
Fluids – Lecture 11 Notes

1. Introduction to Compressible Flows

2. Thermodynamics Concepts

Reading: Anderson 7.1 – 7.2

Introduction to Compressible Flows

Definition and implications

A compressible flow is a flow in which the fluid density ρ varies significantly within the
flowfield. Therefore, ρ(x, y, z) must now be treated as a field variable rather than simply
a constant. Typically, significant density variations start to appear when the flow Mach
number exceeds 0.3 or so. The effects become especially large when the Mach number
approaches and exceeds unity.

The figure shows the behavior of a moving Lagrangian Control Volume (CV) which by
definition surrounds a fixed mass of fluid m. In incompressible flow the density ρ does not
change, so the CV’s volume V = m/ρ must remain constant. In the compressible flow
case, the CV is squeezed or expanded significantly in response to pressure changes, with ρ
changing in inverse proportion to V. Since the CV follows the streamlines, changes in the
CV’s volume must be accompanied by changes in the streamlines as well. Above Mach 1,
these volumetric changes dominate the streamline pattern.
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Many of the relations developed for incompressible (i.e. low speed) flows must be revisited
and modified. For example, the Bernoulli equation is no longer valid,

p +
1

2
ρV 2 6= constant

since ρ = constant was assumed in its derivation. However, concepts such as stagnation
pressure po are still usable, but their definitions and relevant equations will be different from
the low speed versions.

Some flow solution techniques used in incompressible flow problems will no longer be appli-
cable to compressible flows. In particular, the technique of superposition will no longer be
generally applicable, although it will still apply in some restricted situations.

Perfect gas

A perfect gas is one whose individual molecules interact only via direct collisions, with no
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other intermolecular forces present. For such a perfect gas, the properties p, ρ, and the
temperature T are related by the following equation of state

p = ρRT

where R is the specific gas constant. For air, R = 287J/kg-K◦. It is convenient at this point
to define the specific volume as the limiting volume per unit mass,

υ ≡ lim
∆V→0

∆V

∆m
=

1

ρ

which is merely the reciprocal of the density. In general, the nomenclature “specific X” is
synonymous with “X per unit mass”. The equation of state can now be written as

pυ = RT

which is the more familiar thermodynamic form.

The appearance of the temperature T in the equation of state means that it must vary
within the flowfield. Therefore, T (x, y, z) must be treated as a new field variable in addition
to ρ(x, y, z). In the moving CV scenario above, the change in the CV’s volume is not only
accompanied by a change in density, but by a change in temperature as well.

The appearance of the temperature also means that thermodynamics will need to be ad-
dressed. So in addition to the conservation of mass and momentum which were employed in
low speed flows, we will now also need to consider the conservation of energy. The following
table compares the variables and equations which come into play in the two cases.

Incompressible flow Compressible flow

variables: ~V , p ~V , p , ρ , T

equations: mass ,
−→

momentum mass ,
−→

momentum , energy , state

Thermodynamics Concepts

Internal Energy and Enthalpy

The law of conservation of energy involves the concept of internal energy , which is the sum
of the energies of all the molecules of a system. In fluid mechanics we employ the specific

internal energy , denoted by e, which is defined for each point in the flowfield. A related
quantity is the specific enthalpy , denoted by h, and related to the other variables by

h = e + pυ

The units of e and h are (velocity)2, or m2/s2 in SI units.

For a calorically perfect gas, which is an excellent model for air at moderate temperatures,
both e and h are directly proportional to the temperature. Therefore we have

e = cv T

h = cp T

where cv and cp are specific heats at constant volume and constant pressure, respectively.

h − e = pυ = (cp − cv)T
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and comparing to the equation of state, we see that

cp − cv = R

Defining the ratio of specific heats, γ ≡ cp/cv, we can with a bit of algebra write

cv =
1

γ − 1
R

cp =
γ

γ − 1
R

so that cv and cp can be replaced with the equivalent variables γ and R. For air, it is handy
to remember that

γ = 1.4
1

γ − 1
= 2.5

γ

γ − 1
= 3.5 (air)

First Law of Thermodynamics

Consider a thermodynamic system consisting of a small Lagrangian control volume (CV)
moving with the flow.

e
h

e + de
h + dh

wδ
δq

time t

time t + dt

...

...

Over the short time interval dt, the CV undergoes a process where it receives work δw and
heat δq from its surroundings, both per unit mass. This process results in changes in the
state of the CV, described by the increments de, dh, dp . . . The first law of thermodynamics
for the process is

δq + δw = de (1)

This states that whatever energy is added to the system, whether by heat or by work, it
must appear as an increase in the internal energy of the system.

The first law only makes a statement about de. We can deduce the changes in the other
state variables, such as dh, dp, . . . if we assume special types of processes.

1. Adiabatic process, where no heat is transferred, or δq = 0. This rules out heating of
the CV via conduction though its boundary, or by combustion inside the CV.

2. Reversible process, no dissipation occurs, implying that work must be only via volu-
metric compression, or dw = −p dυ. This rules out work done by friction forces.

3. Isentropic process, which is both adiabatic and reversible, implying −p dυ = de.
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Isentropic relations

Aerodynamic flows are effectively inviscid outside of boundary layers. This implies they have
negligible heat conduction and friction forces, and hence are isentropic. Therefore, along the
pathline followed by the CV in the figure above, the isentropic version of the first law applies.

−p dυ = de (2)

This relation can be integrated after a few substitutions. First we note that

dυ = d

(

1

ρ

)

= −
dρ

ρ2

and with the perfect gas relation

de = cv dT =
1

γ − 1
R dT

the isentropic first law (2) becomes

p
dρ

ρ2
=

1

γ − 1
R dT

dρ

ρ
=

1

γ − 1

ρR

p
dT

dρ

ρ
=

1

γ − 1

dT

T

The final form can now be integrated from any state 1 to any state 2 along the pathline.

ln ρ =
1

γ − 1
ln T + const.

ρ = const. × T 1/(γ−1)

ρ2

ρ1
=

(

T2

T1

)1/(γ−1)

(3)

From the equation of state we also have

ρ2

ρ1

=
p2

p1

T1

T2

which when combined with (3) gives the alternative isentropic relation

p2

p1
=

(

T2

T1

)γ/(γ−1)

(4)
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