Unified Engineering

$$
\begin{array}{r}
\text { Problem Set } 8 \text { - week } 9 \\
\text { Farl, } 2 \text { no } 8 \\
\text { soluTIons }
\end{array}
$$

M14(M9.1) Given:
3-D bodyymith

$$
\begin{aligned}
& \sigma_{11}=\sigma_{22}=\sigma_{33}=A \\
& \sigma_{12}=+B x_{1}-B x_{2}+C_{12}+f_{12}\left(x_{3}\right)
\end{aligned}
$$

(since σ_{12} has a + liner variation of $B \operatorname{cis}$, and a - linear variation of B in' x_{2}. Can add a constant to that [use C_{12}] as well an a porsibh variation in $x_{3}\left[\right.$ use $\left.\left.f_{12}\left(x_{3}\right)\right]\right)$
NOTF: In most general care, all stresses are functions of all three directions:

$$
\sigma_{m n}\left(x_{1}, x_{2}, x_{3}\right)
$$

Use this in formation with the stress equations of equilibrium to determine information a bout the otherstresser. First write the 3-D stress equilibrium equations .- There are no body forcer:

$$
\begin{align*}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{13}}{\partial x_{3}}=0 \tag{1}\\
& \frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{23}}{\partial x_{3}}=0 \tag{2}\\
& \frac{\partial \sigma_{13}}{\partial x_{1}}+\frac{\partial \sigma_{23}}{\partial x_{2}}+\frac{\partial \sigma_{33}}{\partial x_{3}}=0 \tag{3}
\end{align*}
$$

\rightarrow Take partial de rivativer of what is know un about stserses to give in for matrons

$$
\begin{array}{ll}
\frac{\partial \sigma_{1}}{\partial x_{1}}=0 & \frac{\partial \sigma_{22}}{\partial x_{2}}=0 \\
\frac{\partial \sigma_{12}}{\partial x_{1}}=+B & \frac{\partial \sigma_{33}}{\partial x_{3}}=0 \\
\frac{\partial \sigma_{12}}{\partial x_{2}}=-B
\end{array}
$$

\rightarrow Cretin in formation in (1):

$$
\begin{gathered}
0-B+\frac{\partial \sigma_{13}}{\partial x_{3}}=0 \\
\Rightarrow \frac{\partial \sigma_{13}}{\partial x_{3}}=+B
\end{gathered}
$$

\rightarrow This implies casing multi-vaniable calculus and getting functions of integration:

$$
\sigma_{13}=B x_{3}+f_{13}\left(x_{1}, *_{2}\right)+C_{13}
$$

\rightarrow use differential results in (2).

$$
\begin{aligned}
+B & +0+\frac{\partial \sigma_{23}}{\partial x_{3}}=0 \\
& \Rightarrow \frac{\partial \sigma_{23}}{\partial x_{3}}=-B
\end{aligned}
$$

Using some procedure fores:

$$
\sigma_{23}=-B x_{3}+t_{23}\left(x_{1}, x_{2}\right)+C_{23}
$$

\rightarrow Take appropriate partials of these two stresses for use in equation (3):

$$
\frac{\partial \sigma_{13}}{\partial x_{1}}=\frac{\partial f_{13}\left(x_{1}, x_{2}\right)}{\partial x_{1}}
$$

and

$$
\frac{\partial \sigma_{23}}{\partial x_{2}}=\frac{\partial f_{23}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
$$

\rightarrow Placing in (3):

$$
\frac{\partial f_{13}\left(x_{1}, x_{2}\right)}{\partial x_{1}}+\frac{\partial f_{23}\left(x_{1}, x_{2}\right)}{\partial x_{2}}+0=0
$$

\rightarrow This is arr the siformation that car be obtained. Tuns this is what can be said a bout the stress field:

- The extensional stresses are constant with:

$$
\sigma_{11}=A, \sigma_{22}=A, \sigma_{33}=A
$$

- The shear stress in the $x_{1}-x_{2}$ plane has lin ear variation in x, and xi with a value ot $+B$ in x_{1}, and of $-B$ in x_{2}, plows some function related to x_{3} in coding aconstent

$$
\sigma_{12}=B x_{1}-B x_{2}+f_{12}\left(x_{3}\right)+C_{12}
$$

- The shear stresses involving the x_{3}-direction have a linear variation in $x_{3}\left(\sigma_{13}\right.$ of $+B, \sigma_{23}$ of $-B$) and hove functional variations in x_{1} and x_{2} linked by partial derivotues. In addition, constants mort se added

$$
\begin{aligned}
& \sigma_{13}=B x_{3}+f_{13}\left(x_{1}, x_{2}\right)+C_{13} \\
& \sigma_{23}=-B x_{3}+f_{23}\left(x_{1}, x_{2}\right)+C_{23}
\end{aligned}
$$

where: $\frac{\partial f_{13}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-\frac{\partial f_{23}\left(x_{1}, x_{2}\right)}{\partial x_{2}}$

M15 (ar 9.2)
There is a two-dimensimal field of displacement with no displacement in the third $\left(x_{3}\right)$ direction $\Rightarrow u_{3}=0$. Thur, all out-of-plane strains are gent ar either u_{3} ir zeno or $\frac{\partial}{\partial x_{3}}=0$:

$$
\epsilon_{13}=\epsilon_{23}=\epsilon_{33}=0
$$

\rightarrow Now define the in-ptane strain-diplociment relations:

$$
\begin{aligned}
& \epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}} \\
& \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}} \\
& \epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)
\end{aligned}
$$

with the displacement field detrued os:

$$
\underline{u}=u_{1} \underline{i}_{1}+u_{2} \underline{i}_{2}
$$

Apply this to each case to get the in-plane straits.
(a)

$$
\begin{gathered}
\underline{u}=\left(0.015 x_{2}\right) i_{1}-\left(0.030 x_{2}\right) i_{2} \\
\epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0.015
\end{gathered}
$$

Page 6 of 14

$$
\begin{array}{r}
\quad \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=-0.030 \\
\epsilon_{12}^{\prime}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)=0
\end{array}
$$

-undeformed

$$
\begin{aligned}
& \epsilon_{11}=0.015 \\
& \epsilon_{22}=-0.030 \\
& \epsilon_{12}=0
\end{aligned}
$$

This is pure elongation in tho directions (we positive, one negative)
(b)

$$
\begin{aligned}
& \underline{u}=\left(0.030 x_{2}\right) i_{1}+\left(0.020 x_{1}\right) i_{2} \\
& \epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0 \\
& \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=0 \\
& \epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{2}}\right)=\frac{1}{2}(0.030+0.020) \\
&=0.025
\end{aligned}
$$

Page 7 of 14

This is pure shear
(c) $u=(0.030) i_{1}-(0.015) i_{2}$

$$
\begin{aligned}
& \epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0 \\
& \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=0 \\
& \epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)=0
\end{aligned}
$$

-unde for med
... deformed

$$
\begin{aligned}
& \epsilon_{11}=0 \\
& \epsilon_{22}=0 \\
& \epsilon_{12}=0
\end{aligned}
$$

This is pure translation in troth x_{1} and x_{2}
(d)

$$
\begin{aligned}
& \underline{u}=\left(0.040 x_{2}\right) i-\left(0.040 x_{1}\right) i_{2} \\
& \epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0 \\
& \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{1}}=0 \\
& \epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) \\
&=\frac{1}{2}(0.040-0.040)=0
\end{aligned}
$$

undetormed
-.- deformed

$$
\begin{aligned}
& \epsilon_{11}=0 \\
& \epsilon_{22}=0 \\
& \epsilon_{12}=0
\end{aligned}
$$

This is pure rotation
(e)

$$
\begin{aligned}
\underline{u}= & \left(0.050 x_{1}-0.050 x_{2}\right) i_{1} \\
& +\left(-0.050 x_{1}-0.020 x_{2}\right) i_{2} \\
\epsilon_{11} & =\frac{\partial u_{1}}{\partial x_{1}}=0.050 \\
\epsilon_{22} & =\frac{\partial u_{2}}{\partial x_{2}}=-0.020
\end{aligned}
$$

Page 9 of 14

$$
\begin{aligned}
\epsilon_{12} & =\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) \\
& =\frac{1}{2}(-0.050-0.050)=-0.050
\end{aligned}
$$

- undeformed
... deformed

$$
\begin{aligned}
& \epsilon_{11}=0.050 \\
& \epsilon_{22}=-0.020 \\
& \epsilon_{12}=-0.050
\end{aligned}
$$

This is combined elongation
and shear

M(6 (m9.3)

$$
\begin{aligned}
& \epsilon_{11}=a x_{1}+b x_{2}^{2}+c_{11} \\
& \epsilon_{22}=-(b / 2) x_{1}^{2}+a x_{2}+c_{22} \\
& \epsilon_{33}=0 \\
& \epsilon_{13}=\epsilon_{23}=0
\end{aligned}
$$

(a) To dtermine the three-dimentional field of displacemente use the stain-chisplacement relations:

$$
\begin{aligned}
& \epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}} \\
& \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}} \\
& \epsilon_{33}=\frac{\partial u_{3}}{\partial x_{3}} \\
& \epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) \\
& \epsilon_{13}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right) \\
& \epsilon_{23}=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)
\end{aligned}
$$

\rightarrow use the expression for $f_{\text {cr, }}$ integrate and use multi variable calculers and gat functions (and constants) of integration for u :

$$
\begin{aligned}
& u_{1}=\int \epsilon_{1 r} d x_{1}=\frac{a}{2} x_{1}^{2}+b x_{1} x_{2}^{2}+c_{1 \prime} x_{1} \\
&+f_{1}\left(x_{3}\right)+d_{1}
\end{aligned}
$$

\rightarrow similarly for t_{22} to getexpredtion for C_{2} :

$$
\begin{aligned}
u_{2}=\int f_{22} d x_{2}=-\frac{b}{2} x_{1}^{2} x_{2} & +\frac{a}{2} x_{2}^{2}
\end{aligned}+c_{22} x_{2}, ~+f_{2}\left(x_{3}\right)+d_{2}
$$

\rightarrow and for ϵ_{33} to ge f expression tor u_{3} :

$$
c_{3}=\int f_{33} d x_{3}=f_{3}\left(x_{1}, x_{2}\right)+d_{3}
$$

\rightarrow Now use each of the t_{13} and t_{23} equations since the ce coltrane one equal to zen.

First teak denvaxuer:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x_{3}}=\frac{\partial f_{1}\left(x_{3}\right)}{\partial x_{3}} \\
& \frac{\partial u_{2}}{\partial x_{3}}=\frac{\partial f_{2}\left(x_{3}\right)}{\partial x_{3}}
\end{aligned}
$$

Page 12 of 14

$$
\begin{aligned}
& \frac{\partial u_{3}}{\partial x_{1}}=\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{1}} \\
& \frac{\partial u_{3}}{\partial x_{2}}=\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{aligned}
$$

and use the se to determine:

$$
\begin{aligned}
& \text { via } f_{3}=0 \Rightarrow \frac{\partial f_{1}\left(x_{3}\right)}{\partial x_{3}}+\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=0 \\
& \text { via } f_{23}=0 \Rightarrow \frac{\partial f_{2}\left(x_{3}\right)}{\partial x_{3}}+\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=0
\end{aligned}
$$

\rightarrow NOTF: Cannas case the equation tor ϵ_{2} since no information is given concerning that sheartrarin.
This gives all the in formation that can be obtained. Thud, this is what can se send about the displacement field:

- The displaceusbent in $x_{1}\left(u_{1}\right)$ has linear and quadratic relation to x_{1} and x_{3}, hor a the ctimal relation 16 x_{3} and á constant:

Page 13 of 14

$$
u_{1}=\frac{q}{2} x_{1}^{2}+b, x_{1} x_{2}^{2}+C_{1} x_{1}+f_{1}\left(x_{3}\right)+d_{1}
$$

- Thedisplachnent in $x_{2}\left(u_{2}\right)$ has situilar relations as for u,

$$
u_{2}=-\frac{b}{2} x_{1}^{2} x_{2}+\frac{a}{2} x_{2}^{2}+c_{22} x_{2}+f_{2}\left(x_{3}\right)+d_{3}
$$

- The displacement in $x_{3}\left(u_{3}\right)$ had a

$$
u_{3}=f_{3}\left(x, x_{2}\right)+d_{3}
$$

- The three function ae form use related via the $x_{0} l$ ming derivatives:

$$
\begin{aligned}
& \frac{\partial f_{1}\left(x_{3}\right)}{\partial x_{3}}=-\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{1}} \\
& \frac{\partial f_{2}\left(x_{3}\right)}{\partial x_{3}}=-\frac{\partial f_{3}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{aligned}
$$

(6) cure the exprestion:

$$
\epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)
$$

\rightarrow Take denva xres of the expressimos tor the displacernente:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x_{2}}=2 b x_{1} x_{2} \\
& \frac{\partial u_{2}}{\partial x_{1}}=-b x_{1} x_{2}
\end{aligned}
$$

\rightarrow Arethese in the E_{12} equatim.'

$$
\Rightarrow \epsilon_{12}=\frac{1}{2}\left(2 b x_{1} x_{2}-b x_{1} x_{2}\right)
$$

fivity: $\epsilon_{12}=\frac{b}{2} x_{1} x_{2}$

T17 ${ }_{2} 9_{A}^{1-x}$

$$
T_{1}=210 \mathrm{~K}
$$

$$
p_{1}=15 a
$$

16. Unifid Fall 2008 ZS
cancepts: - ist can

- cydes
-ad.rew. prouncs
$94=1200 \mathrm{~ns} / \mathrm{hs}$

$$
T_{3}=1000 \mathrm{k}
$$

ascune: -ideal gas with constane spee. heals

- ideal fubommanines
- negect $\triangle K E, \Delta P E$
a) ad rev. procen $1 \rightarrow 2: T_{2}=T_{1}\left(\frac{P_{2}}{p_{1}}\right)^{8 / 8}, T_{2}=445.7 \mathrm{~K}$

Ist (am combusto: ${ }^{2 \prime} \underset{\int_{9 A}}{\text { and } T_{2}^{\prime}=T_{2}}$
an

$$
c p\left(T_{2}^{\prime \prime}-T_{2}^{\prime}\right)=q_{A}
$$

$$
\begin{aligned}
& 0=H_{2}+H_{2}^{\prime \prime}-H_{3}, 0=x h_{2}+(1-x) h_{2}^{\prime \prime}-h_{3} \\
& x=\frac{h_{3}-h_{2}^{\prime \prime}}{h_{2}-h_{2}^{\prime \prime}} \quad x=0.536 \quad T_{2}^{\prime \prime}=1640.3 \mathrm{~K}
\end{aligned}
$$

b) shif poure solance: $w_{c}=w_{T_{1}}$ (woke: same mane few $c_{p}\left(T_{2}-T_{1}\right)=c_{p}\left(T_{3}-T_{4}\right) \rightarrow T_{4}=T_{3}-T_{2}+T_{1}, \underline{T_{4}}=844.3 \mathrm{~K}$ ad ru-atp: $P_{4}=P_{3}\left(\frac{T_{4}}{T_{3}}\right)^{y / 1-1} 1 P_{3}=P_{2}$ so $P_{4}=2.498 \mathrm{o}$
c) 1 stcam: $0=h_{4}-h_{5}-w_{\tau_{2}}$
ad.rev. ckp: $T_{5}=T_{4}\left(\frac{P_{5}}{P_{4}}\right)^{\frac{d 1}{8}} \quad W_{T_{2}}=c_{p} T_{4}\left(1-\left(\frac{P_{5}}{p_{4}}\right)^{\frac{1.1}{8}}\right), W_{T_{2}}=194.5 \frac{\mathrm{~kJ}}{\mathrm{ks}}$

T18
16. Unifid Fallo8 zs

Cancupts: - 1st Law

- cycles
- 2nd law
- revernber proun

Assume: all proceses and osces are revessle

$$
\rightarrow \Delta S_{\text {total }}=0
$$

1st can: $0=Q_{3}+Q_{2}+Q_{1}-W_{\text {net }}$ cy des
2nl law : $\Delta S_{\text {total }}=\Delta S_{C_{\text {gles }}}+\Delta S_{3}+\Delta S_{2}+\Delta S_{1}=0$
$\Delta S_{\text {ales }}=0$ (entrpy n state voriasu)

$$
\begin{equation*}
\Delta S_{i}=\frac{Q_{i}}{T_{i}} \text { for } i=1,2,3 \quad \text { (w wen resuvais } \text { econstand turp.) } \tag{ii}
\end{equation*}
$$

so $0=\frac{Q_{3}}{T_{3}}+\frac{Q_{2}}{T_{2}}+\frac{Q_{1}}{T_{1}}$
consine (i) and (ii): $Q_{3}=W_{\text {ner }}-Q_{2}-Q_{1}$

$$
Q_{2}=\frac{-G_{1} / T_{1}+Q_{1} / T_{3}-w \omega_{1} / T_{3}}{1 / T_{2}-1 / T_{3}}
$$

$\rightarrow C_{c_{2}}=-4.98 \mathrm{MJ}$. [rote: men regiched from ciols since fign is negatien bue arrow
 7 near absabed

Problem S1 (Signals and Systems)

1. Consider the system of equations

$$
\begin{aligned}
x+2 y-z & =1 \\
x-3 y+2 z & =-2 \\
-2 x+3 y+z & =3 .
\end{aligned}
$$

Solve for x, y, and z, in three separate ways. The goal of part (1) is to practice solving systems of equations, so that when you get to part (2), you will have a fair basis of comparison.
(a) Determine x, y, and z using (symbolic) elimination of variables.
(b) Determine x, y, and z by Gaussian reduction.
(c) Determine x, y, and z using Cramer's rule.
2. Consider the system of equations

$$
\begin{aligned}
x+6 y-6 z & =2 \\
3 x-2 y+3 z & =3 \\
-4 x-2 y+3 z & =-4 .
\end{aligned}
$$

Again, solve for x, y, and z, in three separate ways. This time, please time each part (a), (b), (c) below.
(a) Determine x, y, and z using (symbolic) elimination of variables.
(b) Determine x, y, and z by Gaussian reduction.
(c) Determine x, y, and z using Cramer's rule.
(d) How much time did each method take?
(e) Which method do you prefer?
(f) When answering this question, think about how much time might be required for a larger system, say, one that is 5×5.

Solution for Problem S1 (Signals and Systems)

1. As we will show below, parts (a)-(c) give an identical solution: $x=-\frac{1}{4}$, $y=\frac{3}{4}, z=\frac{1}{4}$.
(a) We start with the original system of equations

$$
\begin{align*}
x+2 y-z & =1 \\
x-3 y+2 z & =-2 \tag{1}\\
-2 x+3 y+z & =3
\end{align*}
$$

First, we eliminate variable x from the second and third rows by setting Row $2 \leftarrow$ Row 2 - Row 3 and setting Row $3 \leftarrow$ Row $3+$ $2 \times$ Row 3 . These operations result in a new system of equations below

$$
\begin{align*}
x+2 y-z & =1 \\
-5 y+3 z & =-3 \tag{2}\\
7 y-z & =5
\end{align*}
$$

Next, we eliminate variable y from the last rows of (2) by setting Row $3 \leftarrow$ Row $3+\frac{7}{5} \times$ Row 2. This operation results in a new system of equations below:

$$
\begin{align*}
x+2 y-z & =1 \\
-5 y+3 z & =-3 \tag{3}\\
\frac{16}{5} z & =\frac{4}{5}
\end{align*}
$$

The solution for equations in (3) can be obtained as follows. The third row implies that $z=\frac{1}{4}$. Substituting $z=\frac{1}{4}$ into the second row gives

$$
y=\frac{-3-3 z}{-5}=\frac{3}{4} .
$$

Substituting $z=\frac{1}{4}$ and $y=\frac{3}{4}$ into the first row gives

$$
x=1-2 y+z=-\frac{1}{4} .
$$

The solution of the system of equations in (3) is identical to the solution of the original system of equations in (1), since we arrive at (3) from (1) by a series of row operations. Therefore, the solution of (1) is also $(x, y, z)=\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{4}\right)$.
(b) Gaussian reduction is a representation of (1)-(3) in matrix forms:

$$
\begin{array}{cc}
\Longrightarrow & {\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
1 & -3 & 2 & -2 \\
-2 & 3 & 1 & 3
\end{array}\right]} \\
& {\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 3 & -3 \\
0 & 7 & -1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 3 & -3 \\
0 & 0 & \frac{16}{5} & -\frac{4}{5}
\end{array}\right] .}
\end{array}
$$

If we stop now, we can use a back substitution as we did in (a) to arrive at the solution $(x, y, z)=\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{4}\right)$.

Alternatively, we can continue the reduction until the 3×3 submatrix becomes the identity matrix.
We turn the diagonal elements of the 3×3 sub-matrix into 1 's by setting Row $2 \leftarrow-\frac{1}{5}$ Row 2 and setting Row $3 \leftarrow-\frac{5}{16}$ Row 3 . These operations result in the matrix representation of linear equations below

$$
\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -\frac{3}{5} & -\frac{3}{5} \\
0 & 0 & 1 & \frac{1}{4}
\end{array}\right]
$$

Next, we eliminate variable z from the first and second rows by setting Row $1 \leftarrow$ Row $1+$ Row 3 and setting Row $2 \leftarrow$ Row $2+$ $\frac{3}{5}$ Row 3 . These operations result in the matrix representation

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & \frac{5}{4} \\
0 & 1 & 0 & \frac{3}{4} \\
0 & 0 & 1 & \frac{1}{4}
\end{array}\right] .
$$

Finally, we eliminate variable y from the first row by setting Row $1 \leftarrow$ Row $1-2$ Row 2 . This operation results in the matrix representation

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & -\frac{1}{4} \\
0 & 1 & 0 & \frac{3}{4} \\
0 & 0 & 1 & \frac{1}{4}
\end{array}\right] .
$$

The left-most column is the solution

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{3}{4}^{\frac{1}{4}}
\end{array}\right],
$$

which is consistent with the solution obtained from back substitution.
(c) Let \mathbf{A} denote the coefficient matrix in the given system of equations:

$$
\mathbf{A} \triangleq\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & -3 & 2 \\
-2 & 3 & 1
\end{array}\right]
$$

Cramer's rule implies that the solution is given by

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -3 & 2 \\
3 & 3 & 1
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{4}{-16}=-\frac{1}{4} \\
& y=\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -2 & 2 \\
-2 & 3 & 1
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{-12}{-16}=\frac{3}{4} \\
& z=\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & -3 & -2 \\
-2 & 3 & 3
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{-4}{-16}=\frac{1}{4},
\end{aligned}
$$

where

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a e i+c d h+b f g-a h f-d b i-g e f \text {. }
$$

The determinant of \mathbf{A} can be obtained from the above identity or from the product of the diagonal elements of the sub-matrix in (5), which results from the row operations:

$$
\operatorname{det} \mathbf{A}=1 \times(-5) \times \frac{16}{5}=-16
$$

2. The solution is $x=1, y=\frac{1}{2}$, and $z=\frac{1}{3}$. The approach to obtain the solution is similar to that of part (1). Details of the approach will be omitted for brevity.
(a) The solution is obtained from the following chain of reductions:

$$
\begin{aligned}
x+6 y-6 z & =2 \\
3 x-2 y+3 z & =3 \\
-4 x-2 y+3 z & =-4
\end{aligned}
$$

$\Longrightarrow($ Row $2 \leftarrow$ Row $2-3 \times$ Row 1 ; Row $4 \leftarrow$ Row $4+4 \times$ Row 1)

$$
\begin{aligned}
x+6 y-6 z & =2 \\
-20 y+21 z & =-3 \\
22 y-21 z & =4
\end{aligned}
$$

$\Longrightarrow\left(\right.$ Row $3 \leftarrow$ Row $3-\frac{22}{20} \times$ Row 2$)$

$$
\begin{aligned}
x+6 y-6 z & =2 \\
-20 y+21 z & =-3 \\
\frac{21}{10} z & =\frac{14}{20} .
\end{aligned}
$$

The last row implies that

$$
z=\frac{14}{20} \times \frac{10}{21}=\frac{1}{3} .
$$

Substituting $z=\frac{1}{3}$ into the second row gives

$$
y=\frac{-3-21 z}{-20}=\frac{1}{2} .
$$

Substituting $y=\frac{1}{2}$ and $z=\frac{1}{3}$ into the first row gives

$$
x=2-6 y+6 z=1
$$

Therefore the solution is $(x, y, z)=\left(1, \frac{1}{2}, \frac{1}{3}\right)$.
(b) Gaussian reduction is given below:

$$
\begin{array}{cc}
\Longrightarrow & {\left[\begin{array}{rrr|r}
1 & 6 & -6 & 2 \\
3 & -2 & 3 & 3 \\
-4 & 2 & 3 & -4
\end{array}\right]} \\
\Longrightarrow & {\left[\begin{array}{rrr|r}
1 & 6 & -6 & 2 \\
0 & -20 & 21 & -3 \\
0 & 22 & -21 & 4
\end{array}\right]} \\
& {\left[\begin{array}{rrr|r}
1 & 6 & -6 & 2 \\
0 & -20 & 21 & -3 \\
0 & 0 & \frac{21}{10} & \frac{14}{20}
\end{array}\right] .}
\end{array}
$$

If we stop now, we can use a back substitution as we did in (a) to arrive at the solution $(x, y, z)=\left(1, \frac{1}{2}, \frac{1}{3}\right)$.

Alternatively, we can continue the reduction until the 3×3 submatrix becomes the identity matrix:

Make the diagonal elements equal 1

$$
\left[\begin{array}{rrr|r}
1 & 6 & -6 & 2 \\
0 & 1 & \frac{21}{20} & \frac{3}{20} \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]
$$

\Longrightarrow (Eliminate z from rows one and two)

$$
\left[\begin{array}{lll|l}
1 & 6 & 0 & 4 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]
$$

\Longrightarrow (Eliminate z from rows one and two)

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]
$$

The solution is given by the last column of the matrix: $(x, y, z)=$ (1, $\left.\frac{1}{2}, \frac{1}{3}\right)$.
(c) Let \mathbf{A} denote the coefficient matrix in the given system of equations:

$$
\mathbf{A} \triangleq\left[\begin{array}{rrr}
1 & -6 & -6 \\
3 & -2 & 3 \\
-4 & -2 & 3
\end{array}\right]
$$

Cramer's rule implies that the solution is given by

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left[\begin{array}{ccc}
2 & 6 & -6 \\
3 & -2 & 3 \\
-4 & -2 & 3
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{-42}{-42}=1 \\
& y=\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & -6 \\
3 & 3 & 3 \\
-4 & -4 & 3
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{-21}{-42}=\frac{1}{2} \\
& z=\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & 6 & 2 \\
3 & -2 & 3 \\
-4 & -2 & -4
\end{array}\right]}{\operatorname{det} \mathbf{A}}=\frac{-14}{-42}=\frac{1}{3} .
\end{aligned}
$$

(d) Let n denotes the number of variables and the number of linear equations. Let T denote the amount of computational time required to obtain the solution using the elimination of variables. Then, Gaussian reduction requires approximately T time unit as well, since Gaussian reduction and elimination of variables have roughly the same computational complexity.
The Cramer's rule requires the evaluation of $n+1$ determinants. To obtain a determinant, we can perform Gaussian reduction until we arrive at a triangular matrix. Therefore, an amount of time to obtain the solution using Cramer's rule is approximately $(n+1) T$.
(e) From the reasoning in part (d), elimination of variables and Gaussian reduction are approximately $n+1$ times faster than Cramer's rule. From a standpoint of computational time, elimination of variables or Gaussian reduction is a preferred method.

