from that from \widetilde{y}_{n} to y_{m}

Figure U3.4 --> Demonstrate in a 2-D Rotation

Make a table of direction cosines:

$$
\mathrm{X}_{1}
$$

X_{2}
X_{3}

$$
\begin{gathered}
\tilde{\mathrm{x}}_{1} \\
\tilde{\mathrm{x}}_{2} \\
\tilde{\mathrm{x}}_{3}
\end{gathered}
$$

Remember IMPORTANT CONCEPT:

Axis system in which we describe a quantity does not change the quantity, only its description

