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LEARNING OBJECTIVES FOR UNIT M4.4

Through patrticipation in the lectures, recitations, and work
associated with Unit M4.4, it is intended that you will be

- ....describe the aspects composing the model of a
beam associated with deformations/displacements
and stresses (i.e. Simple Beam Theory) and
identify the associated limitations

- ....apply the basic equations of elasticity to derive the
solution for the general case

- ....iIdentify the beam parameters that characterize
beam behavior and describe their role
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We have looked at the statics of a beam, but want to go further
and look at internal stress and strain and the displacement/
deformation. This requires a particular model with additional
assumptions besides those on geometry of “long and slender.”

Figure M4.4-1 Geometry of a beam
GENERAL SYMMETRIC
CROSS-SECTION
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h and b are “encompassing/extreme” dimensions
still have: L>>h, b

Now also consider
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Assumptions on Stresses

We have said that loading is in the plane x-z and is transverse to the
long axis (the x-axis)
The first resulting assumption from this is:

All loads in y - direction are zero
=> all stresses in y-direction are zero:

o, =0, =0,_.=0
--> Next, we “assume” that the only significant stresses are in the x-
direction.
= 0,, 0, >> 0,

--> Why (valid)? Look at isolated element and moment equilibrium

Figure M4.4-2 lllustration of moment equilibrium of “isolated element” of
beam

O,, = loading
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EMO (magnitude) = o_ (momentarm) + o, (mMomentarm) = 0

U

momentarmfor o, = L; momentarmfor o, = h

but, h<<L = o >>0_
can make same argument for o,,
--> thus, assumption is only non zero stresses are o,, and o,,

=>azzz0

To complete our model, we need....

Assumptions on Deformations

The key here is the “Bernouilli-Euler Hypothesis” (~1750):

“Plane sections remain plane and perpendicular to the
midplane after deformation”

--> To see what implications this has, consider an infinitessimal
element that undergoes bending (transverse) deformation:
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Figure M4.4-3 Basic deformation of infinitessimal element to beam
according to “plane sections remains plane” (Bernouilli-
Euler Hypothesis)

DEFORMED

u
—»
WT $ = 3 5 undeformed
>
? P ? X (through midplane
= midline)

Define: w = deflection of midplane/midline (function of x only)
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Use geometry to get deflection in x-direction, u, of point g (g to Q)

Figure M4.4-4 Local geometry of deflection of any point of beam
A parallel to z

tangent to
90°-¢ / midline at P

plane section

remains plane | -
\ ¢ = tan
u
> parallel to x
direction is opposite to x-direction
—> l—u=-zsing
distance of q above x
: . : ow
if deformations/angles are small: sin ¢ = ¢; ¢ = —

=>uz—z¢
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Thus, implication of assumption on displacement is:

(% 3. 2 LD
ux v, ) = —2—
g dx
vix,y,z) =0 (nothing in y-direction)
w(x,y 2) = w(x) (2) (cross-section deforms as

a unit) = (plane sections
remain plane)

We have all the necessary assumptions as we have the structural
member via assumptions on geometry, stress, and displacements/
deformations. We now use the Equations of Elasticity to get the....

Resulting Equations

--> First apply the Strain-Displacement Equations....
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] ou d*w
= — = —=Z
H 0x dx’ 3)
£ =ﬂ=0 ezz=a—w=0
> 0y 0z
1 (ou  ov)
E, = —|—+ —| =0
Y 2 \ dy 0x
1/8\/ aw\
E = =—|— + —| =0
> 2 \dz dy
1 { ou ow 1 dw dw
E,. = —|—+ —| ==-|-—+ —| =01
: 2 \ 0z ox | 2 dx dx

=> This is consistent with assumption by B-E (no shearing gives
plane sections remain plane and perpendicular)

--> Next use stress-strain.
We’'ll go to orthotropic as most general we can do
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£, = —= (4)
Ex
o, )
Syy = —ny ?x
> Note: “slight” inconsistency between
E = —v G assumed displacement state and
h tE those resulting strains, and the
resulting strains from the stress-strain
equations
o
g, = — =0
2G,,
g = Doz _ 0
<
2G
yz
o : : : :
€, = 2—Gﬂ_ = 0 } Note: again a “slight” inconsistency
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We “get around” these inconsistencies by saying that €,,, €,

and €., are very small but not quite zero. This is an
approximation (part of model). Will check this later.

--> Finally use the Equilibrium Equations:
Assumption: no body forces (f; = 0)

do 00 do 00 00

x4 —2 4 —2 () = =+ = =0 (5)
ox dy 0z 0x 0z
00 e 00
— + —= + — =0=0=0
0x ay 07

A0

80xz + yz aOZZ -0 = anz + aOzz = 0 (6)
0x ay 0z 0x 0z

--> S0 we have 5 unknowns: w, u, €,,, 0,,, O,,
Note: o,, is ignored)
--> And we have 5 equations: 1 from geometry: (1)

1 from strain-displacement: (3)
1 from stress-strain: (4)

2 from equilibrium: (5), (6)
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So then we have the right number of equations for the number of
unknowns. So we consider the:

Solution: Stresses and Deflections

In doing this, it is first important to relate the point-by-point stresses to

the average internal forces (F, S, M).

To do this, consider a cut face (do here for rectangular cross-section;
will generalize later)

Figure M4.4-5 Geometry of Equilibrium via stresses on cut face of beam
+ ze
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0XX
Ti,x > M

/‘{ F

“«— > —>

K
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Equilipollence (i.e., equally powerful) shows: (no variation in y)
h/?2

F = f 0y, bdz (7)

02
S = _f_h/zaxz bdz (8)
/2

M= - o_bzdz (9

—h/2

--> Now we begin substituting the various equations...
Put (1), (3) in (4) to get:

d*w
Gxx = Ex 8xx = _ExZ dx2 (10)
Now put this in (7):

d*w 2

F= -k dx? J-nn2 zbdz
d2 ) hi?2

= -E, V;} < b] = ( since no axial force in pure

dx _h/2 beam case
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(Note: something that carries axial and bending
forces is known as a beam-column/rod)
--> we also place the result for o, (10) in the equation for the
internal moment (9):

d*w a2,
M= E - f_mz bdz

we define:

h/?2

2
I = _f—h/ZZ bdZ

Area (Second) (11)
Moment of Inertia

of beam cross-

section [about y-axis]

units of [L#]

Note: For rectangular cross-section T
bh’ h

12

--> will look at this further in next unit “<b—>
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This results in the following:

d*w
M= E I —
dx

Moment-Curvature relation for beam

(12)

Note: EI is controlling parameter - “flexural
rigidity” or “bending stiffness”. Has:
- geometrical contribution, I
- material contribution, E

- units: [FeL]| = [ﬁl [[j‘] [A]

[ I

--> (Can also relate the internal shear, S, to these parameters. Use
equation (5):
Jo, 00 ,

07 o0x

(5)

Multiply each side by b and integrate from z to h/2 to get:
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f T 9% g fzm a;cxx bd:

First take (1 ) and put it in (10):

d2
o, = LA ol M
. EI
= |0, = —% (13)
Il
L||L
onis: [£] - L1
L L

Now, work on integrating the pending equation:

h/2 zb

=> bez(Z)]Zl/z = —fz (—aa])\f) ; dz

Recall that i S toget
ecall that: —— = o get:
A g
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h h2 zh

= b[oxz (5) - ze(z)] =+ § = d

Note that the o,, at the top of surface is zero.

Also define:
h2 (first) Moment of
Q = f ~ zbdz | = areaaboutthe (14)
- center
So:
SQ
Oxz <) = —— 15)
(2) - (

shear stress-Shear relation

Units: [ﬁzl =
L
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For a rectangular section:
Figure M4.4-6 Geometry for assessing (first) moment of area about

centerline 24
Sl&r
=,
<« b —
h/?2
Q0 = j; zbdz
Z2 hl?2 b h2 ;
= —p = — |— -2
2 | 2 |14

(maximum at z’' =0,
the centerline)

--> Again, will look at this further and generalize in the next unit
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The summary of how we can solve for the stress/strain/displacement
states in a beam is presented in handout M-5

In the next section, we look at what this solution generally
means and examine it for various situations.
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Unit M4.4 (New) Nomenclature

El -- flexural rigidity or boundary stiffness of beam cross-section

I -- Area (Second) Moment of Inertia of beam cross-section (about y-axis)
Q -- (First) Moment of area above the centerline

u -- deflection of point of beam in x-direction

v -- deflection of point of beam in y-direction

w -- deflection of (midpoint/midline of) beam in z-direction

¢ -- slope of midplane of beam at any point x ( = dw/dx)

d?w/dx? -- curvature of beam (midplane/midline) at any point x of beam
O, -- beam bending stress

o,, -- beam transverse shear stress
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