

Massachusetts Institute of Technology Department of Aeronautics and Astronautics
Cambridge, MA 02139
16.001/16.002 Unified Engineering I, II Fall 2008

Problem Set 8

Name: \qquad

Due Date: 10/31/2008

	Time Spent (min)
M14	
M15	
M16	
T17	
T18	
S1	
Study Time	

Announcements:

Happy Halloween!

Unified Engineering Problem Set 8
Week 9 Fall, 2008

Lectures: M14, M15, M16

Units: M2.2, M2.3

M14 (M9.1) (10 points) A three-dimensional body is subjected to a state of stress such that the three extensional stresses are all constant and of the same value, A . The shear stress in the 1-2 plane has a linear variation in both the x_{1} and x_{2} directions. Each variation is of the same magnitude, B, but is positive in x_{1} and negative in x_{2}. Determine as much as you can about the overall stress field of this three-dimensional body using functional forms with further description as needed. Be sure to explain all reasoning clearly.

M15 (M9.2) (10 points) For each of the following two-dimensional displacement fields (no displacement in the x_{3}-direction), draw a neat sketch of a unit square (with the bottom left corner at the origin) before and after deformation (exaggerate deformation by a factor of 10). Calculate the associated twodimensional strain field. Identify the "type" of deformation/ strain that characterizes the displacement.
(a) $\underline{u}=\left(0.015 x_{1}\right) \underline{i}_{1}-\left(0.030 x_{2}\right) \underline{i}_{2}$
(b) $\underline{u}=\left(0.030 x_{2}\right) \underline{i}_{1}+\left(0.020 x_{1}\right) \underline{i}_{2}$
(c) $\quad \underline{u}=(0.030) \underline{i}_{1}-(0.015) \underline{i}_{2}$
(d) $\underline{u}=\left(0.040 x_{2}\right) \underline{i}_{1}-\left(0.040 x_{1}\right) \underline{\underline{i}}_{2}$
(e) $\underline{u}=\left(0.050 x_{1}-0.050 x_{2}\right) \underline{i}_{1}+\left(-0.050 x_{1}-0.020 x_{2}\right) \underline{i}_{2}$

M16 (M9.3) (10 points) The following is known as the functional variation of the extensional strains in the x_{1} and x_{2} directions:

$$
\begin{aligned}
& \varepsilon_{11}=a x_{1}+b x_{2}^{2}+c_{11} \\
& \varepsilon_{22}=-(b / 2) x_{1}^{2}+a x_{2}+c_{22}
\end{aligned}
$$

The extensional strain in the x_{3}-direction is of value zero and there are also no strains in the $x_{1}-x_{3}$ and $x_{2}-x_{3}$ planes. With this information:
(a) Determine all you can about the displacements along each of the three directions.
(b) Determine the shear strain in the $x_{1}-x_{2}$ plane or whatever can be determined about such.

Unified Engineering
 Thermodynamics \& Propulsion

Fall 2008
Z. S. Spakovszky
(Add a short summary of the concepts you are using to solve the problem)

Problem T17

A gas turbine with air as the working fluid has two ideal turbine sections, as shown below. The first turbine drives the ideal compressor and the second turbine, the power turbine, produces the power output. The compressor inlet conditions are $T_{1}=290 \mathrm{~K}$ and $p_{1}=100 \mathrm{kPa}$, and the exit pressure is $p_{2}=450 \mathrm{kPa}$. A fraction of the flow, x, bypasses the burner and the rest goes through the burner where $1200 \mathrm{~kJ} / \mathrm{kg}$ of heat is added by combustion. The two flows then mix before entering the first turbine and continue through the power turbine where the exhaust pressure is $p_{5}=100 \mathrm{kPa}$. You can assume $\gamma=1.4$ and $R=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ for air.

If the mixing results in a temperature of $\mathrm{T}_{3}=1000 \mathrm{~K}$ into the first turbine, find:
a) the flow fraction x ,
b) the required pressure and temperature into the power turbine, p_{3} and T_{3},
C) the specific shaft work output of the power turbine $w_{T 2}$.

Unified Engineering
 Thermodynamics \& Propulsion

Fall 2008
(Add a short summary of the concepts you are using to solve the problem)

Problem T18

A set of reversible engines and refrigerators interact with three infinite heat reservoirs (infinite sources/sinks of heat whose temperature remains constant in any heat transfer process). During a cycle of operation, 5 MJ is drawn from the 400 K source and the net work done is 840 kJ . Find the amount and direction of heat interaction with the other reservoirs.

Problem S1 (Signals and Systems)

1. Consider the system of equations

$$
\begin{aligned}
x+2 y-z & =1 \\
x-3 y+2 z & =-2 \\
-2 x+3 y+z & =3 .
\end{aligned}
$$

Solve for x, y, and z, in three separate ways. The goal of part (1) is to practice solving systems of equations, so that when you get to part (2), you will have a fair basis of comparison.
(a) Determine x, y, and z using (symbolic) elimination of variables.
(b) Determine x, y, and z by Gaussian reduction.
(c) Determine x, y, and z using Cramer's rule.
2. Consider the system of equations

$$
\begin{aligned}
x+6 y-6 z & =2 \\
3 x-2 y+3 z & =3 \\
-4 x-2 y+3 z & =-4 .
\end{aligned}
$$

Again, solve for x, y, and z, in three separate ways. This time, please time each part (a), (b), (c) below.
(a) Determine x, y, and z using (symbolic) elimination of variables.
(b) Determine x, y, and z by Gaussian reduction.
(c) Determine x, y, and z using Cramer's rule.
(d) How much time did each method take?
(e) Which method do you prefer?
(f) When answering this question, think about how much time might be required for a larger system, say, one that is 5×5.

