Unit M4.7
 The Column and Buckling

Readings:
CDL 9.1-9.4
CDL 9.5, 9.6

16.003/004 -- "Unified Engineering"

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M4.7

Through participation in the lectures, recitations, and work associated with Unit M4.7, it is intended that you will be able to.........

-explain the concepts of stablity, instability, and bifurcation, and the issues associated with these
-describe the key aspects composing the model of a column and its potential buckling, and identify the associated limitations
-apply the basic equations of elasticity to derive the solution for the general case
-identify the parameters that characterize column behavior and describe their role

We are now going to consider the behavior of a rod under compressive loads. Such a structural member is called a column. However, we must first become familiar with a particular phenomenon in structural behavior, the.....

Concept of Structural Stability/Instability

Key item is transition, with increasing load, from a stable mode of deformation (stable equilibrium for all possible [small] displacements/ deformations, a restoring force arises) to an unstable mode of deformation resulting in collapse (loss of load-carrying capability)

Thus far we have looked at structural systems in which the stiffness and loading are separate.....

System	Stiffness	Deflection	Load
Rod	EA	$\frac{d u}{d x_{1}}$	$=P$
Beam	EI	$\frac{d^{2} w}{d x^{2}}$	$=\mathrm{M}$
Shaft	GJ	$\frac{d \phi}{d x}$	=
General	k	x	$=\mathrm{F}$

There are, however, systems in which the effective structural stiffness depends on the loading

Define: effective structural stiffness (k) is a linear change in restoring force with deflection

$$
\text { that is: } \frac{d F}{d x}=k
$$

Examples

String (stiffening)

frequency changes with load and frequency is a function of stiffness

Ruler/pointer (destiffening)

easier to push in x_{1}, the more it deflects in u_{3}
--> From these concepts we can define a static (versus dynamic such as flutter -- window blinds) instability as:
"A system becomes unstable when a negative stiffness overcomes the natural stiffness of the structural system"
that is there is a
"loss of natural stiffness due to applied loads"
$-->$ Physically, the more you push it, it gives even more and can build on itself!
Let's make a simple model to consider such phenomenon....
--> Consider a rigid rod with torsional spring with a load along the rod and perpendicular to the rod
Figure M4.7-1 Rigid rod attached to wall with torsional spring

Restrict to small deflections (angles) such that $\sin \theta \approx \theta$
--> Draw Free Body Diagram
Figure M4.7-2 Free Body Diagram of rigid rod attached to wall via torsional spring

Use moment equilibrium:

$$
\sum M(\text { origin })=0 \leftrightarrows-P_{1} L-P_{2} L \sin \theta+\underbrace{}_{T} \theta=0
$$

$$
\begin{aligned}
& \text { get: } \underbrace{\left(\frac{k_{T}-P_{2} L}{L}\right)}_{\text {i.e., } k_{\text {eff }} \theta=P} \theta=P_{1} \\
& \text { effective torsional stiffness }
\end{aligned}
$$

Note: load affects stiffness: as P_{2} increases, $k_{\text {eff }}$ decreases

$$
\begin{aligned}
\text { *Important value: } & \text { if } P_{2} L=k_{T} \\
& \Rightarrow k_{\text {eff }}=0
\end{aligned}
$$

Point of "static instability" or "buckling"

$$
P_{2}=\frac{k_{T}}{L}
$$

Note terminology: eigenvalue = value of load for static instability
eigenvector $=$ displacement shape/mode of structure (we will revisit these terms)

Also look at P_{2} acting alone and "perturb" the system (give it a Δ deflection; in this case $\Delta \theta$)
stable: system returns to its condition
unstable: system moves away from condition

Figure M4.7-3 Rod with torsional spring perturbed from stable point

Sum moments to see direction of motion
$\sum M \underset{\rightleftarrows}{+} \Rightarrow-P_{2} L \sin \Delta \theta+k_{T} \Delta \theta \alpha \dot{\theta}$ (proportional to change in θ)

$$
\Rightarrow\left(k_{T}-P_{2} L\right) \Delta \theta \alpha \dot{\theta}
$$

Note: - $\dot{\theta}$ is CCW (restoring)
$+\dot{\theta}$ is CW (unstable)

$$
\begin{aligned}
& \text { So: if } k_{T}>P_{2} L \Rightarrow \text { stable and also get } \theta=0 \\
& \text { if } P_{2} L \geq k_{T} \Rightarrow \text { unstable and also get } \theta=\infty \\
& \text { critical point: } P_{2}=\frac{k_{T}}{L} \\
& \Rightarrow \text { spring cannot provide a sufficient } \\
& \text { restoring force }
\end{aligned}
$$

--> so for P_{2} acting alone:
Figure M4.7-4 Response of rod with torsional spring to compressive load along rod

ABC - Equilibrium path, but not stable
ABD - Equilibrium path, deflection grows unbounded ("bifurcation") (B is bifurcation point, for simple model, ... 2 possible equilibrium paths)

Note: If P_{2} is negative (i.e., upward), stiffness increases
--> contrast to deflection for P_{1} alone
Figure M4.7-5 Response of rod with torsional spring to load perpendicular to rod

$-->$ Now put on some given P_{1} and then add P_{2}

Figure M4.7-6 Response of rod with torsional spring to loads along and perpendicular to rod

Note 1: If P_{2} and P_{1} removed prior to instability, spring brings bar back to original configuration (as structural stiffnesses do for various configurations)
Note 2: Bifurcation is a mathematical concept. The manifestations in actual systems are altered due to physical realities/imperfections. Sometimes these differences can be very important.

We'll touch on these later, but let's first develop the basic model and thus look at the....

Definition/Model of a Column

(Note: we include stiffness of continuous structure here. Will need to think about what is relevant structural stiffness here.)
a) Geometry - The basic geometry does not change from a rod/beam

Figure M4.7-7 Basic geometry of column

GENERAL SYMMETRIC CROSS-SECTION

long and slender: $L \gg b, h$ constant cross-section (assumption is $\mathrm{EI}=$ constant)
b) Loading - Unlike a rod where the load is tensile, or compressive here the load is only compressive but it is still along the long direction (x_{1} - axis)
c) Deflection - Here there is a considerable difference. Initially, it is the same as a rod in that deflection occurs along x_{1} ($\mathrm{u}_{1}-$ - shortening for compressive loads)

But we consider whether buckling (instability) can occur. In this case, we also have deflection transverse to the long axis, u_{3}. This u_{3} is governed by bending relations:

$$
\frac{d^{2} u_{3}}{d x_{1}^{2}}=\frac{M}{E I} \quad\left(u_{3}=w\right)
$$

Figure M4.7-8 Representation of undeflected and deflected geometries of column
undeflected:

deflected:
Free Body Diagram

We again take a "cut" in the structure and use stress resultants:

Figure M4.7-9 Representation of "cut" column with resultant loads

Now use equilibrium:

$$
\begin{aligned}
\sum F_{1}=0 \quad \xrightarrow{+} & \Rightarrow P+F\left(x_{1}\right)=0 \\
& \Rightarrow F\left(x_{1}\right)=-P \\
\sum F_{3}=0 \uparrow+ & \Rightarrow S\left(x_{1}\right)=0 \\
\sum M_{A}=0 \stackrel{+}{\leftrightarrows} & \Rightarrow M\left(x_{1}\right)-F\left(x_{1}\right) u_{3}\left(x_{1}\right)=0 \\
& \Rightarrow M\left(x_{1}\right)+P u_{3}\left(x_{1}\right)=0
\end{aligned}
$$

Use the relationship between M and u_{3} to get:

$$
E I \frac{d^{2} u_{3}}{d x_{1}^{2}}+P u_{3}=0
$$

governing differential equation for Euler buckling (2nd order differential equation)
always stabilizing (restoring)--basic beam: basic bending stiffness of structure resists deflection (pushes back) restoring force to get $u_{3}=0$)

$$
\underline{\text { Note: }}+\mathrm{P} \text { is compressive }
$$

We now need to solve this equation and thus we look at the.....

(Solution for) Euler Buckling

First the
--> Basic Solution
(Note: may have seen similar governing for differential equation for harmonic notation:

$$
\left.\frac{d^{2} w}{d x^{2}}+k w=0\right)
$$

From Differential Equations (18.03), can recognize this as an eigenvalue problem. Thus use:

$$
u_{3}=e^{\lambda x_{1}}
$$

Write the governing equation as:

$$
\frac{d^{2} u_{3}}{d x_{1}{ }^{2}}+\frac{P}{E I} u_{3}=0
$$

Note: will often see form (differentiate twice for general B.C.'s)

$$
\frac{d^{2}}{d x_{1}^{2}}\left(E I \frac{d^{2} u_{3}}{d x_{1}^{2}}\right)+\frac{d^{2}}{d x_{1}^{2}}\left(P u_{3}\right)=0
$$

This is more general but reduces to our current form if EI and P do not vary in x_{1}
Returning to: $\frac{d^{2} u_{3}}{d x_{1}{ }^{2}}+\frac{P}{E I} u_{3}=0$
We end up with: $\quad \lambda^{2} e^{\lambda x_{1}}+\frac{P}{E I} e^{\lambda x_{1}}=0$

$$
\begin{aligned}
\Rightarrow & \lambda^{2}=-\frac{P}{E I} \\
\Rightarrow & \lambda= \pm \sqrt{\frac{P}{E I}} i \quad \begin{array}{l}
\text { (also 0, } 0 \text { for 4th order Ordinary } \\
\text { Differential Equation [O.D.E.]) }
\end{array} \\
& \text { where: } \quad i=\sqrt{-1}
\end{aligned}
$$

We end up with the following general homogeneous solution:

$$
u_{3}=A \sin \sqrt{\frac{P}{E I}} x_{1}+B \cos \sqrt{\frac{P}{E I}} x_{1}+\underbrace{C+D x_{1}}_{\substack{\text { comes from 4th order } \\ \text { O.D.E. considerations }}}
$$

We get the constants A, B, C, D by using the Boundary Conditions
(4 constants from the 4th under O.D.E. \Rightarrow need 2 B.C.'s at each end)

For the simply-supported case we are considering:

$$
\begin{aligned}
& @ x_{1}=0\left\{\begin{array}{l}
u_{3}=0 \\
M=E I \frac{d^{2} u_{3}}{d x_{1}^{2}}=0 \quad \Rightarrow \quad \frac{d^{2} u_{3}}{d x_{1}^{2}}=0
\end{array}\right. \\
& @ x_{1}=L\left\{\begin{array}{l}
u_{3}=0 \\
M=E I \frac{d^{2} u_{3}}{d x_{1}^{2}}=0 \Rightarrow \frac{d^{2} u_{3}}{d x_{1}^{2}}=0
\end{array}\right.
\end{aligned}
$$

Note: $\frac{d^{2} u_{3}}{d x_{1}{ }^{2}}=-\frac{P}{E I} A \sin \sqrt{\frac{P}{E I}} x_{1}-\frac{P}{E I} B \cos \sqrt{\frac{P}{E I}} x_{1}$
So using the B.C.'s:

$$
\left.\left.\left.\begin{array}{l}
u_{3}\left(x_{1}=0\right)=0 \Rightarrow B+C=0 \\
\frac{d^{2} u_{3}}{d x_{1}{ }^{2}}\left(x_{1}=0\right)=0 \Rightarrow B=0
\end{array}\right\} \Rightarrow \begin{array}{r}
B=0 \\
C=0
\end{array}\right\} \begin{array}{l}
u_{3}\left(x_{1}=L\right)=0 \Rightarrow A \sin \sqrt{\frac{P}{E I}} L+D L=0 \\
\frac{d^{2} u_{3}}{d x_{1}{ }^{2}}\left(x_{1}=L\right)=0 \Rightarrow-A \sin \sqrt{\frac{P}{E I}} L=0
\end{array}\right\} \Rightarrow D=0
$$

So we are left with:

$$
A \sin \sqrt{\frac{P}{E I}} L=0
$$

This occurs if:

- $A=0$ (trivial solution, $\Rightarrow u_{3}=0$)
- $\sin \sqrt{\frac{P}{E I}} L=0$

$$
\Rightarrow \sqrt{\frac{P}{E I}} L=n \pi
$$

Thus, buckling occurs in a simply-supported column if:

$$
P=\frac{n^{2} \pi^{2} E I}{L^{2}}
$$

eigenvalues
associated with each load (eigenvalue) is a shape (eigenmode)

$$
u_{3}=A \sin \frac{n \pi x}{L}
$$

Note: A is still undefined. This is an instability ($u_{3} \rightarrow \infty$), so any value satisfies the equations.

[Recall, bifurcation is a mathematical concept]

Consider the buckling loads and associated mode shape (n possible)
Figure M4.7-10 Potential buckling loads and modes for one-dimensional column

The lowest value is the one where buckling occurs:

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}} \quad \frac{\text { Euler }(\text { critical) } \text { buckling }}{\text { load }(\sim 1750)}
$$

for simply-supported column
(Note: The higher critical loads can be reached if the column is "artificially restrained" at lower bifurcation loads)

There are also other configurations, we need to consider....
--> Other Boundary Conditions

There are 3 (/4) allowable Boundary Conditions on u_{3} (need two on each end) which are homogeneous (B.C.'s.... = 0)
--> simply-supported

$$
\begin{aligned}
& \text { (pinned) }
\end{aligned}
$$

$$
\begin{aligned}
& \int u_{3}=0 \\
& M=E I \frac{d^{2} u_{3}}{d x_{1}{ }^{2}}=0 \Rightarrow \frac{d^{2} u_{3}}{d x_{1}{ }^{2}}=0
\end{aligned}
$$

--> fixed end
(clamped)

--> free end

$$
\left\{\begin{array}{l}
M=E I \frac{d^{2} u_{3}}{d x_{1}^{2}}=0 \Rightarrow \frac{d^{2} u_{3}}{d x_{1}^{2}}=0 \\
S=0=\frac{d M}{d x_{1}}=\frac{d}{d x_{1}}\left(E I \frac{d^{2} u_{3}}{d x_{1}^{2}}\right) \Rightarrow \frac{d^{3} u_{3}}{d x_{1}^{3}}=0
\end{array}\right.
$$

--> sliding

$$
\left\{\begin{array}{l}
\frac{d u_{3}}{d x_{1}}=0 \\
S=0 \Rightarrow \frac{d^{3} u_{3}}{d x_{1}{ }^{3}}=0
\end{array}\right.
$$

There are combinations of these which are inhomogeneous Boundary Conditions.

Examples...
--> free end with an axial load

--> springs
(vertical)

$$
\left\{\begin{array}{l}
M=0 \\
S=k_{f} u_{3}
\end{array}\right.
$$

Need a general solution procedure to find P_{cr}
Do the same as in the basic case.

- same assumed solution $u_{3}=e^{\lambda x_{1}}$
- yields basic general homogeneous solution

$$
u_{3}=A \sin \sqrt{\frac{P}{E I}} x_{1}+B \cos \sqrt{\frac{P}{E I}} x_{1}+C+D x_{1}
$$

- use B.C.'s (two at each end) to get four equations in four unknowns (A, B, C, D)
- solve this set of equations to find non-trivial value(s) of P

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
& \left.4 \times \begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right\}=0 \quad 4 \text { matrix } \quad \begin{array}{l}
\text { homogeneous } \\
\text { equation }
\end{array}
\end{aligned}
$$

- set determinant of matrix to zero ($\Delta=0$) and find roots (solve resulting equation)

$$
\text { roots = eigenvalues }=\text { buckling loads }
$$ also get associated eigenmodes = buckling shapes

--> will find that for homogeneous case, the critical buckling load has the generic form:

$$
P_{c r}=\frac{c \pi^{2} E I}{L^{2}}
$$

where: $\quad c=$ coefficient of edge fixity Δ depends on B.C.'s

For aircraft and structures, often use $\mathbf{c} \approx 2$ for "fixed ends".
Why?

- simply-supported is too conservative

- cannot truly get clamped ends

- actual supports are basically "torsional springs", empirically $c=2$ works well and
 remains conservative

We've considered the "perfect" case of bifurcation where we get the instability in our mathematical model. Recall the opening example where that wasn't quite the case. Let's look at some realities here. First consider....

Effects of Initial Imperfections

We can think about two types...
Type 1 -- initial deflection in the column (due to manufacturing, etc.)

Figure M4.7-11 Representation of initial imperfection in column

Type 2 -- load not applied along centerline of column Define: e = eccentricity ($+\downarrow$ downwards)

Figure M4.7-12 Representation of load applied off-line (eccentrically)

(a beam-column)
moment Pe plus axial load P

The two cases are basically handled the same way, but let's consider Type 2 to illustrate...

The governing equation is still the same:

$$
\frac{d^{2} u_{3}}{d x_{1}^{2}}+\frac{P}{E I} u_{3}=0
$$

Take a cut and equilibrium gives the same equations except there is an additional moment due to the eccentricity at the support: $\mathrm{M}=-\mathrm{Pe}$
Use the same basic solution:

$$
u_{3}=A \sin \sqrt{\frac{P}{E I}} x_{1}+B \cos \sqrt{\frac{P}{E I}} x_{1}+C+D x_{1}
$$

and take care of this moment in the Boundary Conditions:
Here:

$$
@ x_{1}=0\left\{\begin{array}{l}
u_{3}=0 \Rightarrow B+C=0 \\
M=E I \frac{d^{2} u_{3}}{d x_{1}^{2}}=-P e \Rightarrow-P B=-P e
\end{array}\right\}
$$

$$
\begin{gathered}
B=e \\
\Rightarrow x_{1}=L\left\{\begin{array}{l}
u_{3}=0 \Rightarrow \ldots \\
C=-e \\
M=E I \frac{d^{2} u_{3}}{d x_{1}^{2}}=-P e \quad \Rightarrow \ldots
\end{array}\right.
\end{gathered}
$$

Doing the algebra find:

$$
\begin{aligned}
D & =0 \\
A & =\frac{e\left(1-\cos \sqrt{\frac{P}{E I}} L\right)}{\sin \sqrt{\frac{P}{E I}} L} \quad \text { actual value for } \mathrm{A}!
\end{aligned}
$$

Putting this all together:

$$
u_{3}=e\left\{\frac{\left(1-\cos \sqrt{\frac{P}{E I}} L\right)}{\sin \sqrt{\frac{P}{E I}} L} \sin \sqrt{\frac{P}{E I}} x_{1}+\cos \sqrt{\frac{P}{E I}} x_{1}-1\right\}
$$

Notes: - Now get finite values of u_{3} for values of P.

- As $P \rightarrow P_{c r}=\frac{\pi^{2} E I}{L^{2}}$, still find u_{3} becomes unbounded $\left(u_{3} \rightarrow \infty\right)$

Figure M4.7-13 Response of column to eccentric load

Nondimensionalize by dividing through by L

- Bifurcation is asymptote
- u_{3} approaches bifurcation as P--> $P_{\text {cr }}$
- As e/L (imperfection) increases, behavior is less like perfect case (bifurcation)

The other "deviation" from the model deals with looking at the general....

Failure of Columns

Clearly, in the "perfect" case, a column will fail if it buckles

$$
\begin{aligned}
& u_{3} \rightarrow \infty \quad \text { (not very useful) } \\
& u_{3} \rightarrow \infty \quad \Rightarrow \quad M \rightarrow \infty \quad \Rightarrow \quad \sigma \rightarrow \infty \quad \Rightarrow \text { material fails! }
\end{aligned}
$$

Let's consider what else could happen depending on geometry
--> For long, slender case

$$
P_{c r}=\frac{c \pi^{2} E I}{L^{2}}
$$

with:

$$
\begin{aligned}
\sigma_{11} & =\frac{P}{A} \\
& \Rightarrow \sigma_{c r}=\frac{c \pi^{2} E I}{L^{2} A} \quad \text { for buckling failure }
\end{aligned}
$$

--> For short columns
if no buckling occurs, column fails when stress reaches material ultimate

$$
\begin{aligned}
& \text { mate }\left(\sigma_{\mathrm{cu}}=\right.\text { ultimate compressive stress) } \\
& \sigma=\frac{P}{A}=\sigma_{c u} \\
& \text { failure by "squashing" }
\end{aligned}
$$

--> Behavior of columns of various geometries characterized via:
effective length: $L^{\prime}=\frac{L}{\sqrt{c}}$ (depends on Boundary Conditions)
radius of gyration: $\rho=\sqrt{\frac{I}{A}}$ (ratio of moment of inertia to area)

Look at equation for $\sigma_{c r}$, can write as:

$$
\sigma_{c r}=\frac{\pi^{2} E}{\left(L^{\prime} / \rho\right)^{2}}
$$

Can capture behavior of columns of various geometries on one plot using: $\left(\frac{L^{\prime}}{\rho}\right)=$ "slenderness ratio"
Figure M4.7-14 Representation of general behavior for columns of various slenderness ratios

Notes:

- for $\left(\frac{L^{\prime}}{\rho}\right)$ "large", column fails by buckling
- for $\left(\frac{L^{\prime}}{\rho}\right)$ "small", column squashes
- in transition region, plastic deformation (yielding) is taking place

$$
\sigma_{c y}<\sigma<\sigma_{c u}
$$

Let's look at all this via an...
Example: a wood pointer-- assume it is pinned and about 4 feet long
Figure M4.7-15 Geometry of pinned wood pointer

CROSS-SECTION

Material properties:
(Basswood)

$$
\begin{aligned}
& E=1.4 \times 10^{6} \mathrm{psi} \\
& \sigma_{\mathrm{cu}} \approx 4800 \mathrm{psi}
\end{aligned}
$$

--> Find maximum load P

Step 1: Find pertinent cross-section properties:

$$
A=b \times h=(0.25 i n) \times(0.25 i n)=0.0625 \mathrm{in}^{2}
$$

$$
\mathrm{I}=\mathrm{bh}^{3} / 12=(0.25 \mathrm{in})(0.25 \mathrm{in})^{3 / 12}=3.25 \times 10^{-4} \mathrm{in}^{4}
$$

Step 2: Check for buckling
use:

$$
P_{c r}=\frac{c \pi^{2} E I}{L^{2}}
$$

$$
\text { simply-supported } \Rightarrow c=1
$$

$$
\text { So: } \begin{gathered}
P_{c r}=\frac{\pi^{2}\left(1.4 \times 10^{6} \mathrm{lbs} / \mathrm{in}^{2}\right)\left(3.26 \times 10^{-4} \mathrm{in}^{-4}\right)}{(48 \mathrm{in})^{2}} \\
\Rightarrow P_{c r}=1.96 \mathrm{lbs}
\end{gathered}
$$

Step 3: Check to see if it buckles or squashes

$$
\begin{aligned}
\sigma_{c r}=\frac{P_{c r}}{A} & =\frac{1.96 \mathrm{lbs}}{0.0625 \mathrm{in}^{2}}=31.4 \mathrm{psi} \\
& \text { So: } \sigma_{c r}<\sigma_{c u} \Rightarrow \text { BUCKLING! }
\end{aligned}
$$

--> Variations

1. What is "transition" length?

Determine where "squashing" becomes a concern (approximately)

$$
\Rightarrow \sigma_{c r}=\sigma_{c u}
$$

--> work backwards

$$
\begin{aligned}
\sigma_{c r}=\frac{P_{c r}}{A} & =4800 \mathrm{psi} \\
& \Rightarrow P_{c r}=\left(4800 \mathrm{lbs} / \mathrm{in}^{2}\right)\left(0.0625 \mathrm{in}^{2}\right) \\
& \Rightarrow P_{c r}=300 \mathrm{lbs}
\end{aligned}
$$

--> Next use:

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

where L is the variable, gives:

$$
L^{2}=\frac{\pi^{2} E I}{P_{c r}}
$$

$$
\Rightarrow \quad L=\sqrt{15.01 \mathrm{in}^{2}} \Rightarrow \quad L=3.87 \mathrm{in}
$$

Finally....
If $L>3.87$ in \Rightarrow buckling
If $L<3.87$ in \Rightarrow squashing
Note transition "around" 3.87 in due to yielding (basswood relatively brittle)

Figure M4.7-16 Behavior of basswood pointer subjected to compressive load

2. What if rectangular cross-section?

Does it still buckle in x_{3}-direction?
Consider I about $x_{2}-$ axis and $x_{3}-$ axis

$\Rightarrow \mathrm{h}=0.5 \mathrm{in}, \mathrm{b}=0.25 \mathrm{in}$

$$
\begin{aligned}
\Rightarrow I_{2}=\frac{b h^{3}}{12}=\frac{(0.25 \mathrm{in})(0.50 \mathrm{in})^{3}}{12} & =0.0026 \mathrm{in}^{4} \\
& =2.60 \times 10^{-3} \mathrm{in}^{4}
\end{aligned}
$$

$$
\Rightarrow \mathrm{h}=0.25 \mathrm{in}, \mathrm{~b}=0.5 \mathrm{in}
$$

$$
\begin{aligned}
I_{3}=\frac{b h^{3}}{12}=\frac{(0.50 \mathrm{in})(0.25 \mathrm{in})^{3}}{12} & =0.00065 \mathrm{in}^{4} \\
& =0.65 \times 10^{-3} \mathrm{in}^{4}
\end{aligned}
$$

then use:

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

and find:

$$
\begin{aligned}
I_{3} & <I_{2} \\
& \Rightarrow P_{c r} \text { smaller for buckling about } x_{3} \text { - axis. }
\end{aligned}
$$

--> Final note on buckling
...possibility of occurrence in any structure where there is a compressive load (thinner structures most susceptible)

Unit M4.7 (New) Nomenclature

c -- coeffcient of edge fixity
e -- eccentricity (due to loading off line or initial imperfection)
$\mathrm{I}_{2}--$ moment of inertia about x_{2} - axis
I_{3}-- moment of inertia about x_{3} - axis
$\mathrm{k}_{\text {eff }}$-- effective stiffness
k_{f}-- axial stiffness
k_{T}-- torsional stiffness
L -- effective length (in buckling considerations)
L'/ ρ-- slenderness ratio
P -- compressive load along column
$P_{c r}-$ critical (buckling) load (for instability)
$\rho--$ radius of gyration (square root of ratios of moment of inertia to area)
$\sigma_{\mathrm{cr}}-$ critical buckling stress
$\sigma_{\mathrm{cu}}--$ compressive ultimate stress
$\sigma_{\mathrm{cy}}-$ - compressive yield stress

