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LEARNING OBJECTIVES FOR UNIT M4.5

Through participation in the lectures, recitations, and work
associated with Unit M4.5, it is intended that you will be
able to………

• ….determine/calculate beam parameters for various
beam configurations and examine the importance of
the various parts of the configurations

• ….analyze the behavior and specific aspects of various
beam configurations

• ….model beam configurations with variations in two
dimensions by extending Simple Beam Theory and
its associated assumptions
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Now that we have defined the model and arrived at the
governing equations for the model, we can explore how this
can be used for various configurations.  We note that the
geometry of the cross-section plays an important role (I and
Q), so we first look at…

Section Properties

There are two cross-section properties which are important in bending:
I - moment of inertia
Q - first moment of area

Let’s take them one at a time to look at the effect of geometry on bending

-->  Moment of Inertia, I
General expression is

Note that the width, b, can be a function of z.

I =  z2b z( ) dz∫
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-->  For solid, symmetric (in y and z) sections, this integral can be
       done relatively easily.

See handout M-9 for some common section properties
-->  Note that for rings (including thick rings), can use superposition

Example:  Rectangular ring
Figure M4.5-1   Geometry of rectangular box/ring

x3

x2

b1

b2

h1 h2

Iring =  I1 −  I2

Iring =  b1h1
3

12
 −  b2h2

3

12

moment of inertia “removed”
from overall rectangle
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Aring =  A1 −  A2 =  b1h1 −  b2h2just like area:
⇒  linear

Limitations are that shapes must be the same and must be
concentric

-->  For a more general section with bending about one axis (Simple
       Beam Theory), can relax condition of symmetry about y-axis.

-  reference axes at centroid
-  symmetry in z

Figure M4.5-2   Geometry of general cross-section with symmetry in z

y'

z'

Must have:
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Definition:  centroid  is the center of area
           (like center of mass)

So relocate axes:

Figure M4.5-3   General cross-section with axes recounted at centroid

-->  same equations and solutions apply
-->  get I via normal integration procedures

y

z

= centroid

zcentroid =  
zdA∫∫
dA∫∫

Find location of centroid with reference to arbitrary axis y′ to place
axis y:
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Figure M4.5-4   Geometry of I-beam

y

z

1. Find centroid
2. Divide cross-section into convenient sub-sections
3. Find I of each sub-section about centroid (Iyy)
4. Add up contributions of all sub-sections (integrating piecewise)

In order to do this we need the…
Parallel Axis Theorem:

Moment of inertia of a body about any axis is the moment of inertia
of the body about its centroid (Io) plus its area times the square of
the distance from the centroid to the axis.

-->  Consider cross-sections with discontinuous parts like the I-beam

Iyy =  Io  +  Azc
2
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Figure M4.5-5   Configuration of rectangular cross-section above
                    reference axis y

Example:  Rectangular cross-section

⇒  Iyy =  bh
3

12
 +  bhzc

2

Io =  bh
3

12
A =  bh

zc
y

z bh
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- Divide up:

Figure M4.5-6   Geometry of dividing up I-beam into rectangular cross-
                   sections

1

3

2

- Find centroid
-->  Make table

3
2
1

IoAASection Azc
2zc zc

-->  Return to I-beam
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-->  Terminology for I-beam

flanges account for most of bending stiffness (greatest
contribution to I - will see in recitation and problem set)
web connects flanges and provides shear continuity

I-beam more efficient than:

# of
sections

# of
sections

Itotal =  Io∑  +  Azc
2∑

webflange



Unit M4-5  p. 11Paul A. Lagace © 2008

MIT - 16.003/16.004 Spring, 2009

Same area but lower I.
-->  get as much area as “far away” from centroid as possible.  Why?

-  Parallel Axis Theorem:

-  Definition of I:

increase z (distance) ⇒ increase I

-->  Efficiency of section measured via I/A:
I/A = moment of inertia per cross-section weight

Maximize this.

-  shearing
-  other loads
-  size limits

beyond Simple Beam Theory

Now let’s turn to the…

I =  Io +  Azc
2

I =  z2b z( ) dz∫

In limit…remove flanges to ∞ with infinitesimally thin web, but other
restrictions prevent this:
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defined at each location z

As one progresses in z, are basically adding effect of next section.

Figure M4.5-7   Illustration of adding contributions of sections for moment
                   of area

y

z
Q1

Q2 z2z1

Q z2( )  =  Q1 +  Q2
since:

f
z2

ztop

∫  z( ) dz =  f
z1

ztop

∫  z( ) dz +   f
z 2

z1

∫  z( ) dz

Q z( ) =  ′ z 
z

ztop

∫  b ′ z ( ) d ′ z 

Note:  If have discontinuous section (e.g., I-beam), can divide
up cross-section and add up (integrating piecewise)

-->  Moment of Area, Q
General expression is:
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Example:  I-beam
Take Q at some point in web

Figure M4.5-8   Detailed geometry of I-beam cross-section

1

3

2

b1

h2

t1

y

z

t2

z = a

etc.

Q a( ) =  Q1 +  Q2 a( )

=  zb1dzh2 /2

h2 /2+ t1

∫   +   zt2dza

h2 /2

∫

So can divide up into many sections and add:

# of
     subsections

Q =  Qi∑
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Final Note:  At “bottom” of cross-section, must get Q = 0 since
                    moment of area above and below centroid is equal in
                    magnitude and opposite in sign.

Now that we have a general feeling for beam section
properties, we can look non specifically at solutions for
various configurations.  First, let’s consider the…

General Case:  Statically Determinate Beams

We proceed as indicated in handout M-8.  We’ll illustrate the generic
procedure for a statically determinate case via an

Example:  simply-supported beam with uniform load

Note:  Generally divide up into subsections of constant width so that
           b (width) is not a function of z.
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Figure M4.5-9   Geometry of simply-supported beam with uniform load

x

z

L

A B
qo

1.  Draw Free Body Diagram

~

~

x

z

VA

H A

~ VB

L

qo

2.  Get Reactions:

Normal procedure:
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So:

+

+

+

FH∑  =  0

FV∑  =  0

MA∑  =  0

⇒  HA =  0

0 ⇒  VA +  VB −  qo  L =  0

⇒  VB =  qoL
2

   VA =  qoL
2

~
x

z

qoL/2 ~
L

qo

qoL/2

3.  Use relations between q, S, and M
q(x) =  – qo    (a constant)

include direction

⇒  VBL −  qoxdx 
o

L

∫ =  0

⇒  VB =  qoL
2

   VA =  qoL
2

gives….
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use Boundary Conditions:

S =  q(x)dx ∫ ⇒  S(x) =  − qox +  C

@ x = 0,   S =  qoL
2

 ⇒  C =  qoL
2

⇒  S x( ) =  qo  
L
2

 −  x
 
 
 

 
 
 

then:

=  − qo 
x2

2
 −  Lx

2
 

 
  

 

 
   +  C1

@ x = 0,   M =  0 ⇒  C1 =  0
use Boundary Conditions:

M x( ) =  qox
2

 L −  x( )⇒

M =  S x( )dx ⇒  M x( ) =  − qo  x −  L
2

 
 
 

 
 
 ∫∫  dx
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Sketch these:

• Moment
Diagram

x

M(x)

LL/2

qoL2/8

• Shear Force
Diagram x

S(x)

LL/2
qoL/2

- qoL/2

Note:  Can check at any point by taking a “cut”
           and using equilibrium

4.  Find stresses and strains

-->  At any location x, distribution of σ11 through thickness is linear

σxx x,z( ) =  − Mz
I
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Figure M4.5-10   Distribution of axial stress through thickness
z

h/2

- h/2

σxx
- M / I

Note:  stress (and strain) is zero at midline (in symmetric
           beams) or more generally at centroid;  equal and
           opposite (tension and compression) on top and bottom,
           or vice versa

Strain also varies linearly through thickness:

⇒  maximum values occur for extremes of z

Q:  where does maximum value of σxx occur in beam?

εxx x,  z( ) σ xx

Ex
 =    − M x( )z

EI
εxx x,  z( ) σ xx

Ex
 =    − M x( )z

EI
εxx x,  z( ) σ xx

Ex
 =    − M x( )z

EI
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if I does not vary with x, then it occurs at maximum value of
       M(x).

σxx  =   − M x( )z
I

-->  find via
dM x( )
dx

 =   0

determine x-location, then plug back in [also check
        Boundary Conditions if no internal min/max]

σxx(x) looks the same as M(x)    (for constant cross-section)

-->  Now look at shear stress:

σxz x, z( )  =   − S x( )Q
Ib

Maximum value in x occurs at maximum/minimum value of
       shear:

-->  find via
dS x( )
dx

 =   0
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Q:  what about variation in z?
Depends on variation of Q [Q (z)].

⇒ depends on cross-section geometry.

For rectangular cross-section
z

y
h

b

determine x-location, then plug back in [again check Boundary
           Conditions if no internal min/max]

Q =     ′ z bd ′ z 
z

h/ 2

∫

=   b ′ z 
2

 
 

 
 

z

h/ 2

 =  bh2

8
 −  bz2

2
 =  b

2
 h2

4
 −  z2

 

 
 
 

 

 
 
 



Unit M4-5  p. 22Paul A. Lagace © 2008

MIT - 16.003/16.004 Spring, 2009

Figure M4.5-11   Variation of moment of area in thickness direction for
                     rectangular cross-section

Q(z)

z
h/2

- h/2

So we have the same for σxz:
Figure M4.5-12   Variation of shear stress in the thickness direction for
                     rectangular cross-section

z
h/2

- h/2

σxz
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Notes: -  parabolic in shape
-  maximum at center line (for symmetric

                sections) or more generally at centroid
-  careful if b(z) (i.e., b is a function of z)
-  σxz generally considerably smaller than
   σxx but it “holds beam together”

Figure M4.5-13   Illustration of beam shear stress
z

x

• • • •  S
σxz

• • • •
• • • •

• • • •

σxz

σxz

Keeps beam together,
otherwise slippage
(like deck of cards)

• • • •
• • • •

• • • •

Figure M4.5-14   Illustration of how shear stress keeps beam together
If cut beam through thickness…
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-->  shear stresses are very important for sandwiches, thin webs, etc.
(bonded structure)

5.  Find deflections (bending!)
Go to Moment-Curvature relation:

EI d
2w
dx 2

 =  M x( )

⇒  d
2w
dx 2

 =  M x( )
EI

⇒  w =  M x( )
EI∫∫

For E and I constant with x, this becomes

for our case of simply-supported beam with uniform load:

w x( )  =  1
EI

 M x( )∫∫
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Need two boundary Conditions

So:

@ x = 0,   w =  0 ⇒  C2  =  0
@ x = L,   w =  0

latter

M x( ) =  − qox
2

 x −  L( )

⇒  dw x( )
dx

 =   − 1
EI

 qox
2

 x −  L( )  dx∫

=  − qo
2

 x 3

3
 −  Lx

2

2
 

 
 
 

 

 
 
 
 +  C1

w x( )  =  − 1
EI

 qo
2

 x3

3
 −  Lx

2

2
 

 
 
 

 

 
 
 
 +  C1

 

 
  

 

 
   ∫ dx

⇒  w x( ) =  − qo
2EI

 x 4

12
 −  Lx

3

6
 +  C1x +  C2

 

 
 
 

 

 
 
 

⇒  0 =   L
4

12
 −  L

4

6
 +  C1 L ⇒  C1 =  L

3

12
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Thus:

-->  Find maximum by determining point where: dw x( )
dx

 =  0

dw x( )
dx

 =  0 ⇒  4x3 −  6Lx2 +  L3 =  0

x =  L
2

here:

find “maximum” at        (plug back into equation)
Makes sense due to symmetry

This has been the case when the loading was continuous and thus all
variables were continuous functions of x.  But what if we have…

Discontinuous Loading

As we saw in Unit M4.3, the initial procedure (to get reactions and S and M)
is the same except we need to do for each different section of loading.
Can include point loads as well.

w x( )  =  − qo
24EI

 x4 −  2Lx3 +  L3x[ ]
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⇒  stresses and strains have “discontinuities” in x-direction like
       related shear forces and moment

Must now do in a sequential fashion and use results at end of
previous section as Boundary Conditions for the next section.

Q:  But what about deflection?

Illustrate this via an….
Example of a Cantilevered Flag (recall as done in Unit M4-3)

Figure M4.5-15   Geometry of cantilevered flag

q = mg

x

z f

L

1 2

Region  1 : 0 < x < (L – f)
Region  2 : (L – f) < x < L

From before get M1 (x), S1(x), M2(x), S2(x)
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Now use Moment-Curvature relation in sequential fashion.
-->  First in section 1:

Need 2 Boundary Conditions because it is a double integral

-->  Now go to junction of sections 1 and 2 and into section 2

need 2 Boundary Conditions

w1 x( ) =  1
EI

 M1 x( )∫∫

w2  x( ) =  1
EI

 M2 x( )∫∫

w1 L −  f( ) =  w2  L −  f( )
dw1
dx

 L −  f( ) =  dw2
dx

 L −  f( )

@ x = 0:  w =  0,  dw
dx

 =  0

Match deflection and slope at junction:
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also write:

Can extend this to as many junctions/sections that exist

Note:  Must check each section to find overall
           maximum/minimum values of stress, etc.

Let’s now again go back and consider more….

General Cross-Sections
There are two ways that cross-sections can vary:  in x and in z.

-->  we have looked at the effect of variation in z on the section
       properties.  With regard to the overall solution:

-  S, M, σxx, and w are not affected except by the overall value
   of I
-  σxz depends on Q and b: σxz =  − SQ

Ib

w1 x=L- f =  w2 x=L- f  ,   etc.
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-->  Consider the I-beam and the junction between the flange
 and web (z = h2/2)

1

3

2

b1

h2

t1

y

z

t2

z = a

@ z = h2/2, look at case:
in flange  b(z) = b1

in web     b(z) = t2

So shape of σxz becomes:

Q(z) varies “smoothly”, but b(z) can take a sudden “jump”
such as in an I-beam
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Figure M4.5-16   Variation of shear stress in thickness direction in I-beam

⇒ shear tends to be carried in narrow webs

-->  Q:  What about variation of the cross-section in x?
In that case I and Q are functions of x

⇒ I(x) and Q(x)

Formally, the model is 1-D and this is not “allowed”.  But slight
relaxation of this does not dramatically change limitations.

z
t1 + h2/2

σxz

- h2/2

h2/2

- (t1 + h2/2)

discontinuity here

discontinuity here
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Note:  can even have discontinuities in the
           cross-section

for example:
1

2

Q:  Could modulus (E) vary with x?
Using the same reasoning, this is not formally allowed, but the same
procedure can be used.

Finally let’s consider the case of…

Statically Indeterminate Beams
The difference is that in the statically determinate case, the equations are
solved sequentially since do not need constitutive relation (Moment-
Curvature here) to get S and M.

-->  use same equations, but keep I(x) and Q(x) inside any
       integral
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So procedure becomes:
1. Draw Free Body Diagram
2. Determine equations relating reactions
3. Express S(x) and M(x) in terms of reactions and loading

[q(x)]
4. Express w(x) in terms of reactions and loading [q(x)] via

expression for M(x)
5. Solve equations from 2, 3, and 4 simultaneously
6. Go back and put it all together, get stresses, etc.

In the statically indeterminate case, need constitutive relation and must
solve equations simultaneously

--> Fundamentally we are superposing all pieces of the puzzle

FINAL NOTE:  Can “pile on” all complications we have talked about and
still use Simple Beam Theory.  Key is to check assumptions
and limitations and see if results are “good enough”.

Next:  Consider a long,  slender structural member under yet
another type of loading.

(i.e.   consistency)
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Unit M4.5  (New) Nomenclature

Io -- Moment of inertia of body about its centroid
Iyy -- Moment of inertia about y-axis
I/A -- bending efficiency of cross-section
zc, zcentroid -- distance of centroid from reference axis
ztop -- distance to top of cross-section from reference axis


