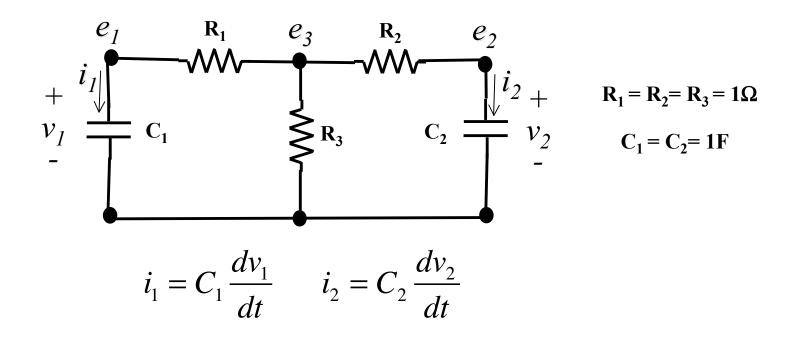
Analysis of RC circuits

Eytan Modiano

Learning Objectives

- Analysis of basic circuit with capacitors, no inputs
 - Derive the differential equations for the voltage across the capacitors
- Solve a system of first order homogeneous differential equations using classical method
 - Identify the exponential solution
 - Obtain the characteristic equation of the system
 - Obtain the natural response of the circuit
 - Solve for the complete solution using initial conditions

Second order RC circuits



Node equations:

$$e_1: i_1 + (e_1 - e_3) / R_1 = 0$$

$$e_2$$
: $(e_2 - e_3) / R_2 + i_2 = 0$

$$e_3$$
: $(e_3 - e_1) / R_1 + (e_3 - e_2) / R_2 + e_3 / R_3 = 0$

The differential equations

Note:
$$v_1 = e_1$$
; $v_2 = e_2$

Differential equations:

$$C_{1} \frac{de_{1}}{dt} + (e_{1} - e_{3}) / R_{1} = 0$$

$$C_{2} \frac{de_{2}}{dt} + (e_{2} - e_{3}) / R_{2} = 0$$

$$(e_{3} - e_{1}) / R_{1} + (e_{3} - e_{2}) / R_{2} + e_{3} / R_{3} = 0$$

Plugging in values for resistors capacitors:

(1)
$$\dot{e}_1 + e_1 - e_3 = 0$$

$$(2)\dot{e}_2 + e_2 - e_3 = 0$$

(3)
$$3e_3 - e_2 - e_1 = 0$$

Guessing a solution

We "guess" that the solution is an exponential of the form:

Guess
$$e_i = E_i e^{st} \implies \dot{e}_i = E_i s e^{st}$$

$$E_{1}se^{st} + E_{1}e^{st} - E_{3}e^{st} = 0$$

$$E_{2}se^{st} + E_{2}e^{st} - E_{3}e^{st} = 0$$

$$3E_{3}e^{st} - E_{2}e^{st} - E_{1}e^{st} = 0$$

$$3E_{3}e^{st} - E_{2}e^{st} - E_{1}e^{st} = 0$$

$$3E_{3}e^{st} - E_{2}e^{st} - E_{1}e^{st} = 0$$

$$E_1(1+s)$$
 $-E_3 = 0$
 $E_2(1+s)$ $-E_3 = 0$
 $-E_1$ $-E_2$ $+3E_3 = 0$

Solution to homogeneous equations

- If equations are linearly independent we have one unique solution:
 - $E_1 = E_2 = E_3 = 0$
 - "trivial" solution
- In order to obtain non-trivial solution, the equations cannot be linearly independent
 - For what values of s are the equations not linearly independent?
- Rewrite equations in the form: AE = 0

$$\begin{bmatrix} (1+s) & 0 & -1 \\ 0 & 1+s & -1 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} = 0$$

- Rows of A are linearly dependent if determinant of A = 0
 - Non-trivial solution

The characteristic equation

 $\det A = 0$ (The characteristic equation) see linear algebra primer on taking determinants

$$|A| = 3(1+s)(1+s) - (1+s) - (1+s) = 0$$

$$3s^{2} + 4s + 1 = 0 \Rightarrow s = \frac{-4 \pm \sqrt{16 - 12}}{6} = \frac{-4 \pm 2}{6}$$
$$\Rightarrow s_{1} = -1, \ s_{2} = -1/3$$

Two solutions:

$$s = -1 \Rightarrow e_i = E_i e^{-t}$$

 $s = -1 / 3 \Rightarrow e_i = E_i e^{-t/3}$

Non-trivial solution

Now we must solve for the values of E_i's

• Recall
$$E_1(1+s)$$
 $-E_3=0$
$$E_2(1+s) \ -E_3=0$$

$$-E_1 \ -E_2 \ +3E_3=0$$

• For s = -1 we have,

$$E_{1}(0) \qquad -E_{3} = 0 \Rightarrow E_{3} = 0$$

$$E_{2}(0) -E_{3} = 0 \Rightarrow E_{3} = 0$$

$$-E_{1} -E_{2} +3E_{3} = 0 \Rightarrow E_{1} = -E_{2}$$

Solution not unique, choose: $E_2 = 1$, $E_1 = -1$ $\Rightarrow e_1 = -1e^{-t}$, $e_2 = 1e^{-t}$, $e_3 = 0$

Non-trivial solution, continued

• Similarly, for s = -1/3

$$E_{1}(2/3)$$
 $-E_{3} = 0 \Rightarrow E_{1} = 3/2E_{3}$
 $E_{2}(2/3) - E_{3} = 0 \Rightarrow E_{2} = 3/2E_{3}$
 $-E_{1}$ $-E_{2}$ $+3E_{3} = 0$

Solution not unique, choose:
$$E_3 = 1$$
, $E_1 = E_2 = 3/2$
 $\Rightarrow e_1 = 3/2e^{-t/3}$, $e_2 = 3/2e^{-t/3}$, $e_3 = e^{-t/3}$

 Note that in general we can solve for the E's using row reduction, etc. (see linear algebra notes)

The complete solution

We now have two possible solutions:

(1):
$$e_1 = 3/2e^{-t/3}$$
, $e_2 = 3/2e^{-t/3}$, $e_3 = e^{-t/3}$
(2): $e_1 = -1e^{-t}$, $e_2 = 1e^{-t}$, $e_3 = 0$

• Since the system is linear and homogeneous, any linear combination of these solution is also a solution. Hence,

$$\vec{e}(t) = a \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} e^{-t} + b \begin{bmatrix} 3/2 \\ 3/2 \\ 1 \end{bmatrix} e^{-t/3}$$

- Where a, and b are constants that depend on initial conditions
 - Given initial values for $e_1 = v_1$ and $e_2 = v_2$ we can solve for a and b

The complete solution, continued

- Suppose we are given the initial voltage values across the capacitors: $e_1(0) = v_1(0)$, $e_2(0) = v_2(0)$
- Plug these into the solution to obtain:

$$e_1(0) = -ae^0 + 3/2be^0 = -a + 3/2b$$

$$e_2(0) = ae^0 + 3/2be^0 = a + 3/2b$$

$$\Rightarrow a = \frac{e_2(0) - e_1(0)}{2}, \ b = \frac{e_1(0) + e_2(0)}{3}$$

Finally,

$$e_1(t) = \frac{e_1(0) - e_2(0)}{2}e^{-t} + \frac{e_1(0) + e_2(0)}{2}e^{-t/3}$$

$$e_2(t) = \frac{e_2(0) - e_1(0)}{2}e^{-t} + \frac{e_1(0) + e_2(0)}{2}e^{-t/3}$$

$$e_3(t) = \frac{e_1(0) + e_2(0)}{3}e^{-t/3}$$