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Learning Objectives

• Learn to analyze a general second order system and to obtain the
general solution

– Identify the over-damped, under-damped, and critically damped
solutions

– Convert complex solution to real solution

– Suspended “mass-spring-damper” equivalent system
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Second order RC circuit

• System with 2 state variables
– Described by two coupled first-order differential equations

• States
– Voltage across the capacitor - V1
– Current through the inductor - iL

• What to obtain state equations of the form: x’ = Ax
– Need to obtain expression for dv1/dt in terms of V1 and iL
– Need to obtain expression for dil/dt in terms of V1 and iL
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State Differential Equations

• For the capacitor and inductor we have,

• Above immediately gives us an expression for  dil/dt in terms of V1
• Need to obtain expression for dv1/dt in terms of V1 and iL

• Write node equation at v1 to obtain:

• Hence the state equations are given by:
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Solving the state differential equations
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The natural response of RLC circuits

• Three cases

– Over-damped response:
 Characteristic equation has two (negative) real roots
 Response is a decaying exponential
 No oscillation (hence the name over-damped, because the resistor damps out the

frequency of oscillation)

– Under-damped response:
 Characteristic equation has two distinct complex roots
 Response is a decaying exponential that oscillates

– Critically-damped response:
 Characteristic equation has two read, distinct roots
 Solution no longer a pure exponential
 Response is on the verge of oscillation

• Analogy to oscillating suspended spring-mass-damper system; where
energy is stored in the spring and mass



Eytan Modiano
Slide 7

Over-damped response

• Characteristic equation has two distinct real roots; s1, s2
– Both s1 > 0, s2  > 0    (why?)

• Solution of the form:

• Decaying exponential response
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Critically-damped response

• Characteristic equation has two real repeated roots; s1, s2
– Both s1 = s2  = -1/2RC

• Solution no longer a pure exponential
– “defective eigen-values” ⇒ only one independent eigen-vector

 Cannot solve for (two) initial conditions on inductor and capacity

• However, solution can still be found and is of the form:

• See chapter 5 of Edwards and Penny; or 18.03 notes
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Critically-damped response, cont.

• Response is on the verge of oscillation
• Known as “critically damped”

critically-damped response
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Under-damped response

• Characteristic equation has two distinct complex roots; s1, s2

• Two distinct eigenvectors, V1 and V1*

– Complex eigenvalues and eigenvectors

• Solution of the form:
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Under-damped response
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Under-damped response, cont.

Euler 's formula :!!e
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Example of over-damped response
(complex eigen-values and eigen-vectors)

• Consider the same circuit with the following values
– C=1/2 F, L=1/5 H, R=1
– Initial conditions, V1(0)=1v, ic(0)=1A
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Example, continued:  Eigen-vectors

• Now find the eigen-vectors
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The total solution

V1(t) = a1(!1 / 5 + 3 / 5 j)e
(!1+3 j )t

+ a2 (!1 / 513 / 5 j)e
(!1!3 j )t

ic (t) = a1(1)e
(!1+3 j )t

+ a2 (1)e
(!1!3 j )t

Use!V1(0) = 1,!!ic (0) = 1!!to!obtain :!!a1 = 1 / 2 ! j,!!a2 = 1 / 2 + j

V1(t) = (1 / 2 +1 / 2 j)e
(!1+3 j )t

+ (1 / 2 !1 / 2 j)e(!1!3 j )t

ic (t) = (1 / 2 ! j)e(!1+3 j )t + (1 / 2 + j)e(!1!3 j )t

to!express!as!real!values!use,

Euler's!formula:!!e" +j# = e" (cos(#) + j sin(#))

some!algebra$
V1(t) = cos(3t) ! sin(3t)[ ]e! t

ic (t) = cos(3t) + 2sin(3t)[ ]e! t
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2nd order mechanical systems
mass-spring-damper

• Force exerted by spring is proportional to the displacement (x) of the mass
from its equilibrium position and acts in the opposite direction of the
displacement

– Fs = -kx
– Fs < 0 if x > 0 (I.e., spring stretched)
– Fs > 0 if x < 0 (spring compressed)

• Damper force is proportional to velocity (v = x’) and acts in opposite
direction to motion

– Fr = -bv = -bx’

M

frictionless support

Damper (dashpot)massspring

X=0 X>0
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Spring-mass-damper system

• If Fr and Fs are the only forces acting on the mass m, then

– F = ma where a = dv/dt = x’’
– F = m x’’ = Fs + Fr = -kx - bx’

• So the differential equation for the mass position, x, is given by:

  mx’’  + bx’ + kx = 0

– This is a second order system

– Guessing x = Aest  for the solution we get,

mAs2est + bAsest  + kAest  = 0

– The characteristic equation is thus

s2 + (b/m)s + k/m = 0

s
1
=
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2
! 4(k / m)

2
,!!!s

2
=
(!b / m) ! (b / m)

2
! 4(k / m)

2
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Response of Spring-mass-damper system

• Note that for this system the state can be described by
– Position, x(t), Velocity, x’(t)
– Hence, the initial conditions would be x(0) and x’(0)

• Note similarity to RLC circuit response:

• Notice relationship between 1/R in RLC circuit and damping factor
(b) in spring-mass-damper system

– B ~ 0 ⇒ un-damped system ⇒ oscillation
– This is the basis for the terminology, over-damped, under-damped, etc.
– Over-damped system ⇒ damping factor is large and system does not

oscillate (just exponential decay)

x(t) = A1e
s1t + A2e

s2 t
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