
Fluids – Lecture 17 Notes

1. Oblique Waves

Reading: Anderson 9.1, 9.2

Oblique Waves

Mach waves
Small disturbances created by a slender body in a supersonic flow will propagate diagonally
away as Mach waves. These consist of small isentropic variations in ρ, V , p, and h, and are
loosely analogous to the water waves sent out by a speedboat. Mach waves appear stationary
with respect to the object generating them, but when viewed relative to the still air, they are
in fact indistinguishable from sound waves, and their normal-direction speed of propagation
is equal to a, the speed of sound.
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The angle µ of a Mach wave relative to the flow direction is called the Mach angle. It can
be determined by considering the wave to be the superposition of many pulses emitted by
the body, each one producing a disturbance circle (in 2-D) or sphere (in 3-D) which expands
at the speed of sound a. At some time interval t after the pulse is emitted, the radius of the
circle will be at, while the body will travel a distance V t. The Mach angle is then seen to be

µ = arcsin
at

V t
= arcsin

1

M

which can be defined at any point in the flow. In the subsonic flow case where M = V/a < 1
the expanding circles do not coalesce into a wave front, and the Mach angle is not defined.

at
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µ
V/a > 11V/a <
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Oblique shock and expansion waves
Mach waves can be either compression waves (p2 > p1) or expansion waves (p2 < p1), but
in either case their strength is by definition very small (|p2 − p1| ≪ p1). A body of finite
thickness, however, will generate oblique waves of finite strength, and now we must distin-
guish between compression and expansion types. The simplest body shape for generating
such waves is

– a concave corner, which generates an oblique shock (compression), or
– a convex corner, which generates an expansion fan.

The flow quantity changes across an oblique shock are in the same direction as across a
ob
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normal shock, and across an expansion fan they are in the opposite direction. One important
difference is that po decreases across the shock, while the fan is isentropic, so that it has no
loss of total pressure, and hence po2

= po1
.

Oblique geometry and analysis
As with the normal shock case, a control volume analysis is applied to the oblique shock flow,
using the control volume shown in the figure. The top and bottom boundaries are chosen
to lie along streamlines so that only the boundaries parallel to the shock, with area A, have
mass flow across them. Velocity components are taken in the x-z coordinates normal and
tangential to the shock, as shown. The tangential z axis is tilted from the upstream flow
direction by the wave angle β, which is the same as the Mach angle µ only if the shock is
extremely weak. For a finite-strength shock, β > µ. The upstream flow velocity components
are

u1 = V1 sin β w1 = V1 cos β
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All the integral conservation equations are now applied to the control volume.
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Mass continuity ©
∫∫

ρ ~V ·n̂ dA = 0

−ρ1u1A + ρ2u2A = 0

ρ1u1 = ρ2u2 (1)

x-Momentum
©
∫∫

ρ ~V ·n̂ u dA + ©
∫∫

pn̂ · ı̂ dA = 0

−ρ1u
2
1A + ρ2u

2
2A − p1A + p2A = 0

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (2)

z-Momentum
©
∫∫

ρ ~V ·n̂ w dA + ©
∫∫

pn̂ · k̂ dA = 0

−ρ1u1A w1 + ρ2u2A w2 = 0

w1 = w2 (3)

Energy
©
∫∫

ρ ~V ·n̂ ho dA = 0

−ρ1u1ho1
A + ρ2u2ho2

A = 0

ho1
= ho2

h1 +
1

2

(

u2
1 + w2

1

)

= h2 +
1

2

(

u2
2 + w2

2

)

h1 +
1

2
u2

1 = h2 +
1

2
u2

2 (4)

Equation of State
p2 =

γ − 1

γ
ρ2h2 (5)

Simplification of equation (3) makes use of (1) to eliminate ρuA from both sides. Simplifi-
cation of equation (4) makes use of (1) to eliminate ρuA and then (3) to eliminate w from
both sides.

Oblique/normal shock equivalence
It is apparent that equations (1), (2), (4), (5) are in fact identical to the normal-shock
equations derived earlier. The one addition z-momentum equation (3) simply states that
the tangential velocity component doesn’t change across a shock. This can be physically
interpreted if we examine the oblique shock from the viewpoint of an observer moving with
the everywhere-constant tangential velocity w = w1 = w2. As shown in the figure, the
moving observer sees a normal shock with velocities u1, and u2. The static fluid properties
p, ρ, h, a are of course the same in both frames.

Oblique shock relations
The effective equivalence between an oblique and a normal shock allows re-use of the already
derived normal shock jump relations. We only need to construct the necessary transformation
from one frame to the other.

First we define the normal Mach number components seen by the moving observer.

Mn1
≡

u1

a1
=

V1 sin β

a1
= M1 sin β (6)

Mn2
≡

u2

a2
=

V2 sin(β − θ)

a2
= M2 sin(β − θ)
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These are then related via our previous normal-shock M2 = f(M1) relation, if we make the
substitutions M1 → Mn1

, M2 → Mn2
. The fixed-frame M2 then follows from geometry.

M2
n2

=
1 + γ−1

2
M2

n1

γM2
n1

− γ−1
2

(7)

M2 =
Mn2

sin(β − θ)
(8)

The static property ratios are likewise obtained using the previous normal-shock relations.

ρ2

ρ1

=
(γ+1)M2

n1

2 + (γ−1)M2
n1

(9)

p2

p1

= 1 +
2γ

γ+1

(

M2
n1

− 1
)

(10)

h2

h1
=

p2

p1

ρ1

ρ2
(11)

po2

po1

=
p2

p1

(

h1

h2

)γ/(γ−1)

(12)

To allow application of the above relations, we still require the wave angle β. Using the
result w1 = w2, the velocity triangles on the two sides of the shock can be related by

tan(β − θ)

tanβ
=

u2

u1
=

ρ1

ρ2
=

(γ+1)M2
1 sin2 β

2 + (γ−1)M2
1 sin2 β

Solving this for θ gives

tan θ =
2

tan β

M2
1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

(13)

which is an implicit definition of the function β(θ, M1).

Oblique-shock analysis: Summary
Starting from the known upstream Mach number M1 and the flow deflection angle (body
surface angle) θ, the oblique-shock analysis proceeds as follows.

θ , M1
Eq.(13)
−→ β

Eq.(6)
−→ Mn1

Eqs.(7)−−(12)
−→ Mn2

, M2 ,
ρ2

ρ1
,

p2

p1
,

h2

h1
,

po2

po1

Use of equation (13) in the first step can be problematic, since it must be numerically solved
to obtain the β(θ, M1) result. A convenient alternative is to obtain this result graphically,
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from an oblique shock chart, illustrated in the figure below. The chart also reveals a number
of important features:

1. There is a maximum turning angle θmax for any given upstream Mach number M1. If the
wall angle exceeds this, or θ > θmax, no oblique shock is possible. Instead, a detached shock

forms ahead of the concave corner. Such a detached shock is in fact the same as a bow shock
discussed earlier.

2. If θ < θmax, two distinct oblique shocks with two different β angles are physically possible.
The smaller β case is called a weak shock , and is the one most likely to occur in a typical
supersonic flow. The larger β case is called a strong shock , and is unlikely to form over a
straight-wall wedge. The strong shock has a subsonic flow behind it.

3. The strong-shock case in the limit θ → 0 and β → 90◦, in the upper-left corner of the
oblique shock chart, corresponds to the normal-shock case.
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