Block 4:

Structural Behavior of Slender Members (1-D)

Unit M4.1 - p. 1

OVERALL OBJECTIVES FOR BLOCK M4

Through participation in the lectures, recitations, and work associated with Block M4, it is intended that you will be able to.....

-describe the key aspects composing the model of the one-dimensional structures of a rod, a beam, a shaft, and a column
-identify the limitations associated with these models
-apply the basic equations of elasticity to derive the solutions for the general cases of various onedimensional structures
-apply these models to examine the behavior of various structural configurations

Unit M4.1 Summary of Equations of Elasticity

Readings: CDL 5.6

16.003/004 -- "Unified Engineering" Department of Aeronautics and Astronautics Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M4.1

Through participation in the lectures, recitations, and work associated with Unit M4.1, it is intended that you will be able to.....

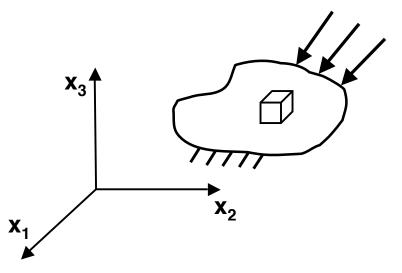
-summarize the governing equations of elasticity and explain the fundamental concepts upon which they are based and that they represent
-describe the logical steps to be taken in applying these equations for a given structural configuration

Let's summarize where we've been in terms of elasticity and then see where we can go with this.

Governing Equation Summary

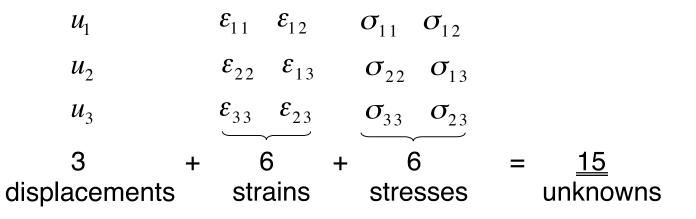
Given general body under applied surfaces forces and body forces

Figure M4.1-1 Illustration of general body



Look at infinitesimal element

What are states of deformation, strain and stress at any point:



Using the 3 "great principles of solid mechanics", we arrived at 3 sets of equations:

(3) Equilibrium:
$$\frac{\partial \sigma_{mn}}{\partial x_m} + f_n = 0$$

(6) Strain-Displacement: $\varepsilon_{mn} = \frac{1}{2} \left(\frac{\partial u_m}{\partial x_n} + \frac{\partial u_n}{\partial x_m} \right)$
(6) Stress-strain: $\sigma_{mn} = E_{mnpq} \varepsilon_{pq}$
(6) Stress-strain: $\sigma_{mn} = E_{mnpq} \sigma_{pq}$
 $\varepsilon_{pq} = S_{pqmn} \sigma_{mn}$

MIT - 16.003/16.004

=> 15 equations in 15 unknowns (see handout M-8 for fully written out)

<u>But</u>, recall assumptions/limitations: e.g., - small strain - linear behavior .

Also, we had the <u>6</u> equations of strain-compatibility

These equations then have to be solved for the particular configuration.

This involved a basic logical set of steps:

1. Modeling Assumptions

Modeling assumptions are made for the particular class of structural member

In general these are on the:

- a) Geometry
- b) Loading /Stress State
- c) Deformation/Strain State

These assumptions result in limitations on the behavior

Again, a key issue is *consistency*.

<u>Note</u>: A component may actually be classified "differently" if it is used differently although it physically is the same piece (<u>example</u>: a *rod* and a *beam* can look <u>exactly</u> the same)

2. Boundary Conditions

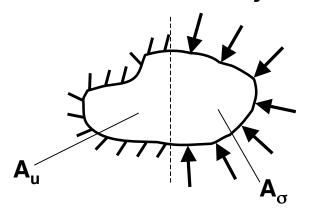
<u>but</u>

There are two types of boundary conditions (B.C.):

- (a) on stresses (call such area \mathbf{A}_{σ})
- (b) on displacements (call such area A_{U})

All surface area <u>must</u> have one or the other (note that a value of 0 is a boundary condition)

Figure M4.1-2 Generic illustration of boundary conditions on a body



Given the 15 equations of elasticity and the boundary conditions, we then need... (this is the "Theory of Elasticity")

3. Solution Approaches for Structures

...to solve the formulated problem

Once the problem is modeled, there are basically two approaches:

- a. Exactly/Analytical -- satisfy all equations and B.C.'s
 - --> Can be done for certain special models (will see in second term of Unified, 16.20)
- b. Numerical Techniques -- ... come as "close as possible"

Spring, 2009

- --> energy methods, etc., utilizing computers (16.21, etc.)
- --> most often used nowadays, but analytical solutions still important in preliminary design or for checking some modeling
- --> All bodies are 3-dimensional, but can often model some as 1-dimensional (our focus this term)
 - 1-Dimensional structures:

Rods Beams Columns Torsional rods (more generally 16.20)

2-Dimensional structures:

Plates (16.20) Shells

<u>Final Words</u>: Arbitrary body (continuum) is generally <u>statically indeterminate</u>. Thus, must use deflection of body with static equilibrium, compatibility, and stressstrain relations to solve the problem.

Unit M4.1 (New -- to unit notes) Nomenclature

A_u -- surface area of body over which displacement is prescribed (e.g., a boundary condition)

- A_{σ} -- surface area of body over which stress is prescribed (e.g., a boundary condition)
- B.C. -- boundary condition
- u_i -- displacement of point of body in x_i direction (i = 1, 2, or 3)
- ε_{ij} -- strain of point of body (i, j = 1, 2, 3)
- σ_{ij} -- stress of point of body on x_i-face in x_j direction (i, j = 1, 2, 3)
- x_1, x_2, x_3 -- coordinate directions