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LEARNING OBJECTIVES FOR UNIT U-A

Through participation in the lectures, recitations, and work
associated with Unit U-A, it is intended that you will be able
to………

• ….apply the language of engineering systems (units,
dimensions, coordinates)

• ….describe systems in different coordinate systems
using transformations and other concepts
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Need a number of “things” in order to describe the concepts
and items associated with (Unified) Engineering.

The first of these is…

Dimensions and Units

--> A dimension is a physical quantity which can be directly measured

Fundamental dimensions are:
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Dimensions of other quantities are “derived”

Note:  [    ]
           bracket means “has the dimensions of”

example:    Force … use Newton’s law

-->  A unit is used to quantify dimensions.

There are many systems of units (e.g., furlongs/fortnights) but the
two used in engineering are

•  Metric or SI (standard international)

•  British system (English)
-->  predominant everywhere except US

F =  Ma    =    M L
T2

 

 
 

 

 
 



Unit U-A - p. 5Paul A. Lagace © 2007

MIT - 16.001/16.002 Fall, 2008

•  Fundamental Dimensions (examples)

14.6 kg/slugslugkgMMass
-secs(ec)STime

0.305 m/ftft (in)mLLength
Conversion

English
Unit

SI
UnitDimensionQuantity

•  Derived Dimensions (examples)

6900 Pa/psipsiPaPressure

4.45 N/lblbNForce

Conversion
English

Unit
SI

UnitDimensionQuantity

M L
T2

M L
T2 −L2
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Notes:  Newton = 1 kg m/sec2

Pound = slug ft/sec2

Pascal = N/m2

psi = lb/in2

*Be careful of weight/mass confusion

--> Use units consistently

Question:  If you weigh 200 lbs., what is
       your mass?

Can use dimensions/units as a check:

e = mc2

energy mass speed of light

Start of “Dimensional Analysis”
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Most commonly will use rectangular cartesian
Figure U3.1   Representation of rectangular cartesian system

In order to describe items which are characterized by vectors (e.g., force,
velocity, acceleration), need a coordinate system.

z

x

y
k

j_
i_

x1

i 1

x3

x2
_

i 3_

i 2_

i, j, k are unit vectors
In the direction of x, y, z

i1, i2, i3 are unit vectors
In the direction of x1, x2, x3

Note:   x --> x1
 y --> x2
 z --> x3

Coordinate Systems

or
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Other  coordinate systems are used when it makes sense to describe a
body/form in that manner.

Examples?

Important Concept:
The physical quantity does not change because it is described in a
different coordinate system or different unit.  It remains the same,
only the description changes (like a different language).
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Transformation of Coordinates
Oftentimes still want to use a rectangular cartesian system, but one that
is oriented differently from the original set of axes.

Why?
- structural axes (natural form)
- loading axes

Figure U3.2a

Examples

x1

x2

describe wing behavior
along axis of wing

--> consider a swept wing:
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--> consider a space truss

x2

x1

A

consider behavior of
component A along axis
aligned with its direction

Figure U3.2b

--> consider this formally via the mathematics:

--> other examples?
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Figure U3.3   Two rectangular cartesian coordinate systems with the
                 same origin

~  =  “tilde”       =>  rotated coordinate system
point p is located by the vector r in both systems:

and

x2

x3

x1

x1
~

x3
~

x2
~

xmim is unit vector inr = x1i1 + x2i2 + x3i3  =  xm im
m=1

3

∑

˜ i n is unit vector in ˜ x nr = ˜ x 1˜ i 1 +  ˜ x 2 ˜ i 2 +  ˜ x 3˜ i 3 = ˜ x n ˜ i n
n=1

3

∑
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Thus:

--> To relate xm to xn, let’s take the dot product of both sides with i1:
~

Only non zero term on left hand side is i1 ⋅ i1
x1 =  ˜ x 1i1 ⋅ ˜ i 1 +  ˜ x 2i1 ⋅ ˜ i 2 +  ˜ x 3i1 ⋅ ˜ i 3 (∗)

Recall definition of dot product:

angle from x1 axis to x1 axis

r = xm ˜ i m =  
m=1

3

∑ ˜ x n ˜ i n
n=1

3

∑

x1
~

x1

θ
i 1_
~

i 1_

x1 =  ˜ x 1i1 ⋅ ˜ i 1 +  ˜ x 2i1 ⋅ ˜ i 2 +  ˜ x 3i1 ⋅ ˜ i 3 (∗)

=  cos  x1 ˜ x 1

i1 ⋅ ˜ i 1 =   i1   ˜ i 1  cos  x1 ˜ x 1( )

= =1 1

~

i ⋅ xm im = i ⋅ ˜ x n ˜ i n
n =1

3

∑
m=1

3

∑i1 ⋅ i1 i1 ⋅ i1
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Definition:

Generalizing:

goes with xn
goes with xm

~  im ⋅
˜ i n =  cos  xm ˜ x n ≡  lm˜ n 

= Direction
   Cosine

Returning to equation      and using the direction cosines:x1 =  ˜ x 1i1 ⋅ ˜ i 1 +  ˜ x 2i1 ⋅ ˜ i 2 +  ˜ x 3i1 ⋅ ˜ i 3 (∗)

Note repeated index, so can write:

For the other two components (x2 and x3) similar work gives:

  lm ˜ n  =  cos  xm ˜ x n =  im ⋅  ˜ i n

  x1 =  l1 1 ˜ x 1 +  l1 2 ˜ x 2  +  l1 3 ˜ x 3~ ~ ~ 

  
x1 =  l1n ˜ x n

n=1

3

∑ ~ 
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So have 3 equations that can be expressed as:

(m = 1, 2, 3)

-->  can also show the reverse

(n = 1, 2, 3)

~ 

  

i2 ⋅ r( )  →  x2 =  l2n ˜ x n
n=1

3

∑

i3 ⋅ r( ) →  x3 =  l3n ˜ x n
n=1

3

∑

~ 

  
xm =  lmn ˜ x n

n=1

3

∑ ~ 

~ 

  
˜ x n  =  lnm xm

m=1

3

∑ ~
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(n = 1, 2, 3)

Notes:

•  Angle is measured Positive Counterclockwise
            (+CCW)

•                        since cos is an even function:
                   cos (θ) = cos (-θ)

•  But                 since angle from ym to yn
      differs by 90° from that

    from yn to ym

~

~

In addition, can transform forces (velocity, acceleration,
etc.,) the same way

  

˜ F n  =  lnm Fm
m=1

3

∑ ~ 

  

lmn = lnm
lmn ≠ lnm

~ ~ 

  

lmn = lnm
lmn ≠ lnm~ ~ 
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Figure U3.4   --> Demonstrate in a 2-D Rotation
x3 ,

x1
~

x2
~

x3
~

x1

x2

θ

θ + 90°

θ

 90° – θ

Make a table of direction cosines:

x3

x2

x1

x3x2x1
~

~

~
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Remember IMPORTANT CONCEPT:  
Axis system in which we describe a quantity does not change the 
quantity, only its description


