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Simple Beam Theory
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LEARNING OBJECTIVES FOR UNIT M4.4

Through participation in the lectures, recitations, and work
associated with Unit M4.4, it is intended that you will be
able to………

• ….describe the aspects composing the model of a
beam associated with deformations/displacements
and stresses (i.e. Simple Beam Theory) and
identify the associated limitations

• ….apply the basic equations of elasticity to derive the
solution for the general case

• ….identify the beam parameters that characterize
beam behavior and describe their role
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We have looked at the statics of a beam, but want to go further
and look at internal stress and strain and the displacement/
deformation.  This requires a particular model with additional
assumptions besides those on geometry of “long and slender.”

Figure M4.4-1   Geometry of a beam
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Assumptions on Stresses

We have said that loading is in the plane x-z and is transverse to the
long axis (the x-axis)
The first resulting assumption from this is:

All loads in y - direction are zero
        ⇒ all stresses in y-direction are zero:

σyy =  σ xy =  σ yz =  0
--> Next, we “assume” that the only significant stresses are in the x-
     direction.

-->  Why (valid)?  Look at isolated element and moment equilibrium
⇒  σ xx,  σ xz >>  σ zz

Figure M4.4-2  Illustration of moment equilibrium of “isolated element” of
                  beam

L

h• o

σxx
σzz  =  loading
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can make same argument for σxz

M0 (magnitude) ⇒  σ zz (moment arm)∑ +  σ xx (moment arm) =   0
moment arm for σ zz ≈   L
moment arm for σ xx ≈   hbut, h << L ⇒   σ xx >>σ zz

-->  thus, assumption is only non zero stresses are σxz and σxx

⇒  σ zz ≈   0

To complete our model, we need….

moment arm for σ zz ≈   L
moment arm for σ xx ≈   h;

Assumptions on Deformations
The key here is the “Bernouilli-Euler Hypothesis”  (~1750):

“Plane sections remain plane and perpendicular to the
        midplane after deformation”

-->  To see what implications this has, consider an infinitessimal
       element that undergoes bending (transverse) deformation:
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Figure M4.4-3  Basic deformation of infinitessimal element to beam
                  according to “plane sections remains plane” (Bernouilli-
                  Euler Hypothesis)

(through midplane
⇒ midline)
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Define:  w = deflection of midplane/midline (function of x only)
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Use geometry to get deflection in x-direction, u, of point q (q to Q)

Figure M4.4-4  Local geometry of deflection of any point of beam

parallel to x•

•Q

P
u

dw
 dxφ  =  tan-1

parallel to z

tangent to
midline at P

plane section
remains plane

φ
90° - φ

u =  - z sin φ

distance of q above x

direction is opposite to x-direction

if deformations/angles are small:
⇒  u ≈   − zφ

sin  φ ≈   φ ;     φ ≈   ∂w
dx
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Thus, implication of assumption on displacement is:

u (x,  y,  z) =  − z dw
dx

v (x, y, z) =  0
w (x, y,  z) =  w x( )w (x, y,  z) =  w x( )

(1)

(2)

(nothing in y-direction)

(cross-section deforms as
 a unit) ⇒ (plane sections
                    remain plane)

We have all the necessary assumptions as we have the structural
member via assumptions on geometry, stress, and displacements/
deformations.  We now use the Equations of Elasticity to get the….

Resulting Equations

-->  First apply the Strain-Displacement Equations….
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⇒  This is consistent with assumption by B-E (no shearing gives
       plane sections remain plane and perpendicular)

-->  Next use stress-strain.
       We’ll go to orthotropic as most general we can do

(3)εxx  =  ∂u
∂x

 =  − z d
2w
dx2

εyy =  ∂v
∂y

 =  0                     εzz =  ∂w
∂z

 =  0

εxy =  1
2

 ∂u
∂y

 +  ∂ν
∂x

 

 
  

 

 
   =  0

εyz =  1
2

 ∂v
∂z

 +  ∂w
∂y

 

 
  

 

 
   =  0

εxz =  1
2

 ∂u
∂z

 +  ∂w
∂x

 

 
 

 

 
  =  1

2
 −

dw
dx

 +  dw
dx

 
 
 

 
 
  =  0 !!!
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(4)

Note:  “slight” inconsistency between
           assumed displacement state and
           those resulting strains, and the
           resulting strains from the stress-strain
           equations

Note:  again a “slight” inconsistency

εxy =  
σ xy

2Gxy

 =  0

εyz =  
σ yz

2Gyz

 =  0

εxz =  σ xz

2Gxz

 ≠  0

εxx  =  σxx

Ex

εyy =  − νxy 
σ xx

Ex

εzz  =  − νxz 
σ xx

E
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We “get around” these inconsistencies by saying that εyy, εzz,
and εxz are very small but not quite zero.  This is an
approximation (part of model).  Will check this later.

-->  Finally use the Equilibrium Equations:
Assumption:  no body forces (fi = 0)

-->  So we have 5 unknowns:  w, u, εxx, σxx, σxz
(Note:  σzz is ignored)

-->  And we have 5 equations:  1 from geometry:   (1)
1 from strain-displacement:   (3)
1 from stress-strain:   (4)
2 from equilibrium:    (5), (6)

(5)

(6)

∂σ xx

∂x
 +  

∂σ xy

∂y
 +  ∂σ zx

∂z
 =  0   ⇒  ∂σ xx

∂x
 +  ∂σ zx

∂z
 =  0

∂σ xy

∂x
 +  

∂σ yy

∂y
 +  

∂σ zy

∂z
 =  0 ⇒  0 =  0

∂σ xz

∂x
 +  

∂σ yz

∂y
 +  ∂σ zz

∂z
 =  0   ⇒  ∂σxz

∂x
 +  ∂σ zz

∂z
 =  0
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So then we have the right number of equations for the number of
unknowns.  So we consider the:

Solution:  Stresses and Deflections
In doing this, it is first important to relate the point-by-point stresses to
the average internal forces (F, S, M).
To do this, consider a cut face (do here for rectangular cross-section;
       will generalize later)

Figure M4.4-5  Geometry of Equilibrium via stresses on cut face of beam
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Equilipollence (i.e., equally powerful) shows:  (no variation in y)

(7)

(8)

(9)

-->  Now we begin substituting the various equations…
Put (1), (3) in (4) to get:

(10)

Now put this in (7):

since no axial force in pure
beam case

F =  σ xx bdz− h/ 2

h/ 2

∫
S =  − σ xz bdz−h / 2

h/ 2

∫
M =  − σ xx  bzdz

− h/ 2

h/ 2

∫

σxx  =  Ex ε xx =  − Ex z 
d2w
dx 2

F =  − Ex 
d2w
dx 2

      zbdz
−h /2

h / 2

∫

=  − Ex 
d2w
dx 2

 z
2

2
 b 
 

 
 
 
−h/ 2

h/ 2

 =  0
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(Note:  something that carries axial and bending
            forces is known as a beam-column/rod)

-->  we also place the result for σxx (10) in the equation for the
       internal moment (9):

M =  Ex 
d2w
dx2

  z2bdz
− h/ 2

h/ 2

∫
we define:

 =   Area (Second)
      Moment of Inertia
      of beam cross-
      section [about y-axis]

(11)

units of [L4]

Note:  For rectangular cross-section
h

b

I =  bh
3

12

-->  will look at this further in next unit

I =   z2bdz
−h / 2

h/ 2

∫
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This results in the following:

M =  Ex I 
d2w
dx2

(12)

Moment-Curvature relation for beam

Note:  EI is controlling parameter - “flexural
           rigidity” or “bending stiffness”.  Has:
           -  geometrical contribution, I
           -  material contribution, E

           -  units:

-->  Can also relate the internal shear, S, to these parameters.  Use
       equation (5):

∂σ zx

∂z
 =  − ∂σ xx

∂x
(5)

Multiply each side by b and integrate from z to h/2 to get:

F • L[ ] =  F
L2
 
  

 
  
 L4[ ] L

L2
 
  

 
  



Unit M4-4 - p. 16Paul A. Lagace © 2008

MIT - 16.003/16.004 Spring, 2009

 b ∂σ zx

∂z
 dz

z

h/ 2

∫  =  −  ∂σ xx

∂x
 bdz

z

h/ 2

∫
First take (12) and put it in (10):

⇒   σxx  =  − Mz
I

(13)

Units:   F
L2
 
  

 
  
 =  FL[ ] L[ ]

L4

Now, work on integrating the pending equation:

⇒  b σxz z( )]z
h/ 2  =  − −

∂M
∂x

 

 
 

 

 
 

z

h/ 2

∫  zb
I

 dz

Recall that:                           to get:
dM
dx

 =  S

σxx  =  − Exz 
d 2w
dx2

 =  − Ex z 
M
Ex I
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Note that the σxz at the top of surface is zero.

Also define:

σxz z( )  =  − SQ
Ib

Units:   F
L2
 
  

 
  
 =  

F[ ] L3[ ]
L4[ ] L[ ]

So:

     (first) Moment of
=   area about the
     center

(14)

(15)

shear stress-Shear relation

⇒  b σxz 
h
2
 
 
 
 
 
  −  σ xz z( )

 

 
 

 

 
  =  +   S

z

h/ 2

∫  zb
I

 dz

Q =     zbdz
′ z 

h/ 2

∫

=   z2

2
b
 

 
 
 

′ z 

h/ 2

 =  b
2

 h2

4
 −  ′ z 2
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For a rectangular section:
Figure M4.4-6  Geometry for assessing (first) moment of area about
                  centerline

b

z

y
z′h/2

(maximum at z′ = 0,
            the centerline)

-->  Again, will look at this further and generalize in the next unit

Q =     zbdz
′ z 

h/ 2

∫

=   z2

2
b
 

 
 
 

′ z 

h/ 2

 =  b
2

 h2

4
 −  ′ z 2
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The summary of how we can solve for the stress/strain/displacement
states in a beam is presented in handout M-5

In the next section, we look at what this solution generally
means and examine it for various situations.
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Unit M4.4  (New) Nomenclature

EI -- flexural rigidity or boundary stiffness of beam cross-section
I -- Area (Second) Moment of Inertia of beam cross-section (about y-axis)
Q -- (First) Moment of area above the centerline
u -- deflection of point of beam in x-direction
v -- deflection of point of beam in y-direction
w -- deflection of (midpoint/midline of) beam in z-direction
φ -- slope of midplane of beam at any point x  ( = dw/dx)
d2w/dx2 -- curvature of beam (midplane/midline) at any point x of beam
σxx -- beam bending stress
σxz -- beam transverse shear stress


