
Unified Engineering	Name:
Thermo Quiz 2	Fall 2008

Consider the gas-turbine arrangement shown below. The unit consists of two turbines TA and TB, two combustors CA and CB, and a single compressor CC. Turbine TA drives compressor CC to furnish all air required. At the exit of the compressor CC the flow is split where a fraction of the flow *x* flows into combustor CA and *1-x* flows into combustor CB which receives heat in the amount of $\dot{Q}_B = 1$ MW. The turbine inlet temperatures are T₃=1000 K and T₅=1500 K respectively. Turbine TB delivers a net cycle power of \dot{W}_{net} . The compressor inlet state is at ambient conditions p₁= 1 bar, T₁=300 K and the compressor exit pressure is p₂ = 10 bar. Both turbines exhaust to ambient pressure, p₄= p₆= p₁= 1 bar. There is no pressure drop in the combustors. Assume that the working fluid is air with $\gamma = 1.4$ and R = 287 J/kgK and that kinetic and potential energy effects can be neglected.

- a) Sketch the cycle in a *p*-*v* diagram and label all states.
- b) What is the compressor exit temperature T₂?
- c) How much heat per unit mass flow is transferred to combustor CA, $q_A = \dot{Q}_A / (x\dot{m})$?
- d) What is the exit temperature T_4 of turbine TA?
- e) What is the mass flow fraction *x* through turbine TA?
- f) What is the exit temperature T_6 of turbine TB?
- g) What is the mass flow \dot{m} through the compressor?
- h) Find the net cycle power W_{net} .
- i) Determine the thermal efficiency for the entire unit.