

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139
16.001/16.002 Unified Engineering I, II

Fall 2008

## Problem Set 2

Name: $\qquad$

Due Date: 9/19/2008

|  | Time Spent <br> $(\min )$ |
| :--- | :---: |
| T4 |  |
| T5 |  |
| F2 |  |
| F3 |  |
| Study <br> Time |  |

Announcements:

## Unified Engineering

Fall 2008
Thermodynamics \& Propulsion
(A dd a short summary of the concepts you are using to solve the problem)

## Problem T4

1) During a certain cydic process a system receives 100 kJ of heat from a reservoir while it is discharging 60 kJ of heat to a sink. Two work quantities are noted during this process. One is an input work of 15 kJ . Find the other work quantity. Also find the net work and state if this is done on or by the system.
2) A system is capable of executing a cyclic process as indicated in thepV sketch; it may be executed either clockwise abca or counterclockwise adca.
a) When going clockwise to statec, 80 kJ of heat flow to the system and 35 kJ of work are done by it. Returning to statea from c, 60 kJ of heat flow from the system. Find the work along the path ca.
b) When going counterd ockwise to state $\mathrm{c}, 70 \mathrm{~kJ}$ of heat flow to the system. Find the work during the process adc.


## Unified Engineering

Fall 2008
Thermodynamics \& Propulsion
(A dd a short summary of the concepts you are using to solve the problem)

## Problem T5

The schematic on the next pageshows the pressure and temperature profiles through a modern two-spool turbofan engine. The fan, compressors and turbines can be assumed adiabatic. An animation of how a jet engine works can befound under:
http:/ / www.rolls-royce.com/ education/ schools/ how things work/ journey02/ flash.html
The fan (STA 2 to 2.4) is driven by the low pressure turbine(STA 5.4 to 5.5 ) and the core compressor (STA 2C to 3) is driven by the high pressure turbine (STA 4 to 5). The specific heat of air in the compressor and in the turbine are $c_{p C}=1000 \mathrm{~J} / \mathrm{kgK}$ and $c_{p T}=$ 1200J/ kgK respectively.
a) What is the power needed to drive the high-pressure compressor if the mass flow rate through the core is $30 \mathrm{~kg} / \mathrm{s}$ ?
b) How much heat is transferred to the air flow in the combustor?
c) The bypass ratio of an engine is defined as the ratio of the mass flow rate in the bypass stream to the mass flow rate through the core of the engine. Determine the bypass ratio for this engine. (Suggestion: it might help to makea schematic of the engine and its shaft arrangements.)
d) What is the power needed to drive thefan?

Unified Engineering
Thermodynamics \& Propulsion
Fall 2008
Z. S. Spakovszky

## Problem T5continued




## Problem F2

Electrospray thrusters are little rocket engines that operate in vacuum conditions, producing a stream of very small, electrically charged, liquid droplets. Consider such a device creating droplets of radius $R$ and electric charge $Q$. In this problem we will focus on the isolated situation of a single droplet. The electric charge distributes on the surface of the droplet, thus generating an electric field of magnitude,

$$
E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}
$$

Since like charges repel each other, the droplet surface becomes stressed by an outward electric pressure of magnitude $P_{E}=\frac{1}{2} \varepsilon_{0} E^{2}$, which acts normal to the droplet surface.

1. What is the maximum number of elementary charges $e$ that such droplets can hold before exploding due to charge repulsion?
2. What is the maximum electric charge per unit mass of these droplets?

Use the following data for numerical evaluation:
Surface tension, $\gamma=0.05 \mathrm{~J} / \mathrm{m}^{2}$
Droplet radius, $R=20 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$
Permittivity of vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Elementary charge, $e=1.6 \times 10^{-19} \mathrm{C}$
Droplet density, $\rho=1200 \mathrm{~kg} / \mathrm{m}^{3}$

## Unified Engineering

Fall 2008
Fluids
P. Lozano

## Problem F3

Consider a parabolically shaped airfoil profile. A fluid of density $\rho$ flows towards the airfoil with a uniform upstream speed $V_{\infty}$ at an angle of attack $\alpha$ with respect to its chord. The pressure distribution $p_{l}-p_{u}$ is also paraboidal, with a maximum value of,

$$
\left(p_{l}-p_{u}\right)_{\max }=2 \rho V_{\infty}^{2}\left(\frac{w}{c}\right)^{2} . \quad \text { Assume } p_{l}=\text { const }=p_{\infty} .
$$



1. Find expressions of the type $f(x)=A x(1+B x)$ for the airfoil shape $y(x)$ and the pressure distribution $\left(p_{l}-p_{u}\right)(x)$.
2. Neglecting shear stresses, derive equations for the local lift coefficient $c_{l}=L^{\prime} / q_{\infty} c$ and the local quarter-chord moment coefficient $c_{m_{c / 4}}=M_{c / 4}^{\prime} / q_{\infty} c^{2}$.

Note: Do not neglect $\alpha$ or $y^{\prime}$ terms for this part.
3. The following expressions, shown in class, result from neglecting $\alpha$ and $y^{\prime}$ terms:

$$
L^{\prime} \approx \int_{0}^{c}\left(p_{l}-p_{u}\right) d x \quad M_{c / 4}^{\prime} \approx \int_{0}^{c}-\left(p_{l}-p_{u}\right)(x-c / 4) d x
$$

Compare the local coefficients using these expressions against your results from part 2 for the cases shown in the table. Assume $p_{\infty} / q_{\infty}=5$. Discuss your results.

| $\alpha(\mathrm{deg})$ | $w / c$ | $c_{l}$ | $c_{m_{c / 4}}$ | $c_{l}$ with <br> $\alpha=y^{\prime}=0$ | $c_{m_{c / 4}}$ with <br> $\alpha=y^{\prime}=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.01 |  |  |  |  |
|  | 0.1 |  |  |  |  |
|  | 0.5 |  |  |  |  |
| 5 | 0.01 |  |  |  |  |
|  | 0.1 |  |  |  |  |
|  | 0.5 |  |  |  |  |

M1 (M3.1) (10 M-points) For the following structures, list key design considerations and discuss the relative importance of these considerations.
(a) business jet
(b) traffic tunnel
(c) step ladder
(d) space station
(e) 18-wheeler transport truck (including transport bin)
(f) glider

M2 (M3.2) (10 M-points) A 10 m by 10 m grid is situated in the ( $x-y$ ) plane. The grid is made up of rigid rods connected at 1 m increments. The following set of forces act on this grid:

Force 1 acts at point $(1,1)$ at an angle of $0.0^{\circ}$ with a magnitude of 2 N
Force 2 acts at point $(1,-4)$ at an angle of $63.4^{\circ}$ with a magnitude of 5 N
Force 3 acts at point $(2,-3)$ at an angle of $-116.6^{\circ}$ with a magnitude of 5 N Force 4 acts at point $(-5,-5)$ at an angle of $45^{\circ}$ with a magnitude of 3 N
Force 5 acts at point $(2,4)$ at an angle of $251.5^{\circ}$ with a magnitude of 3 N
Force 6 acts at point $(-5,5)$ at an angle of $315^{\circ}$ with a magnitude of 4 N
(Note: Angles are measured positive counterclockwise relative to a line drawn parallel to the $x$-axis and through the acting point of the force.)

For this configuration:
(NOTE: Express the answer as a vector as appropriate.)
(a) Describe each force as a vector and neatly draw out the described configuration.
(b) Determine the total (resultant) force acting on the grid and its magnitude.
(c) Can any of the forces be expressed as a couple? If so, do so.
(d) Determine the moment acting about the origin (center) of the grid.
(e) Determine the moment acting about the upper right-hand corner of the grid.
(f) Determine the components of the moment acting about the x -axis and about the $y$-axis.

