General Response of Second Order System

Eytan Modiano

Learning Objectives

- Learn to analyze a general second order system and to obtain the general solution
- Identify the over-damped, under-damped, and critically damped solutions
- Convert complex solution to real solution
- Suspended "mass-spring-damper" equivalent system

Second order RC circuit

- System with 2 state variables
- Described by two coupled first-order differential equations

- States
- Voltage across the capacitor - V_{1}
- Current through the inductor - i_{L}
- What to obtain state equations of the form: $\mathbf{x}^{\prime}=\mathbf{A x}$
- Need to obtain expression for $d v_{1} / d t$ in terms of V_{1} and i_{L}
- Need to obtain expression for di/dt in terms of V_{1} and i_{L}

State Differential Equations

- For the capacitor and inductor we have,

$$
\frac{d v_{1}}{d t}=\frac{i_{c}}{C}, \frac{d i_{L}}{d t}=\frac{v_{L}}{L}=\frac{v_{1}}{L}
$$

- Above immediately gives us an expression for $\mathrm{di}_{\mathrm{l}} / \mathrm{dt}$ in terms of V_{1}
- Need to obtain expression for $d v_{1} / d t$ in terms of V_{1} and i_{L}
- Write node equation at \mathbf{v}_{1} to obtain:

$$
i_{c}+i_{L}+v_{1} / R=0
$$

- Hence the state equations are given by:

$$
\begin{aligned}
& \text { (1) } \frac{d v_{1}}{d t}=\frac{-i_{L}}{C}-\frac{v_{1}}{R C} \\
& \text { (2) } \frac{d i_{L}}{d t}=\frac{v_{1}}{L}
\end{aligned}
$$

Solving the state differential equations

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
v_{1} \\
i_{L}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-1 / R C & -1 / C \\
1 / L & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
v_{1} \\
i_{L}
\end{array}\right] \\
& {[s I-A]=\left[\begin{array}{cc}
s+1 / R C & 1 / C \\
-1 / L & s
\end{array}\right]}
\end{aligned}
$$

$$
\phi(s)=\text { characteristic eqn }=\operatorname{det}(s I-A)=0
$$

$$
\operatorname{det}(s I-A)=s^{2}+\frac{s}{R C}+\frac{1}{L C}=0
$$

solve quadratic equation to obtain:

$$
s_{1}=\frac{-\frac{1}{R C}+\sqrt{\left(\frac{1}{R C}\right)^{2}-\frac{4}{L C}}}{2}, s_{2}=\frac{-\frac{1}{R C}-\sqrt{\left(\frac{1}{R C}\right)^{2}-\frac{4}{L C}}}{2}
$$

The natural response of RLC circuits

- Three cases
- Over-damped response:

Characteristic equation has two (negative) real roots
Response is a decaying exponential
No oscillation (hence the name over-damped, because the resistor damps out the frequency of oscillation)

- Under-damped response:

Characteristic equation has two distinct complex roots
Response is a decaying exponential that oscillates

- Critically-damped response:

Characteristic equation has two read, distinct roots
Solution no longer a pure exponential
Response is on the verge of oscillation

- Analogy to oscillating suspended spring-mass-damper system; where energy is stored in the spring and mass

Over-damped response

$$
\frac{1}{(R C)^{2}}>\frac{4}{L C}
$$

- Characteristic equation has two distinct real roots; $\mathbf{s}_{1}, \mathbf{s}_{\mathbf{2}}$
$-\quad$ Both $s_{1}>0, s_{2}>0 \quad$ (why?)
- Solution of the form:

$$
\begin{aligned}
& v_{1}=a E_{1}^{s_{1}} e^{s_{1} t}+b E_{1}^{s_{2}} e^{s_{2} t} \\
& i_{l}=a E_{2}^{s_{1}} e^{s_{1} t}+b E_{2}^{s_{2}} e^{s_{2} t}
\end{aligned}
$$

- Decaying exponential response

Critically-damped response

$$
\frac{1}{(R C)^{2}}=\frac{4}{L C}
$$

- Characteristic equation has two real repeated roots; $\mathbf{s}_{1}, \mathbf{s}_{\mathbf{2}}$
- Both $s_{1}=s_{2}=-1 / 2 R C$
- Solution no longer a pure exponential
- "defective eigen-values" \Rightarrow only one independent eigen-vector Cannot solve for (two) initial conditions on inductor and capacity
- However, solution can still be found and is of the form:

$$
\begin{aligned}
& v_{1}=a_{1} e^{s t}+b_{1} t e^{s t} \\
& i_{l}=a_{2} e^{s_{1} t}+b_{2} t e^{s_{2} t}
\end{aligned}
$$

- See chapter 5 of Edwards and Penny; or 18.03 notes

Critically-damped response, cont.

$$
v_{1}=a e^{-t / 2 R C}+b t e^{-t / 2 R C}
$$

- Response is on the verge of oscillation
- Known as "critically damped"

Under-damped response

$$
\frac{1}{(R C)^{2}}<\frac{4}{L C}
$$

- Characteristic equation has two distinct complex roots; $\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}$

$$
\begin{aligned}
& s_{1}=-\alpha+j \beta, s_{2}=s_{1}^{*}=-\alpha-j \beta \\
& \alpha=1 / 2 R C, \beta=\frac{\sqrt{1 /(R C)^{2}-4 / L C}}{2}
\end{aligned}
$$

- Two distinct eigenvectors, V_{1} and V_{1} *
- Complex eigenvalues and eigenvectors
- Solution of the form:

$$
\begin{aligned}
& v_{1}=a_{1} e^{s_{1} t}+a_{1}^{*} e^{s_{2} t} \\
& i_{l}=a_{2} e^{s_{1} t}+a_{2}^{*} e^{s_{2} t}
\end{aligned}
$$

Under-damped response, cont.

$$
v_{1}=a_{1} e^{(-\alpha+j \beta) t}+a_{1}^{*} e^{(-\alpha-j \beta) t}
$$

$$
\begin{aligned}
& \text { Euler' } \text { s formula: } e^{\alpha+j \beta}=e^{\alpha}(\cos (\beta)+j \sin (\beta)) \\
& \Rightarrow v_{1}=a_{1} e^{-\alpha t}(\cos (\beta t)+j \sin (\beta t))+a_{1}^{*} e^{-\alpha t}(\cos (-\beta t)+j \sin (-\beta t)) \\
& \cos (-\beta)=\cos (\beta), \sin (-\beta)=-\sin (\beta) \\
& \Rightarrow v_{1}=2 e^{-\alpha t}\left[\operatorname{Re}\left[a_{1}\right] \cos (\beta t)-\operatorname{Im}\left[a_{1}\right] \sin (\beta t)\right]
\end{aligned}
$$

Decaying oscillation between $-\operatorname{Re}\left(a_{1}\right)$ and $+\operatorname{Re}\left(a_{1}\right)$ or $-\operatorname{Im}\left(a_{1}\right)$ and $+\operatorname{Im}\left(a_{1}\right)$

Example of over-damped response (complex eigen-values and eigen-vectors)

- Consider the same circuit with the following values
- C=1/2 F, L=1/5 H, R=1
- Initial conditions, $\mathrm{V}_{1}(0)=1 \mathrm{v}, \mathrm{i}_{\mathrm{c}}(0)=1 \mathrm{~A}$

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
v_{1} \\
i_{L}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-1 / R C & -1 / C \\
1 / L & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
v_{1} \\
i_{L}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
5 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{L}
\end{array}\right] \\
& {[s I-A]=\left[\begin{array}{cc}
s+2 & 2 \\
-5 & s
\end{array}\right]} \\
& \left|\left[\begin{array}{cc}
s+2 & 2 \\
-5 & s
\end{array}\right]\right|=s^{2}+2 s+10=0 \\
& s_{1}=-1+3 j, \quad s_{2}=-1-3 j
\end{aligned}
$$

Example, continued: Eigen-vectors

- Now find the eigen-vectors

$$
\begin{aligned}
& s_{1}=-1+3 j \Rightarrow s I-A=\left[\begin{array}{cc}
1+3 j & 2 \\
-5 & -1+3 j
\end{array}\right]\left[\begin{array}{l}
V_{1}^{s 1} \\
V_{2}^{s 1}
\end{array}\right]=0 \\
& \Rightarrow-5 V_{1}^{s 1}+(-1+3 j) V_{2}^{s 1}=0 \\
& \Rightarrow V_{1}^{s 1}=[-1 / 5+3 / 5 j] V_{2}^{s 1} \\
& \Rightarrow V^{s 1}=\left[\begin{array}{l}
V_{1}^{s 1} \\
V_{2}^{s 1}
\end{array}\right]=\left[\begin{array}{c}
-1 / 5+3 / 5 j \\
1
\end{array}\right] \\
& s_{2}=s_{1}^{*}=-1-3 j \\
& V^{s 2}=\left[\begin{array}{l}
V_{1}^{s 1} \\
V_{2}^{s 1}
\end{array}\right]^{*}=\left[\begin{array}{c}
-1 / 5+3 / 5 j \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 5-3 / 5 j \\
1
\end{array}\right]
\end{aligned}
$$

The total solution

$V_{1}(t)=a_{1}(-1 / 5+3 / 5 j) e^{(-1+3 j) t}+a_{2}(-1 / 513 / 5 j) e^{(-1-3 j) t}$
$i_{c}(t)=a_{1}(1) e^{(-1+3 j) t}+a_{2}(1) e^{(-1-3 j) t}$

Use $V_{1}(0)=1, i_{c}(0)=1$ to obtain: $a_{1}=1 / 2-j, a_{2}=1 / 2+j$
$V_{1}(t)=(1 / 2+1 / 2 j) e^{(-1+3 j) t}+(1 / 2-1 / 2 j) e^{(-1-3 j) t}$
$i_{c}(t)=(1 / 2-j) e^{(-1+3 j) t}+(1 / 2+j) e^{(-1-3 j) t}$
to express as real values use,
Euler's formula: $\mathrm{e}^{\alpha+\mathrm{j} \beta}=e^{\alpha}(\cos (\beta)+j \sin (\beta))$
some algebra $\Rightarrow\left\{\begin{array}{l}V_{1}(t)=[\cos (3 t)-\sin (3 t)] e^{-t} \\ i_{c}(t)=[\cos (3 t)+2 \sin (3 t)] e^{-t}\end{array}\right.$

2nd order mechanical systems mass-spring-damper

- Force exerted by spring is proportional to the displacement (x) of the mass from its equilibrium position and acts in the opposite direction of the displacement
- $F s=-k x$
- Fs <0 if $x>0$ (I.e., spring stretched)
- Fs >0 if $x<0$ (spring compressed)
- Damper force is proportional to velocity ($\mathrm{v}=\mathrm{x}$) and acts in opposite direction to motion
- $\quad \mathrm{Fr}=-\mathrm{bv}=-\mathrm{bx}$ '

Spring-mass-damper system

- If Fr and Fs are the only forces acting on the mass m, then
- $\mathrm{F}=\mathrm{ma}$ where $\mathrm{a}=\mathrm{dv} / \mathrm{dt}=\mathrm{x}^{\prime \prime}$
- $F=m x^{\prime \prime}=F s+F r=-k x-b x^{\prime}$
- So the differential equation for the mass position, \mathbf{x}, is given by:

$$
m x^{\prime \prime}+b x^{\prime}+k x=0
$$

- This is a second order system
- Guessing $x=A e^{\text {st }}$ for the solution we get,

$$
\mathrm{mAs}^{2} \mathrm{e}^{\text {st }+b A s e^{s t}+k A e^{s t}=0}
$$

- The characteristic equation is thus

$$
\begin{aligned}
& \mathbf{s}^{2}+(\mathbf{b} / \mathbf{m}) \mathbf{s}+\mathbf{k} / \mathbf{m}=\mathbf{0} \\
& s_{1}=\frac{(-b / m)+\sqrt{(b / m)^{2}-4(k / m)}}{2}, \quad s_{2}=\frac{(-b / m)-\sqrt{(b / m)^{2}-4(k / m)}}{2}
\end{aligned}
$$

Response of Spring-mass-damper system

$x(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}$
where A_{1} and A_{2} are chosen to satisfy initial conditions

- Note that for this system the state can be described by
- Position, $x(t)$, Velocity, $x^{\prime}(t)$
- Hence, the initial conditions would be $x(0)$ and $x^{\prime}(0)$
- Note similarity to RLC circuit response:

$$
s_{1}=\frac{-1 / R C+\sqrt{(1 / R C)^{2}-4 / L C}}{2}, s_{2}=\frac{-1 / R C-\sqrt{(1 / R C)^{2}-4 / L C}}{2}
$$

- Notice relationship between 1/R in RLC circuit and damping factor (b) in spring-mass-damper system
- $\mathrm{B} \sim \mathbf{0} \Rightarrow$ un-damped system \Rightarrow oscillation
- This is the basis for the terminology, over-damped, under-damped, etc.
- Over-damped system \Rightarrow damping factor is large and system does not oscillate (just exponential decay)

