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Unit M4.6
Torsion of Rods/Shafts

Readings:
CDL 6.1-6.5
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LEARNING OBJECTIVES FOR UNIT M4.6

Through participation in the lectures, recitations, and work
associated with Unit M4.6, it is intended that you will be
able to………

• ….describe the key aspects composing the model of a
(torsional) shaft and identify the associated
limitations

• ….apply the basic equations of elasticity to derive the
solution for the general case

• ….identify the parameters that characterize torsional
behavior and describe their role
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Thus far we’ve considered a long slender member under axial
load (rod) and bending load (beam).  Let’s now look at a long
slender member subjected to a torque.  This is a shaft.

Let’s begin with the…

Definition of a Shaft

A shaft is a structural member that is long and slender and
subjected to a torque moment about its long axis.

Consider each of the three points that make up the definition and the true
reality…

-->  Modeling Assumptions

a)  Geometry
(go back to indicial notation because it makes it easier to manipulate)
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Figure M4.6-1   General geometry of shaft
x3

x1

L

x2

Figure M4.6-2   Cross-section of shaft

h

b

x3

x2 b, h = largest dimensions
in x2 and x3

Assumption:  “long” in x1-direction
L > > b, h (slender member)

Note:  same as before



Unit M4-6  p. 5Paul A. Lagace © 2008

MIT - 16.003/16.004 Spring, 2009

b)  Loading
Assumption:  Torque Moment about x1-direction

-  concentrated T

-  distributed

x3

x1

x2

[FL]T

x3

x1

x2

t [ FL / L ]
No axial loads

⇒ at boundaries:  σ11 = σ22 = σ33 = 0
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finally look at:
c)  Deformation

Assumptions:
-  At any location x1, the cross-section rotates as a rigid body
   (⇒ no distortion of cross-section)

Note:  can also say “plane sections remain plane
           and perpendicular to midline”

-  No deformation of cross-section in x1-direction (no bending
   or extension)

⇒ Only deformation is rotation of cross-section through a twist angle.

Define twist angle, φ, as function of x1 = φ(x1).  Think of deck of cards:

⇒

We can, by geometry, relate the deformations, ui, to the
twist/rotation angle φ(x1).
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Figure M4.6-2   Illustration of deformation of shaft cross-section

-  Distance point p rotates (p to P) = r sin φ(x1)
-  For small angles (assumed here)

x3

x2

r
•p

P• β

φ (x1)

undeformed
deformed

⇒ distance = r φ(x1)

Consider a cross-section at location x1, and a point in a circular cross-
section at angle β from the reference axes.

 r sin φ(x1)
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Figure M4.6-3   Resolution of deformation into components along x2 and x3

•p

P•
x3

x2

r φ (x1)
ββ

u2

u3

⇒ u2 =  – r φ (x1) sin β

And β is defined by the x2 and x3 location of p
x3

x2

r
β
• p

x2

x3

Resolve into components along x2 and x3

u3 =  + rφ (x1) cos β
note direction
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So:

And we have, by assumption, no axial displacement.  So the assumed
displacement state is:

r =  x2
2  +  x32

sin β =  x3
r

cos β =  x2
r

u2 =  − x2
2  +  x32   φ x1( )  x3

x2
2 +  x3

2
 =  −φ x1( )  x3

u3 =  x2
2 +  x3

2   φ x1( )   x2
x2
2 +  x3

2
 =  φ x1( ) x2

u1 =  0
u2 =  −φ x1( )x3
u3 =  φ x1( )x2

(1)

(2)
(3)
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Let’s now use the definitions in the equations of elasticity to get the…

Governing Equations
-->  Strain-Displacement

consistent with assumption that cross-
section does not deform in x

(4)

(5)

consistent with assumption that cross-
section does not distort

=  0

=  0

=  0

ε11 =  ∂u1
∂x1

 

ε22 =  ∂u2
∂x2

ε33 =  ∂u3
∂x3

ε12 =  1
2

 ∂u1
∂x2

 +  ∂u2
∂x1

 

 
  

 

 
   =  − 1

2
 x3

dφ
dx1

ε13 =  1
2

 ∂u1
∂x3

 +  ∂u3
∂x1

 

 
  

 

 
   =  1

2
 x2

dφ
dx2

ε11 =  ∂u1
∂x1

 

ε22 =  ∂u2
∂x2

ε33 =  ∂u3
∂x3

ε12 =  1
2

 ∂u1
∂x2

 +  ∂u2
∂x1

 

 
  

 

 
   =  − 1

2
 x3

dφ
dx1

ε13 =  1
2

 ∂u1
∂x3

 +  ∂u3
∂x1

 

 
  

 

 
   =  1

2
 x2

dφ
dx2
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Note: ∂

∂x1
 →  d

dx1
since φ is a function of x1 only

Finally:

(partial) (total)

⇒  also is consistent with assumption that cross-section
does not distort

Next go to…

-->  Stress-Strain Equations

(do for isotropic ⇒ only one shear modulus)

Since ε11, ε22, and ε33 = 0      ⇒  σ11, σ22, σ33 = 0

(consistent:  no axial stresses)

ε23 =  1
2

 ∂u2
∂x3

 +  ∂u3
∂x2

 

 
  

 

 
   =  1

2
 −φ x1( )  +  φ x1( )( ) =  0
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⇒ only σ12 and σ13 are present

ε23 =  σ 23

2G
 =  0 ⇒  σ 23 =  0

ε12 =  σ12
2G

ε13 =  σ13
2G

Finally we look at…

-->  Equilibrium Equations

First we again define an internal stress resultant for the structural
configuration.  In this case, it will be the torque moment at any point.

(6)

(7)



Unit M4-6  p. 13Paul A. Lagace © 2008

MIT - 16.003/16.004 Spring, 2009

Figure M4.6-4   Illustration of cutting shaft through cross-section and
                   considering internal torque

~~~~~~~~

~~~~~~~~

[FL]T

Tx1

+  right hand rule  -- gives equal and opposite

+ face – face

Express T in terms of the stress:

Cutting the shaft……
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Figure M4.6-5   Illustration of equipollence consideration for shaft cross-
                   section

x3

x2
T

σ13

σ12

equivalence/equipollence:
⇒  T +  σ13 x3 d∫∫Torque:  T =  x2σ13 −  x3σ12( ) dx2dx3    (8)∫∫

So using equations of equilibrium (considering only non zero stresses)
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∂σ 21

∂x2
 +  ∂σ 31

∂x3
 +  f1 =  0

∂σ12

∂x1
 +  f2 =  0

∂σ13

∂x1
 +  f3 =  0

(9)

(10)

(11)

Now look at the equilibrium of a discrete segment (as we have in the
past)

Figure M4.6-6   Geometry for consideration of equilibrium of a discrete
                   segment

dx1
x3

x1

x2

t (x1)
T T +         dx1

 dT
dx1

0
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“Torque-loading Relation”

+

(12)

like dS
dx

 =  q x( )
 
 
 

 
 
 

Note:  Can show average equilibrium relations [resulting in
           (12)] are consistent with pointwise relations [(9) - (11)].

We now have 6 unknowns (T, σ12, σ13, ε12, ε13, φ) and 6 equations { (4),
(5), (6), (7), (8), (12) }.  This allows us to solve the problem for this
model.

So let’s look at…..

Mx 1∑  =  0 ⇒  − T +  t x1( )dx1 +  T +  dT
dx1

 dx1 =  0

⇒  dT
dx1

 =  − t x1( )
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Solution and Limitations of Model

Put equations (4) and (5) [Strain-Displacement] into the stress-strain
equations (6) and (7):

(13)

(14)

Now place these results into the torque-stress equilibrium equation (8):

⇒  σ12 =  −Gx3 
dφ
dx1

σ13 =  2Gε13 =  2G 1
2

 x2  
dφ
dx1

 

 
  

 

 
  

⇒  σ13 =  Gx2 
dφ
dx1

σ12 =  2Gε12 =  2G −
1
2

 x3 
dφ
dx1
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T =  x2σ13 −  x3σ12( ) dx2dx3∫∫

=  G x2
2 dφ
dx1

 +  x32  
dφ
dx1

 

 
  

 

 
   dx2dx3∫∫

Define:

J ≡  x2
2 +  x3

2( ) dA∫∫ (15)

= polar (second) moment of inertia

for circle

So we write:
T =  GJ dφ

dx1

⇒  T =  G dφ
dx1

 x2
2 +  x3

2( )  dA∫∫

“Torque-Twist” relation

(16)

=  πR
4

2
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Note, again, overall “structural constitutive relation”

T =  GJ dφ
dx1

(load) = (stiffness)(deformation)

Structural stiffness here is torsional stiffness = GJ
composed of two parts:

G - material contribution/parameter
J - geometrical contribution/parameter

similar to bending:

M =  Ex I 
d2w
dx2

We can use the result                            in equations (13) and (14) to
  relate stress to torque:

G dφ
dx1

 =  T
J
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Finally, can express the stress as a shear stress resultant:

(17)

(18)

Figure M4.6-7   Illustration of shear stress resultant
x3

x2
T

σ13

- σ12

τres

=  r

σ12 =  − Tx3
J

σ13 =  Tx2
J

τres =  σ12
2  +  σ13

2

=  T
J

x3
2 +  x2

2
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(19)

⇒   σxx  =  − Mz
I

stress( ) =  

primary
loading
 

 
  

 

 
  

distance from
key point
 

 
  

 

 
  

geometrical
parameter
 

 
  

 

 
  

Note similarity to bending:

form:

τres =  Tr
J
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Use of Model
Very similar to rod, beam…

1. Draw Free Body Diagram, determine reactions
2. Get internal stress resultant T(x1)
3. Determine section property G J

4. Use equation (16) to find rate of twistG dφ
dx1

 =  T
J

 

material
constant

polar moment
of inertia

5. Use equations (17), (18), and (19) to determine stresses
6. Determine strains and displacements as needed

let’s think about the…

-->  Limitations of the model
The assumptions give us an exact solution for circular closed cross-

sections:
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Solid

Tube

J =  πR
4

2

J =  πRo
4

2
 −  πRi

4

2

by superposition

Not good for an open section, for example…

2R

2Ro

2Ri
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Approximate for other closed sections:
e.g.,  Square

a

(assumption of no deformation of cross-section violated --> “warping”)
[more in 16.20]

We’ll next look at a rod under compression and look at an
instability phenomenon known as “buckling”.  In this case, we
call the structural member a column.

J =  0.141a4
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Unit M4.6  (New) Nomenclature

G -- shear modulus (isotropic material)
GJ -- torsional stiffness
J -- polar (second) moment of inertia
Ro -- outer radius
Ri -- inner radius
T -- applied point torque load
t -- applied distributed torque load
τres -- shear stress resultant
φ -- twist angle


